Gateway ® Full ORF Clone Manual
Transcrição
Gateway ® Full ORF Clone Manual
Genomics & Proteomics Core Facility Gateway® Full ORF Clone Ver. 1.0 Date 27.12.06 Name Bernhard Korn 1/25 Manual Comment Basic protocols for handling Gateway Full ORF Clones Content 1. Introduction .................................................................................................................................. 2 2. Flow Chart.................................................................................................................................... 2 3. Quality control at DKFZ................................................................................................................ 3 4. Reagents to be supplied by the User........................................................................................... 3 5. Protocols ...................................................................................................................................... 4 5.1. Streaking stab cultures and preparing strains..................................................................... 4 5.2. Plasmid preparation by alkaline lysis .................................................................................. 5 5.3. Other plasmid preparation methods .................................................................................... 6 5.4. Restriction digest of Gateway Full ORF Clone plasmids .................................................... 6 5.5. Shuttling full ORFs by Gateway® LR reaction .................................................................... 7 5.5.1. Fast Gateway® LR protocol...................................................................................... 7 5.5.2. High Confidence Gateway® LR protocol.................................................................. 8 5.5.3. Multi Destination Gateway® LR protocol.................................................................. 9 5.6. Preparation of chemically competent E. coli ..................................................................... 10 5.7. Transformation of Gateway® LR reactions ....................................................................... 10 6. Appendix .................................................................................................................................... 11 6.1. Gateway Full ORF Clones: Vector Information ................................................................. 11 6.1.1. pDONR201 features ............................................................................................... 11 6.1.2. pDONR201 map ..................................................................................................... 12 6.1.3. pDONR221 features ............................................................................................... 13 6.1.4. pDONR221 map ..................................................................................................... 14 6.2. Genotypes of E. coli .......................................................................................................... 15 6.3. Sequences......................................................................................................................... 15 6.3.1. Primers.................................................................................................................... 15 6.3.2. Vectors.................................................................................................................... 16 7. Troubleshooting ......................................................................................................................... 20 8. Literature .................................................................................................................................... 22 8.1. General .............................................................................................................................. 22 8.2. Applications ....................................................................................................................... 22 8.2.1. Expression in Bacteria ............................................................................................ 22 8.2.2. Yeast Expression .................................................................................................... 23 8.2.3. Baculo Virus Expression......................................................................................... 23 8.2.4. Expression in Plant Cells ........................................................................................ 24 8.2.5. Mammalian Cell Line Expression ........................................................................... 24 8.2.6. Miscelleaous ........................................................................................................... 24 Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 2/25 1. Introduction The Gateway Full ORF Clones are designed to provide maximum flexibility. The Backbone of the clones are Gateway® entry vectors (pDONR201 or pDONR221), allowing rapid and efficient transfer the ORF of interest to any destination vector. The insert of each clone is fully sequenced and analyzed. Features of pDONR201 and pDONR221 vectors are: • attL1 and attL2 sites for site-specific recombination of the Gateway Full ORF Clone with any destination vector of interest when doing an LR reaction • rrnB transcription termination sequences to prevent read-through and basal expression of the gene of interest in E. coli • Kozak-like consensus sequence at the start ATG for efficient translation initiation in eukaryotic systems • Kanamycin resistance gene for selection in E. coli • pUC origin for high-copy replication and maintenance of the plasmid in E. coli 2. Flow Chart Streak stab culture (protocol 5.1) Picking of colonies and preparation of bacterial strains (protocol 5.1) Minipreps of plasmids (protocols 5.2 and 5.3) Restriction analysis (protocol 5.4) Shuttling inserts (Gateway® LR reaction, protocols 5.5.1 – 5.5.3) (Transformation, protocol 5.7) Expression construct Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 3/25 3. Quality control at DKFZ Each clone is grown overnight in LB medium containing 50 µg/ml kanamycin at 37°C. All clones exhibited growth under these conditions. The insert of each clone is sequenced completely, including the vector–insert junctions. For detailed information on the sequence of the clone, please visit www.dkfz.de/gpcf/index.php?id=38 or check for the EMBL/GenBank entry of your clone of interest. Some of the clones do have base substitution relative to RefSeq. These variations are annotated, but you should verify this information by aligning the clone sequence with your desired protein coding sequence. 