Introduction to ultra-relativistic heavy
Transcrição
Introduction to ultra-relativistic heavy
Introduction to ultra-relativistic heavy-ion collisions Measurement of global observables and the Glauber Model • Centrality measurement • Glauber calculations • “Applications” • Global observables TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 High-energy nucleus-nucleus collisions: the scope • Study of: – Phase diagram chiral/deconfinement transition(s) T quark-gluon plasma ~170 MeV 11 00 00 11 • Relevance for: – early Universe (10−5 s, QGP) – neutron stars deconfined, χ -symmetric hadron gas confined, χ -SB Braun-Munzinger, Wambach, Rev. Mod. Phys. 81 (2009) 1031 1 0 0 1 0 1 color superconductor µo few times nuclear matter density Create in laboratory a chunk of deconfined matter and study its properties (what we often call “medium”, also called Quark-Gluon Plasma, QGP/sQGP) TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 µ Nucleus-nucleus collisions in the LHC era TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 ...an era of deep questions and quantitative answers • nature of confinement and deconfinement [what fingerprints of deconfined matter (QGP) we do see with hadrons?] • breaking and restoration of chiral symmetry • phase diagram of QCD [how is thermalization achieved (at partonic level)?] • aim to determine: – critical temperature (for deconfinement and chiral symmetry restoration) – the equation of state of compressed nuclear (partonic) matter – transport coefficients (ex.: viscosity) TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 How to ”measure” the early Universe in laboratory? with collisions of heavy nuclei (Au,Pb) at relativistic energies (Ex.: Energy per nucleon = 100 GeV → velocity 0.99996 × speed of light) ...and we need models to simulate the experiments (theory intractable due to strength of the force) Ultra-relativistic Quantum Molecular Dynamics http://th.physik.uni-frankfurt.de/∼urqmd/ TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 How to ”simulate” in laboratory the early Universe? 1. initial collisions (t ≤ tcoll = 2R/γcmc) 2. thermalization: equilibrium is established (t . 1 fm/c) 3. expansion and cooling (t < 10-15 fm/c) 4. hadronization 5. chemical freeze-out: inelastic collisions cease; yields are frozen 6. kinetic freeze-out: elastic collisions cease; spectra are frozen (t+ = 3-5 fm/c) we measure at stages 5. and 6. want to know properties of stage 3. TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Matter (nuclear force) at extremes conditions in high-energy nucleus-nucleus collisions (extracted from data and models ...“run the movie backwards” ) Temperature: T =100-1000 MeV (or up to a million times T at Sun’s center; 1 MeV≃10 billion degrees) Pressure: P =100-300 MeV/fm3 (1 MeV/fm3=≃1028 atmospheres; center of Earth: 3.6 million atm) Density: ρ=1-10ρ0 (ρ0. density of a Au nucleus=2.7×1014 g/cm3; density of Au = 19 g/cm3) Volume: about 2000 fm3 (1 fm=10−15 m) Duration: about 10 fm/c (or about 3×10−23 s) trully “extreme”... (a femto-world) • What are the ”control parameters”: – Energy of the collision – Centrality of the collision (size of the nuclei) TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Heavy ion accelerators √ sN N =2.4 GeV, E/A=1.15 GeV √ • AGS @ BNL, Brookhaven (1985-1995): sN N =4.8 GeV, E/A=10.5 GeV √ • SPS @ CERN, Geneva (1987-2004): sN N =17.3 GeV, E/A=157 GeV • Bevalac @ LBL, Berkeley (1980-1990): √ • SIS @ GSI, Darmstadt: sN N =2.5 GeV, E/A=1.5 GeV √ • RHIC @ BNL, Brookhaven: sN N =200 GeV, E/A=100 GeV √ • LHC @ CERN, Geneva (2009): sN N =5500 GeV, E/A=2750 GeV √ ...running now at sN N =2.76 TeV, E/A=1.38 TeV (collider, nr. of collisions = 8000 per sec.) √ • FAIR @ GSI, Darmstadt (2018): sN N =8.3 GeV, E/A=35 GeV (beam on fixed-target, nr. of collisions = 107 per sec.) TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Participants and spectators in AA collisions at high energies geometric concepts are applicable N.Herrmann, J.P.Wessels, T.Wienold, Ann. Rev. Nucl. Part. Sci. 49 (1999) 581 TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Centrality ...defined by the impact parameter b (length of ~b, a 2D vector connecting the centers of the 2 nuclei; points in x direction) central collisions (small b): large participating zone (hot/dense, also called fireball), large Npart (number of participating/wounded nucleons) peripheral collisions (large b): large spectators (cold, flying away undisturbed) b is not a directly measurable quantity 2 σ(b) b centrality fraction for b: σ(b ) = 4R2 (pure geometry; bmax = 2R) max 10% most central Pb+Pb collisions (RP b ≃7 fm): b < b2 = 4.5 fm R b2 2 b db 0 < b >= R b2 ≃3 fm 0 bdb assumed: nuclei as “black discs” (if overlap then interaction) → dσ = 2πbdb TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Calculations on centrality The Glauber Model (or “Wounded Nucleon” Model) treats an AA collision as a superposition of elementary nucleon-nucleon (inelastic) collisions Assumptions: • after an inelastic collision an excited (nucleon-like) hadron is created, which interacts with the same cross section • the nucleons travel along straight lines (at high energies) Input: • the nucleon density profile (nucleons are assumed to be randomly distributed accordoing to this profile) • the inelastic nucleon-nucleon cross section σinel see http://www.gsi.de/∼misko/overlap/ TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 -3 Nucleon density (fm ) Nuclear density profile 0.18 Au 0.16 0.14 0.12 Xc=0 0.1 0.08 Woods-Saxon (parametrize e scattering measurements) Xc=0.7 fm 0.06 Xc=1.2 fm 0.04 0.02 0 1 2 3 4 5 6 7 RA 8 9 10 Radius (fm) • “core”: Ncoll > 1 • “corona”: Ncoll ≤ 1 (from MC Glauber: Xc=1.2 fm) Corona fraction 0 1 Xc=0 fm Au+Au 0.9 Xc=0.7 fm Xc=1.2 fm 0.8 0.7 0.6 0.5 0.4 “bulk” may scale differently: core: ∼ Npart, corona: ∼ Ncoll (pp) 0.3 0.2 0.1 0 0 50 TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 100 150 200 250 300 350 Npart The total inelastic nucleon-nucleon cross section ATLAS, arXiv:1104.0326 TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Glauber calculations Nuclear thickness: TA(~s) = R ρ(~s, z)dz (Normalization: R TA(~s)d2s = A) “Nucleon luminosity” in area d2s: TAB (~s) = TA(~s) · TB (~s − ~b)d2s “Nucleon luminosity” for collisions at impact parameter b: R TAB (b) = TA(~s) · TB (~s − ~b)d2s (nuclear overlap function) Average occurence per event for a process X: < NX >= TAB · σX Number of collisions: < Ncoll >= TAB · σinel TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Measurement of centrality (ALICE) obviously one needs (simple) observables which vary with centrality ...and are not correlated with the measurement intended as a function of centrality ...and one wants a correlation of 2 different measurements to eliminate background (beam-gas) and “pileup” (more events at the same time) ALICE collab., arXiv:1011.3916 ALICE collab., arXiv:1011.3914 TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Measurement of centrality: Zero Degree Calorimeter (ALICE) ZEM ZN IP 116 m ZP ALICE Figure 5.1: Schematic top view of the side of the ALICE beam line opposite to the muon arm. The locations of the neutron (ZN), proton (ZP) and forward electromagnetic (ZEM) calorimeters are shown. The position of the beam line dipoles (Dx) and quadrupoles (Qx) are also indicated. Beam pipes ZP ZN Figure 5.2: Front view of one ZDC set placed on the lifting