4. Reagents to be supplied by the User • • • • Bernhard Korn Gateway® LR Clonase™ Enzyme Mix 20 reactions, Invitrogen #11791-019 Destination vector of choice, can either be obtained from Invitrogen, or be constructed by the user. GPCF will share Gateway destination vectors upon request. The destination vector must contain ccdB gene3 flanked by attR1 and attR2 sites. Verify that the reading frame of the destination vector is compatible with the Gateway Full ORF Clones Agar plates containing the antibiotic coded by the destination vector of choice Transformation-competent E. coli (e.g. XL series, DH series or similar) Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 4/25 5. Protocols 5.1. Streaking stab cultures and preparing strains We recommend that you prepare bacterial strains of your Gateway Full ORF Clones, to be able to go back to the original master to produce more plasmid DNA if necessary. Prepare three to five master stocks of each clone for long-term storage. After receiving the bacterial stab cultures of Gateway Full ORF Clones, you should: 1. Streak a small portion of the bacterial stab culture on a LB plate containing 50 µg/ml kanamycin. Incubate the plate at 37°C overnight. 2. 3. 4. 5. Bernhard Korn Isolate a single colony and inoculate 5–10 ml of LB containing 50 µg/ml kanamycin. Grow the culture to stationary phase (OD600 = 1–2). Mix 0.8 ml of culture with 0.2 ml of sterile glycerol and transfer to a kryovial. Store at -80°C. Use one master stock to create working stocks for regular use. Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 5/25 5.2. Plasmid preparation by alkaline lysis Plasmids of Gateway Full ORF Clones can be isolated using standard plasmid isolation techniques, which are in use in your lab. Alkaline Lysis procedure according to Sambrook et al., 1989, with modifications. 1. Grow clone in 2 ml LB/kan (50 µg/ml) for 18-20 h with strong agitation (250 rpm) 2. Spin down 1.5 ml bacterial culture at >12000 xg for 30 sec at 4°C. 3. Remove the supernatant leaving the pellet as dry as possible, i.e. decant and then remove traces of medium with a pipette or use a vacuum line. 4. Resuspend the pellet in 100 µl ice-cold AlkLysI by vigorous vortexing. 5. Add 200 µl freshly prepared AlkLysII, mix by inverting 5 times and store on ice for 15 min. 6. Add 150 µl AlkLysIIIB, mix by inverting the tube 5 times, store on ice for at least 3 min. 7. Spin > 12000 xg, 4°C, 5 min • (Optional, but strongly recommended): add 450 µl phenol/chloroform to the supernatant and extract, spin at >12000 xg for 2 min. 8. Precipitate the DNA by addition of 900 µl EtOH, mix by vortexing, and let sit at room temperature for at least 2 min. 9. Spin > 12000 xg at 4°C for 5 min and remove the supernatant carefully. 10. Wash pellet with 1 ml 70% EtOH at 4°C. 11. Spin as in 9. 12. Dry pellet at room temperature for 10 min. 13. Resuspend in 50 µl TE. 14. Check 1 µl on a gel, either digested or undigested. 15. The average yield is about 3 µg/1.5 ml culture, when Gateway Full ORF Clones are used. This is approx. 60 ng/µl. AlkLys Solution I: 25 mM 10 mM 50 mM Tris/Cl (pH 8,0) EDTA (pH 8,0 or 7,6) α-D-Glucose H2O AlkLys Solution II: 0,2 M NaOH 1% SDS Prepare fresh every time. AlkLys Solution III B: 3M KAc Glacial acetic acid H2O 25 ml (1 M) 20 ml (0.5 M) 9,1 g add 1 l 60 ml (5 M) 11,5 ml 28,5 ml or 29,45 g 11,5 ml to 100 ml Phenol/chloroform/isoamylalcohol (25:24:1) Mix equal volumes (1 l) of CHCl3 and melted phenol and add 1 M Tris base and mix vigorously. Let settle and check pH. Repeat this procedure until pH of aqueous phase is about 8.0. Remove aqueous phase and extract twice with 100 ml TE (pH 8.0). Aliquot and store in dark bottle at 4°C. TE (pH 8,0), 10:1 10 mM Tris/Cl (pH 8,0) 1 mM EDTA Add 10 ml 1 M Tris/Cl (pH 8,0) and 2 ml 0,5 M EDTA (pH 8,0) to 900 ml sterile MQ water, check pH, adjust volume to 1 l and dispense into aliquots. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 6/25 5.3. Other plasmid preparation methods Many biochemical suppliers support plasmid minipreparations with appropriate kits, e.g. Qiagen, Roche, Machery & Nagel, Clontech, Invitrogen, Stratagene, GE and others. 5.4. Restriction digest of Gateway Full ORF Clone plasmids In order to characterize the insert size of a Gateway Full ORF Clone, we recommend cutting the plasmids to be tested using the restriction enzyme BsrGI (e.g. obtained from New England Biolabs). BsrGI restriction site (T|GTACA) is present in attL sides, both attL1 and attL2 that flank the insert of all Gateway Full ORF Clones. Therefore a BsrGI cut will release the insert, but won’t cut in the backbone of the vectors (pDONR201 and pDONR221, respectively). 1. Mix on ice: 2. 200–400 ng plasmid DNA 1 µl 10x restriction buffer, supplied with the enzyme 1U BsrGI restriction enzyme to 10 µl water 3. Incubate at 37°C for 2h 4. Analyze the digest on a 1 % agarose gel using appropriate size markers (range 200 bp to at least 4 kb) Expect a vector fragment of 2,2 kb for pDONR201 (or 2,5 kb for pDONR221), and an insert band whose size depends on the size of the ORF. In some cases there will be multiple bands beside the vector fragment. This can be observed whenever the ORF sequence contains one or more BsrGI recognition sites. Please verify the presence of BsrGI sites in the insert by checking the ORF sequence. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 7/25 5.5. Shuttling full ORFs by Gateway® LR reaction We have optimized different types of LR Gateway® reaction protocols to fulfill different criteria. Please apply the fast protocol if quick access to destination clones is required. This protocol can also be automated easily. The high-confidence protocol ensures the most reliable shuttling of an ORF of interest into the destination vector you are using, by maximizing the reliability of the LR reaction and the amount of DNA and enzyme. Finally, the multi-destination protocol is most convenient and cost-saving whenever you wish to shuttle one insert into multiple destination vectors for multiple applications at the same time. Always use Invitrogens LR Clonase to perform the Gateway® LR reaction. 5.5.1. Fast Gateway® LR protocol This protocol allows you to create Full ORF Expression Clones within 1 day. You will perform the LR recombination reaction to transfer the ORF into a destination vector of your choice (attR1/2cassette-containing vector), to create an attB-containing expression clone. 1. For a single BP reaction, assemble on ice: 2 µl 5x LR buffer Gateway® 3 µl destination vector (150 ng/µl) 3 µl water 0,5 µl Topoisomerase I (alternatively use linearized destination vector; linearize using restriction enzyme cutting between ccdB and CmR genes of the Gateway® cassette) 0,5 µl LR Clonase total 10 µl 2. Incubate for 2 h at 25°C (preferably in PCR machine with heated lid or in water bath with cover). O/n incubation results in an at least 5x higher efficiency. 3. Use immediately 5 µl for chemical transformation into standard E. coli (transformation protocol see above, or use your favorite protocol). 4. Plate the transformation onto LB/antibiotic plate (using the antibiotic that is coded by your destination vector). 5. Incubate o/n at 37°C 6. Pick at least two colonies and characterize the insert (see notes) Note: a. LR reaction efficiency is usually at > 90–95%, so the vast majority of the clones contain exactly the right ORF in the frame that is defined by the Gateway Full ORF Clone and the destination vector used. Therefore many users pick a single colony and use this clone without further verification. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 8/25 5.5.2. High Confidence Gateway® LR protocol This protocol allows you to create Full ORF Expression Clones with high confidence within 3 days. 1. For a single BP reaction, assemble on ice: 4 µl 5x LR buffer 6 µl destination vector (200–250 ng/µl) 2 µl Gateway Full ORF Clone (150–250 ng/µl, or 1 µl of a miniprep) 6 µl water 1 µl Topoisomerase I (alternatively use linearized destination vector; linearize using restriction enzyme cutting between ccdB and CmR genes of the Gateway® cassette) 1 µl LR Clonase total 20 µl 2. Incubate o/n at 25°C (preferably in PCR machine with heated lid or in water bath with cover, see notes). 3. Add 2 µl stop mix (2 µg/µl Proteinase K), and incubate for 10 min at 37°C. 4. Add: 2 µl glycogen / Pellet Paint 4 µl 3M Na Acetate pH 5.2 100 µl EtOH abs., and mix 5. Spin at 13.000 rpm for 15 min. 6. Wash pellet with at least 200 µl 70% EtOH. 7. Resuspend dried pellet in 5 µl water. 8. Use 1 µl for transformation of electrocompetent E. coli that have a transformation efficiency of 109 cfu/µg plasmid. We recommend T-phage-resistant bacteria. 9. Plate the transformation onto LB/antibiotic plate (using the antibiotic that is coded by your destination vector). 10. Incubate o/n at 37°C 11. Pick at least two colonies and characterize the insert (see notes) Notes: a. Prolonged incubation of LR reaction increases the transformation efficiency significantly. This is especially important when shuttling long inserts (> 2,5 kb) b. LR reaction efficiency is usually at > 90–95%, so the vast majority of the clones contain exactly the right ORF in the frame that is defined by the Gateway Full ORF Clone and the destination vector used. Therefore many users pick a single colony and use this clone without further verification. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 9/25 5.5.3. Multi Destination Gateway® LR protocol This protocol allows you to create multiple different Full ORF Expression Clones (vector constructs) of a single ORF via one Gateway® LR reaction and transformation. Make sure that these destination vectors have different antibiotic resistance genes. Avoid kanamycin and chloramphenicol, as these resistances are coded by the Gateway Full ORF Clone, and the Gateway® cassette that are present in the destination vectors, respectively. 1. For a multi-destination BP reaction, assemble on ice: 4 µl 5x LR buffer Gateway® 1 µl destination vector 1 (100–250 ng/µl) - see notes 1 µl destination vector 2 (100–250 ng/µl) optional 1 µl destination vector 3 (100–250 ng/µl) optional 1 µl destination vector 4 (100–250 ng/µl) 2 µl Gateway Full ORF Clone (150–250 ng/µl) to 18 µl water 1 µl Topoisomerase I (alternatively use linearized destination vectors; linearize using restriction enzyme cutting between ccdB and CmR genes of the Gateway® cassette) 1 µl LR Clonase total 20 µl 2. Incubate o/n at 25°C (preferably in PCR machine with heated lid or in water bath with cover, see notes). 3. Add 2 µl stop mix (2 µg/µl Proteinase K), and incubate for 10 min at 37°C. 4. Add: 2 µl Glycogen / Pellet Paint 4 µl 3M Na Acetate pH 5.2 100 µl EtOH abs., and mix 5. Spin at 13.000 rpm for 15 min. 6. Wash pellet with at least 200 µl 70% EtOH. 7. Resuspend dried pellet in 5 µl water. 8. Use 1 µl for transformation of electrocompetent E. coli that have a transformation efficiency of 109 cfu/µg plasmid. We recommend T-phage-resistant bacteria. 9. Plate equal amounts of the transformation onto LB/antibiotic1, LB/antibiotic2, (LB/antibiotic3, LB/antibiotic4) plates (using the antibiotics that are coded by your respective destination vectors, see notes). 10. Incubate o/n at 37°C 11. Pick at least two colonies and characterize the insert (see notes) Notes: a. Up to four different destination vectors have been used successfully in a single LR reaction. Reduce the amount of each single vector accordingly to give 1 µg total destination vector mix per LR reaction. The destination vectors used in combination MUST code for different antibiotic resistances. Kanamycin and chloramphenicol should NOT be amongst the antibiotics used as resistance genes to these are already carried on the Gateway Full ORF Clones and the Gateway® cassette, respectively. b. Prolonged incubation of LR reaction increases the transformation efficiency significantly. This is especially important when shuttling long inserts (> 2,5 kb). c. In order to achieve single colonies, we recommended that plating should be done at two concentrations on two identical LB/antibiotics plates (e.g. 20 µl and 200 µl aliquots). d. LR reaction efficiency is usually at > 90–95%, so the vast majority of the clones contain exactly the right ORF in the frame that is defined by the Gateway Full ORF Clone and the destination vector used. Therefore many users pick a single colony and use this clone without further verification. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 10/25 5.6. Preparation of chemically competent E. coli 1. Inoculate 1 ml o/n-culture of phage-resistant E. coli (e.g. DH5α T phage-resistant) in 100 ml LB; incubate on shaker at 37°C. 2. Harvest in log phase at OD600 = 0,3–0,4, by spinning at 3600 rpm at 4°C for 10 min. 3. Resuspend in 50 ml 100 mM CaCl2 (ice-cold). 4. Leave on ice for 30 min and spin down as above. a. For immediate use: Resuspend in 5 ml 100 mM CaCl2 (ice-cold). Storage at 4°C o/n increases transformation efficiency approximately five-fold. b. For long-term storage: Resuspend in < 5 ml 100 mM CaCl2, 15% glycerol (icecold).Freeze in 200 µl aliquots on dry ice and store at -80°C. Notes: a. E. coli prepared according to this protocol usually have a transformation efficiency of at least 106/µg supercoiled plasmid. b. It is absolutely essential that all steps of this protocol are performed as cold as possible, this means: never remove cells from ice once they have been harvested. LB (Luria-Bertani) medium 10 g bacto-tryptone 5g bacto-yeast extract 10 g NaCl Dissolve in 950 ml VE water, and adjust pH to 7 with 5 N NaOH (about 200 µl), if necessary. Fill up to 1 l and autoclave. 5.7. Transformation of Gateway® LR reactions 1. Thaw on ice (takes about 15 min). 2. Transfer 100 µl aliquots to pre-cooled and labeled 15 ml Falcon tubes. 3. Add 1,7 µl ß-mercaptoethanol (1,44 M) to achieve a final concentration of 25 mM. Mix cells and ß-mercaptoethanol by swirling the tube. 4. Incubate on ice for 10 min. 5. Add 1–3 µl of a Gateway® LR Clonase reaction to the bacteria. 6. Leave on ice for 30 min. 7. Heat shock at 42°C for 30 sec. 8. Add 0,9 ml of LB medium and incubate at 37°C on shaker for 30–60 min, 250 rpm. 9. Plate 25 µl and 250 µl of the transformation onto LB/antibiotic (according to the resistance gene(s) carried by the destination/expression plasmids) plates. Store the remaining transformation at 4°C. 10. Incubate the plate at 37°C overnight. 11. Isolate a single colony and inoculate into 5–10 ml of LB containing appropriate antibiotic. 12. Grow the culture to stationary phase (OD600=1–2). 13. Mix 0.8 ml of culture with 0.2 ml of sterile glycerol and transfer to a kryovial. 14. Store at -80°C. Use one master stock to create working stocks for regular use. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 11/25 6. Appendix 6.1. Gateway Full ORF Clones: Vector Information 6.1.1. pDONR201 features Description of the features in the vicinity of the cloning site of pDONR201. Please verify the nature of the cloning vector (pDONR201 or pDONR221). ------------------> tttatttgat gcctggcagt tccctactct cgcgttaacg ctagcatgga tctcgggccc don5 caaataatga ttttattttg actgatagtg acctgttcgt tgcaacaaat tgatgagcaa attL1 tgctttttta taatgccaag tttgtacaaa aaa gca ggc –stuffer– ATG-ORF –stuffer- ac cca gct ttc ttgtacaaa gtgggcatta taagaaagca ttgcttatca atttgttgca attL2 acgaacaggt cactatcagt caaaataaaa tcattatttg ccatccagct gcagctctgg <---------------------cccgtgtctc aaaatctctg atgttacatt gcacaagata aaaatatatc don3 red: gray: bold: blue: yyyyyy Bernhard Korn attL1/2 Stuffer between attL sites and ORF. This stuffer may vary in different Gateway Full ORF Clones, please consult the GPCF web page and check for der exact clone sequence. ORF sequence Sequencing and PCR primers don5 and don3 Sequence underlined in green corresponds to the sequence fragment transferred to destinations clones by LR reaction. Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 12/25 6.1.2. pDONR201 map rrnB T2 transcription terminator NheI (45) AflIII (3098) pUC ori rrnB T1 transcription terminator AcyI (133) don5 (100.0%) HpaI (307) ApaLI (2784) NheI (311) Bsp120I (326) ApaI (330) BsrGI (414) pDONR201 pDONR201 Shuttle Clone Gateway Entry Vector (with dummy insert) Kan(R) dummy-ORF BsrGI (1292) PvuII (1387) PstI (1392) don3 (100.0%) black bar: orange bars: blue bars: red letters: black letters: gray letters: Bernhard Korn origin of replication coding sequences (kanamycin resistance and ORF of interest) terminator sequences primer binding sites (sequences see “Oligonucleotide” section) restriction enzyme sites (single cutter in vector) restriction enzyme sites (dual cutter in vector) Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 13/25 6.1.3. pDONR221 features Description of the features in the vicinity of the cloning site of pDONR201. Please verify the nature of the cloning vector (pDONR201 or pDONR221). ------------------> tttatttgat gcctggcagt tccctactct cgcgttaacg ctagcatgga tgttttccca don5 ----------------------> gtcacgacgt tgtaaaacga cggccagtct taagctcggg ccccaaataa tgattttatt M13u ttgactgata gtgacctgtt cgttgcaaca cattgatgag caatgctttt ttataatgcc attL1 aactttgtac aaa aaa gca ggc –stuffer– ATG-ORF –stuffer– ac cca gct ttc ttg tacaaa gttggcatta taagaaagca ttgcttatca atttgttgca attL2 acgaacaggt cactatcagt caaaataaaa tcattatttg ccatccagct gatatcccct <-----------------atagtgagtc gtattacatg gtcatagctg tttcctggca gctctggccc gtgtctcaaa M13r <---------------------atctctgatg ttacattgca caagataaaa taatatc don3 red: gray: bold: blue: yyyyyy Bernhard Korn attL1/2 Stuffer between attL sites and ORF. This stuffer may vary in different Gateway Full ORF Clones, please consult the GPCF web page and check for der exact clone sequence. ORF sequence Sequencing and PCR primers don5, don3, M13u, M13r Sequence underlined in green corresponds to the sequence fragment transferred to destinations clones by LR reaction. Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 14/25 6.1.4. pDONR221 map Nhe I (240) rrnB T2 transcription terminator Mlu I (231) pUC ori Pvu II (175) Apa LI (3071) Acy I (328) rrnB T1 transcription termina don5 (100.0%) Hpa I (502) Nhe I (506) M13u (100.0%) Mlu I (2689) attL1 pDONR221 pDONR221 Shuttle Clone Asp EI (550) Bsp 120I (564) Apa I (568) Bsr GI (652) Gateway Entry Vector (with dummy insert) dummy-ORF attL2 Kan(R) don3 (100.0%) M13r (100.0%) black bars: orange bars: blue bars: green bars red letters: black letters: gray letters: Bernhard Korn Bsr GI (1528) Pvu II (1623) Eco RV (1628) origin of replication coding sequences (kanamycin resistance and ORF of interest) terminator sequences attL recombination sites (used in LR Gateway® reaction) primer binding sites restriction enzyme sites (single cutter in vector) restriction enzyme sites (dual cutter in vector) Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 15/25 6.2. Genotypes of E. coli Gateway destination vectors are delivered in DB3.1 strains, suppressing ccdB function. Gateway Full ORF Clones are provided in DH5 or DH10 strains. DH5α: F- φ80dlacZ∆M15∆(lacZYA-argF) U169 endA1 recA1 hsdR17(rK- mK+) deoR thi-1 supE44 λ- gyrA96 relA1 FOCUS (1986) 8:2, 9 DH5α T1-resistant: F- φ80dlacZ∆M15∆(lacZYA-argF) U169 endA1 recA1 hsdR17(rK- mK+) deoR thi-1 supE44 λ- gyrA96 relA1 tonA - DH10B: F mcrA ∆(mrr-hsdRMS-mcrBC) φ80dlacZ∆M15 ∆lacX74 endA1 recA1 deoR ∆(ara, leu)7697 araD139 galU galK nupG rpsL λLorow, D. and Jessee, J. (1990) FOCUS 12, 19 - DH10B T-phage-resistant: F mcrA ∆(mrr-hsdRMS-mcrBC) φ80dlacZ∆M15 ∆lacX74 endA1 recA1 deoR ∆(ara, leu)7697 araD139 galU galK nupG rpsL λ- tonA DB3.1: F- gyrA462 endA1 glnV44 ∆(sr1-recA) mcrB mrr hsdS20(rB-, mB-) ara14 galK2 lacY1 proA2 rpsL20(Smr) xyl5 ∆leu mtl1 6.3. Sequences 6.3.1. Primers The Gateway Full ORF Clones may be characterized by PCR and/or sequencing. Please use the recommended oligonucleotides sequences provided below. don5: don3: M13u: M13r: Bernhard Korn cgttaacgctagcatgga tcttgtgcaatgtaacatcag cgttgtaaaacgacggccagt ccaggaaacagctatgac Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 16/25 6.3.2. Vectors > pDONR201 1 gttaacgcta gcatggatct cgggccccaa ataatgattt tattttgact gatagtgacc 61 tgttcgttgc aacaaattga tgagcaatgc ttttttataa tgccaacttt gtacaaaaaa 121 gctgaacgag aaacgtaaaa tgatataaat atcaatatat taaattagat tttgcataaa 181 aaacagacta cataatactg taaaacacaa catatccagt cactatgaat caactactta 241 gatggtatta gtgacctgta gtcgaccgac agccttccaa atgttcttcg ggtgatgctg 301 ccaacttagt cgaccgacag ccttccaaat gttcttctca aacggaatcg tcgtatccag 361 cctactcgct attgtcctca atgccgtatt aaatcataaa aagaaataag aaaaagaggt 421 gcgagcctct tttttgtgtg acaaaataaa aacatctacc tattcatata cgctagtgtc 481 atagtcctga aaatcatctg catcaagaac aatttcacaa ctcttatact tttctcttac 541 aagtcgttcg gcttcatctg gattttcagc ctctatactt actaaacgtg ataaagtttc 601 tgtaatttct actgtatcga cctgcagact ggctgtgtat aagggagcct gacatttata 661 ttccccagaa catcaggtta atggcgtttt tgatgtcatt ttcgcggtgg ctgagatcag 721 ccacttcttc cccgataacg gagaccggca cactggccat atcggtggtc atcatgcgcc 781 agctttcatc cccgatatgc accaccgggt aaagttcacg ggagacttta tctgacagca 841 gacgtgcact ggccaggggg atcaccatcc gtcgcccggg cgtgtcaata atatcactct 901 gtacatccac aaacagacga taacggctct ctcttttata ggtgtaaacc ttaaactgca 961 tttcaccagt ccctgttctc gtcagcaaaa gagccgttca tttcaataaa ccgggcgacc 1021 tcagccatcc cttcctgatt ttccgctttc cagcgttcgg cacgcagacg acgggcttca 1081 ttctgcatgg ttgtgcttac cagaccggag atattgacat catatatgcc ttgagcaact 1141 gatagctgtc gctgtcaact gtcactgtaa tacgctgctt catagcacac ctctttttga 1201 catacttcgg gtatacatat cagtatatat tcttataccg caaaaatcag cgcgcaaata 1261 cgcatactgt tatctggctt ttagtaagcc ggatccacgc gattacgccc cgccctgcca 1321 ctcatcgcag tactgttgta attcattaag cattctgccg acatggaagc catcacagac 1381 ggcatgatga acctgaatcg ccagcggcat cagcaccttg tcgccttgcg tataatattt 1441 gcccatggtg aaaacggggg cgaagaagtt gtccatattg gccacgttta aatcaaaact 1501 ggtgaaactc acccagggat tggctgagac gaaaaacata ttctcaataa accctttagg 1561 gaaataggcc aggttttcac cgtaacacgc cacatcttgc gaatatatgt gtagaaactg 1621 ccggaaatcg tcgtggtatt cactccagag cgatgaaaac gtttcagttt gctcatggaa 1681 aacggtgtaa caagggtgaa cactatccca tatcaccagc tcaccgtctt tcattgccat 1741 acggaattcc ggatgagcat tcatcaggcg ggcaagaatg tgaataaagg ccggataaaa 1801 cttgtgctta tttttcttta cggtctttaa aaaggccgta atatccagct gaacggtctg 1861 gttataggta cattgagcaa ctgactgaaa tgcctcaaaa tgttctttac gatgccattg 1921 ggatatatca acggtggtat atccagtgat ttttttctcc attttagctt ccttagctcc 1981 tgaaaatctc gataactcaa aaaatacgcc cggtagtgat cttatttcat tatggtgaaa 2041 gttggaacct cttacgtgcc gatcaacgtc tcattttcgc caaaagttgg cccagggctt 2101 cccggtatca acagggacac caggatttat ttattctgcg aagtgatctt ccgtcacagg 2161 tatttattcg gcgcaaagtg cgtcgggtga tgctgccaac ttagtcgact acaggtcact 2221 aataccatct aagtagttga ttcatagtga ctggatatgt tgtgttttac agtattatgt 2281 agtctgtttt ttatgcaaaa tctaatttaa tatattgata tttatatcat tttacgtttc 2341 tcgttcagct ttcttgtaca aagttggcat tataagaaag cattgcttat caatttgttg 2401 caacgaacag gtcactatca gtcaaaataa aatcattatt tgccatccag ctgcagctct 2461 ggcccgtgtc tcaaaatctc tgatgttaca ttgcacaaga taaaaatata tcatcatgaa Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 17/25 2521 caataaaact gtctgcttac ataaacagta atacaagggg tgttatgagc catattcaac 2581 gggaaacgtc gaggccgcga ttaaattcca acatggatgc tgatttatat gggtataaat 2641 gggctcgcga taatgtcggg caatcaggtg cgacaatcta