platform in data-taking position. TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 ALICE ZDC (JINST 3 (2008) S08002) Figure 5.3: Front face of the ZN calorimeter; the quartz fibres connecting the monitoring laser system to PMTs are visible. Figure 5.4: Front face of the ZP calorimeter. Table 5.1: Dimensions and main characteristics of the detectors. Dimensions (cm3 ) Absorber ρabsorber (g cm−3 ) Fibre core diameter (µm) Fibre spacing (mm) Filling ratio Length (in X0 units) Length (in λI units) Number of PMTs ZN ZP ZEM 7.04 × 7.04 × 100 tungsten alloy 17.6 365 1.6 1/22 251 8.7 5 12 × 22.4 × 150 brass 8.5 550 4 1/65 100 8.2 5 7 × 7 × 20.4 lead 11.3 550 not applicable 1/11 35.4 1.1 1 TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 An illustration of Glauber model Ncoll 1800 participant nucleons: suffered at least 1 collision 1600 LHC (σnn=60 mb) 1400 RHIC (σnn=42 mb) spectators: Ncoll = 0 1200 • Npart =< Npart > 1000 • Ncoll =< Ncoll > 800 (for given centrality class) 600 400 200 0 0 50 100 150 200 250 300 350 400 for fluctuations one needs Monte Carlo Glauber to account for the finite nr. of nucleons Npart TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Monte Carlo Glauber √ Au-Au, sN N =200 GeV incoming nucleons are distributed radomly according to Woods-Saxon p 2 nucleons collide if within a distance in transverse plane d ≤ σinel /π many events are used to calculate average quantities (and rms) per collision centrality interval TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Two types of scaling Npart (“soft”) Ncoll (“hard”) “bulk” particle production “hard probes” (X: charm) RAA = RAA 4 dN ch /d η / 〈 N part〉 /2 200 GeV 3 AA/dy dNX pp Ncoll · dNX /dy 2 1.8 RAA for pT > 0.3 GeV/c 1.6 Au+Au @ sNN = 200 GeV 1.4 Saturation Model Hijing (1.35) Two-Component Fit 1.2 1 0.8 2 19.6 GeV 0.6 0.4 1 0.2 0 100 200 PHOBOS collab., arXiv:nucl-ex/0405027 300 400 〈 N part〉 0 0 50 100 150 PHENIX collab., arXiv:1005.1627 TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 200 250 300 350 Npart Recall E+pz Rapidity: y = 12 ln E−p = tanh−1(βz ) z pz = q longitudinal (beam direction) momentum E= m20 + p2 = total energy Advantage: additive for Lorentz transformations “Disdvantage”: needs particle identification (mass) p+p Pseudorapidity: η = 21 ln p−pzz = −ln tan θ2 θ = polar angle (of emission/scattering) Phase space (invariant distribution): d2 N d3 N = 2πptdptdy dx3 pt = p sin θ = transverse momentum q sometimes instead of pt transverse mass: mt = m20 + p2t TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 Overall (charged) particle production vs. pseudorapidity dNch/dη 800 62.4 GeV 19.6 GeV 130 GeV 200 GeV 600 400 200 0 -5 0 5 η -5 0 5 -5 0 η 5 -5 0 η Phobos collaboration (from Miller, Reygers, Sanders, Steinberg, Ann.Rev.Nucl.Part.Sci.57 (2007) 205 [arXiv:nucl-ex/0701025]) larger particle densities: i) for more central collisions ii) for higher energies broader distributions for higher energies (averages over many events of a given centrality class) TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 5 η “Bulk” particle production (in the LHC era) dNch/dy ≃ 1.1 × dNch/dη (colliders) dNch /dy Nch “scaling” with Npart (at η=0) E895, E877 Npart=350 NA49,NA44 NA50,NA60 10 3 PHOBOS,BRAHMS ALICE 148⋅√s0.30 ALICE collab., arXiv:1011.3914 10 (hep-ph/0402291) 2 AGS SPS clearly, particle production is different in AA than in pp 10 TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012 RHIC 10 LHC 2 10 3 10 √sNN (GeV) 4 Multiplicity vs. centrality ALICE collab., arXiv:1012.1657 same centrality dependence at LHC as at RHIC (just a factor 2.1 larger) TU Darmstadt — Fachbereich Physik — Introduction to Relativistic Heavy Ion Collisions — SS 2012