tcgcttgtat gggaagcccg 2701 atgcgccaga gttgtttctg aaacatggca aaggtagcgt tgccaatgat gttacagatg 2761 agatggtcag actaaactgg ctgacggaat ttatgcctct tccgaccatc aagcatttta 2821 tccgtactcc tgatgatgca tggttactca ccactgcgat ccccggaaaa acagcattcc 2881 aggtattaga agaatatcct gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc 2941 tgcgccggtt gcattcgatt cctgtttgta attgtccttt taacagcgat cgcgtatttc 3001 gtctcgctca ggcgcaatca cgaatgaata acggtttggt tgatgcgagt gattttgatg 3061 acgagcgtaa tggctggcct gttgaacaag tctggaaaga aatgcataaa cttttgccat 3121 tctcaccgga ttcagtcgtc actcatggtg atttctcact tgataacctt atttttgacg 3181 aggggaaatt aataggttgt attgatgttg gacgagtcgg aatcgcagac cgataccagg 3241 atcttgccat cctatggaac tgcctcggtg agttttctcc ttcattacag aaacggcttt 3301 ttcaaaaata tggtattgat aatcctgata tgaataaatt gcagtttcat ttgatgctcg 3361 atgagttttt ctaatcagaa ttggttaatt ggttgtaaca ctggcagagc attacgctga 3421 cttgacggga cggcgcaagc tcatgaccaa aatcccttaa cgtgagtttt cgttccactg 3481 agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt ttctgcgcgt 3541 aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt tgccggatca 3601 agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga taccaaatac 3661 tgtccttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac 3721 atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct 3781 taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg 3841 gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga gatacctaca 3901 gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccggt 3961 aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa acgcctggta 4021 tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt tgtgatgctc 4081 gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc 4141 cttttgctgg ccttttgctc acatgttctt tcctgcgtta tcccctgatt ctgtggataa 4201 ccgtattacc gctagccagg aagagtttgt agaaacgcaa aaaggccatc cgtcaggatg 4261 gccttctgct tagtttgatg cctggcagtt tatggcgggc gtcctgcccg ccaccctccg 4321 ggccgttgct tcacaacgtt caaatccgct cccggcggat ttgtcctact caggagagcg 4381 ttcaccgaca aacaacagat aaaacgaaag gcccagtctt ccgactgagc ctttcgtttt 4441 atttgatgcc tggcagttcc ctactctcgc Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 18/25 > pDONR221 1 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 61 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 121 gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 181 cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc 241 tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta 301 gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc 361 acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa 421 caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg 481 gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa 541 aacgacggcc agtcttaagc tcgggcccca aataatgatt ttattttgac tgatagtgac 601 ctgttcgttg caacacattg atgagcaatg cttttttata atgccaactt tgtacaaaaa 661 agctgaacga gaaacgtaaa atgatataaa tatcaatata ttaaattaga ttttgcataa 721 aaaacagact acataatact gtaaaacaca acatatccag tcactatgaa tcaactactt 781 agatggtatt agtgacctgt agtcgaccga cagccttcca aatgttcttc gggtgatgct 841 gccaacttag tcgaccgaca gccttccaaa tgttcttctc aaacggaatc gtcgtatcca 901 gcctactcgc tattgtcctc aatgccgtat taaatcataa aaagaaataa gaaaaagagg 961 tgcgagcctc ttttttgtgt gacaaaataa aaacatctac ctattcatat acgctagtgt 1021 catagtcctg aaaatcatct gcatcaagaa caatttcaca actcttatac ttttctctta 1081 caagtcgttc ggcttcatct ggattttcag cctctatact tactaaacgt gataaagttt 1141 ctgtaatttc tactgtatcg acctgcagac tggctgtgta taagggagcc tgacatttat 1201 attccccaga acatcaggtt aatggcgttt ttgatgtcat tttcgcggtg gctgagatca 1261 gccacttctt ccccgataac ggagaccggc acactggcca tatcggtggt catcatgcgc 1321 cagctttcat ccccgatatg caccaccggg taaagttcac gggagacttt atctgacagc 1381 agacgtgcac tggccagggg gatcaccatc cgtcgcccgg gcgtgtcaat aatatcactc 1441 tgtacatcca caaacagacg ataacggctc tctcttttat aggtgtaaac cttaaactgc 1501 atttcaccag cccctgttct cgtcagcaaa agagccgttc atttcaataa accgggcgac 1561 ctcagccatc ccttcctgat tttccgcttt ccagcgttcg gcacgcagac gacgggcttc 1621 attctgcatg gttgtgctta ccagaccgga gatattgaca tcatatatgc cttgagcaac 1681 tgatagctgt cgctgtcaac tgtcactgta atacgctgct tcatagcata cctctttttg 1741 acatacttcg ggtatacata tcagtatata ttcttatacc gcaaaaatca gcgcgcaaat 1801 acgcatactg ttatctggct tttagtaagc cggatccacg cggcgtttac gccccgccct 1861 gccactcatc gcagtactgt tgtaattcat taagcattct gccgacatgg aagccatcac 1921 agacggcatg atgaacctga atcgccagcg gcatcagcac cttgtcgcct tgcgtataat 1981 atttgcccat ggtgaaaacg ggggcgaaga agttgtccat attggccacg tttaaatcaa 2041 aactggtgaa actcacccag ggattggctg agacgaaaaa catattctca ataaaccctt 2101 tagggaaata ggccaggttt tcaccgtaac acgccacatc ttgcgaatat atgtgtagaa 2161 actgccggaa atcgtcgtgg tattcactcc agagcgatga aaacgtttca gtttgctcat 2221 ggaaaacggt gtaacaaggg tgaacactat cccatatcac cagctcaccg tctttcattg 2281 ccatacggaa ttccggatga gcattcatca ggcgggcaag aatgtgaata aaggccggat 2341 aaaacttgtg cttatttttc tttacggtct ttaaaaaggc cgtaatatcc agctgaacgg 2401 tctggttata ggtacattga gcaactgact gaaatgcctc aaaatgttct ttacgatgcc 2461 attgggatat atcaacggtg gtatatccag tgattttttt ctccatttta gcttccttag 2521 ctcctgaaaa tctcgataac tcaaaaaata cgcccggtag tgatcttatt tcattatggt 2581 gaaagttgga acctcttacg tgccgatcaa cgtctcattt tcgccaaaag ttggcccagg 2641 gcttcccggt atcaacaggg acaccaggat ttatttattc tgcgaagtga tcttccgtca 2701 caggtattta ttcggcgcaa agtgcgtcgg gtgatgctgc caacttagtc gactacaggt 2761 cactaatacc atctaagtag ttgattcata gtgactggat atgttgtgtt ttacagtatt 2821 atgtagtctg ttttttatgc aaaatctaat ttaatatatt gatatttata tcattttacg 2881 tttctcgttc agctttcttg tacaaagttg gcattataag aaagcattgc ttatcaattt 2941 gttgcaacga acaggtcact atcagtcaaa ataaaatcat tatttgccat ccagctgata Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 19/25 3001 tcccctatag tgagtcgtat tacatggtca tagctgtttc ctggcagctc tggcccgtgt 3061 ctcaaaatct ctgatgttac attgcacaag ataaaataat atcatcatga acaataaaac 3121 tgtctgctta cataaacagt aatacaaggg gtgttatgag ccatattcaa cgggaaacgt 3181 cgaggccgcg attaaattcc aacatggatg ctgatttata tgggtataaa tgggctcgcg 3241 ataatgtcgg gcaatcaggt gcgacaatct atcgcttgta tgggaagccc gatgcgccag 3301 agttgtttct gaaacatggc aaaggtagcg ttgccaatga tgttacagat gagatggtca 3361 gactaaactg gctgacggaa tttatgcctc ttccgaccat caagcatttt atccgtactc 3421 ctgatgatgc atggttactc accactgcga tccccggaaa aacagcattc caggtattag 3481 aagaatatcc tgattcaggt gaaaatattg ttgatgcgct ggcagtgttc ctgcgccggt 3541 tgcattcgat tcctgtttgt aattgtcctt ttaacagcga tcgcgtattt cgtctcgctc 3601 aggcgcaatc acgaatgaat aacggtttgg ttgatgcgag tgattttgat gacgagcgta 3661 atggctggcc tgttgaacaa gtctggaaag aaatgcataa acttttgcca ttctcaccgg 3721 attcagtcgt cactcatggt gatttctcac ttgataacct tatttttgac gaggggaaat 3781 taataggttg tattgatgtt ggacgagtcg gaatcgcaga ccgataccag gatcttgcca 3841 tcctatggaa ctgcctcggt gagttttctc cttcattaca gaaacggctt tttcaaaaat 3901 atggtattga taatcctgat atgaataaat tgcagtttca tttgatgctc gatgagtttt 3961 tctaatcaga attggttaat tggttgtaac actggcagag cattacgctg acttgacggg 4021 acggcgcaag ctcatgacca aaatccctta acgtgagtta cgcgtcgttc cactgagcgt 4081 cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 4141 gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 4201 taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 4261 ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 4321 tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 4381 ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 4441 cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 4501 agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 4561 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 4621 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 4681 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 4741 gctggccttt tgctcacatg tt Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 20/25 7. Troubleshooting Problem Few or no colonies obtained from LR reaction after transformation while the transformation control gave colonies Different colony sizes after transformation and plating Bernhard Korn Suggestion Incorrect antibiotic used for the selection of transformants - Check antibiotic marker of the destination vector used and for transformants on new LB/antibiotic plates If you use the “fast protocol”, the LR reactions are not treated with Proteinase K. This causes a reduction of transformants. - Switch to the High Confidence protocol Clonase™ enzyme mix failure (inactive enzymes or didn’t use suggested amount) - Test another aliquot of the LR Clonase - Ensure storage of Clonase at –80°C - Do not freeze/thaw Clonase more than 10x - Use recommended amounts The destination vector used did not have the correct att sites - Always use destination vectors with attL1 and attL2 recombination sites Incorrect Clonase™ enzyme mix - Always use LR Clonase™ from Invitrogen to perform the shuttling reaction Biased vector concentrations, especially too much Gateway Full ORF Clone DNA - Ensure equal molar amounts of Gateway Full ORF Clone and destination vector Loss of plasmid during bacterial growth - Re-incubate on selective plates at 30°C - Control for insert re-arrangements during the experiment - Use E. coli strains that stabilize unusual DNA structures and repeat cloning (e.g. SURE from Stratagene) Small colonies can originate from Gateway Full ORF Clone plasmid DNA that co-transforms with the destination construct - Reduce the amount of Gateway Full ORF Clone to as low as 25 ng/20 µl LR reaction Small colonies can originate from depletion of antibiotic on the plate (‘satellite colonies’ = small colonies surrounding a large colony) - Phenomenon seen primarily when using ampicillin selection, as this antibiotic is consumed by bacteria. Replace ampicillin by carbenicillin (an analogon that is not used up by E. coli Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility High background in the Gateway Full ORF Clone reaction No colonies/less than 10 colonies after transformation Bernhard Korn 21/25 LR reaction transformed into an F′ episome E. coli containing the ccdA gene - Use E. coli without F′ episome Inactive ccdB gene on the destination vector - Always propagate destination vectors in DB3.1 E. coli and add 25ng/µl chloramphenicol to medium and plates used - Verify the destination vector before use (by restriction digest or sequencing) One of the solutions is contaminated with a second plasmid - Verify your solutions by doing mock transformations with the individual solutions - Make up new solutions Competent bacteria already carry a plasmid - Plate mock transformation directly Problems with - Transformation - Competent bacteria - Insufficient amount of transformation plated Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 22/25 8. Literature 8.1. General Bernard P., and M. Couturier. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 1992, 226(3), 735-745. Bernard P., K.E. Kezdy, L.V. Melderen, J. Steyaert, L. Wyns, M.L. Pato, P.N. Higgins, and M. Couturier. The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J Mol Biol 1993, 234, 534-541. Bushman W., J.F. Thompson, L. Vargas, and A. Landy. Control of directionality in lambda sitespecific recombination. Science 1985, 230, 906-911. Hartley J.L., G.F. Temple, and M.A. Brasch. DNA cloning using in vitro site-specific recombination. Genome Research 2000, 10, 1788-1795. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 1987, 15, 8125-8148. Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci USA 1990, 87, 8301-8305. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biology 1991, 115, 887-903. Lander E., et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860921. Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Ann Rev Biochem 1989, 58, 913-949. Miki T., J.A. Park, K. Nagao, N. Murayama, and T. Horiuchi. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit a suppress letD (ccdB) product growth inhibition. J Mol Biol 1992, 225, 39-52. Nomura N., T. Nagase, N. Miyajima, T. Sazuka, A. Tanaka, S. Sato, N. Seki, Y. Kawarabayasi, K. Ishikawa, and S. Tabata. Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res 1994, 1, 251-262. Orosz A., I. Boros, and P. Venetianer. Analysis of the complex transcription termination region of the Escherichia coli rrnB Gene. Eur J Biochem 1991, 201, 653-659. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989)Molecular Cloning: A Laboratory Manual, 2nd ed.,Cold Spring Harbor (N.Y.) Shine J., and L. Dalgarno. Terminal-sequence analysis of bacterial ribosomal RNA. Correlation between the 3'-terminal-polypyrimidine sequence of 16-S RNA and translational specificity of the ribosome. Eur J Biochem 1975, 57(1), 221-230. Straussberg R., et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. PNAS 2002, 99, 16899-16903. Venter J.C., et al. The sequence of the human genome. Science 2001, 291, 1304-1351. Weisberg R.A., and A. Landy. Site-specific recombination in phage lambda. In Lambda II, R.A. Weisberg, ed. (Cold Spring Harbor, NY: Cold Spring Harbor Press) 1983, pp. 211-250. Wiemann S., B. Weil, R. Wellenreuther, J. Gassenhuber, S. Glassl, W. Ansorge, M. Bocher, H. Blocker, S. Bauersachs, H. Blum, J. Lauber, A. Dusterhoft, A. Beyer, K. Kohrer, N. Strack, H.W. Mewes, B. Ottenwalder, B. Obermaier, J. Tampe, D. Heubner, R. Wambutt, B. Korn, M. Klein, and A. Poustka. Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Res 2001, 11, 422435. 8.2. Applications 8.2.1. Expression in Bacteria Braun P., Y. Hu, B. Shen, A. Halleck, M. Koundinya, E. Harlow, and J. LaBaer. Proteome-scale purification of human proteins from bacteria. Proc Natl Acad Sci USA 2002, 99(5), 2654-2659. Hammarstrom M., N. Hellgren, S. van Den Berg, H. Berglund, and T. Hard. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Science 2002, 11, 313-321. Kulkarni G.V., and D.D. Deobagkar. A cytosolic form of aminopeptidase P from Drosophila melanogaster: molecular cloning and characterization. J Biochem 2002, 131(3), 445-452. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 23/25 Kuma A., N. Mizushima, N. Ishihara, and Y. Ohsumi. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 2002, 277(21), 18619-18625. Reina J., E. Lacroix, S.D. Hobson, G. Fernandez-Ballester, V. Rybin, M.S. Schwab, L. Serrano, C. Gonzalez. Computer-aided design of a PDZ domain to recognize new target sequences. Nature Structural Biology 2002, 9, 621-627. Wang Y., J.A. Bruenn, S.F. Queener, and V. Cody. Isolation of rat dihydrofolate reductase gene and characterization of recombinant enzyme. Antimicrob Agents Chemother 2001, 45(9), 2517-2523. Way G., N. Morrice, C. Smythe, and A.J. O'Sullivan. Purification and identification of secernin, a novel cytosolic protein that regulates exocytosis in mast cells. Mol Biol Cell 2002, 13(9), 33443354. 8.2.2. Yeast Expression Brizuela L., P. Braun, and J. LaBaer. FLEXGene repository: from sequenced genomes to gene repositories for high-throughput functional biology and proteomics. Mol Biochem Parasitol 2001, 118(2), 155-165. Courbard J., F. Frederic, J. Adelaide, J. Borg, D. Birnbaum, and V. Ollendorf. Interaction between two E3 ubiquitin ligases of different classes, CBLC and AIP4/ITCH. J Biol Chem 2002, 277, 45267-45275. Davy A., P. Bello, N. Thierry-Mieg, P. Vaglio, J. Hitti, L. Doucette-Stamm, D. Thierry-Mieg, J. Reboul, S. Boulton, A.J. Walhout, O. Coux, and M. Vidal. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep 2001, 2(9), 821-828. Finley R.L. Jr., H. Zhang, J. Zhong, and C.A. Stanyon. Regulated expression of proteins in yeast using the MAL61-62 promoter and a mating scheme to increase dynamic range. Gene 2002, 285(1-2), 49-57. Funk M., R. Niedenthal, D. Mumberg, K. Brinkmann, V. Ronicke, and T. Henkel. Vector systems for the heterologous expression of proteins in Saccharomyces cerevisiae. Methods Enzymol 2002, 350, 248-257. Gavin A.C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.M. Michon, C.M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M.A. Heurtier, R.R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415, 141-147. Stelzl, U., U. Worm, M. Lalowski, Chr. Haenig, F. H. Brembeck, H. Goehler, M. Stroedicke, M. Zenkner, A. Schoenherr, S. Koeppen, J. Timm, S. Mintzlaff, C. Abraham, N. Bock, S. Kietzmann, A. Goedde, E. Toksöz, A. Droege, S. Krobitsch, B. Korn, W. Birchmeier, H. Lehrach, and E. E. Wanker . A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome. Cell 2005, 122, Sept. 1st. Walhout A.J., R. Sordella, X. Lu, J.L. Hartley, G.F. Temple, M.A. Brasch, N. Thierry-Mieg, and M. Vidal. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 2000, 287(5450), 116-22. Walhout A.J., and M. Vidal. High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 2001, 24(3), 297-306. 8.2.3. Baculo Virus Expression Akgoz M., I. Azpiazu, V. Kalyanaraman, and N. Gautam. Role of the G protein gamma subunit in beta gamma complex modulation of phospholipase Cbeta Function. J Biol Chem 2002, 277(22), 19573-19578. Giebler H.A., I. Lemasson, and J. Nyborg. p53 Recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation. Mol Cell Biol 2000, 20(13), 4849-4858. Grand-Perret T., A. Bouillot, A. Perrot, S. Commans, M. Walker, and M. Issandou. SCAP ligands are potent new lipid-lowering drugs. Nature Medicine 2001, 7, 1332-1338. Iwai T., et al. Molecular cloning and characterization of a Novel UDP-GlcNAc:GalNAc-peptide b3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J Biol Chem 2002, 277(15), 12802-12809. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 24/25 Katagiri Y., and K.C. Ingham. Enhanced production of green fluorescent fusion proteins in a baculovirus expression system by addition of secretion signal. BioTechniques 2002, 33(1), 2426. Wu X., S.R. Webster, and J. Chen. Characterization of tumor-associated Chk2 mutations. J Biol Chem 2001, 276(4), 2971-2974. 8.2.4. Expression in Plant Cells Karimi M., D. Inze, and A. Depicker. Gateway® vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 2002, 7(5), 193-195. Kersten B., L. Burkle, E.J. Kuhn, P. Giavalisco, Z. Konthur, A. Lueking, G. Walter, H. Eickhoff, and U. Schneider. Largescale plant proteomics. Plant Mol Biol 2002, 48, 133-141. Koiwa H., A.W. Barb, L. Xiong, F. Li, M.G. McCully, B.H. Lee, I. Sokolchik, J. Zhu, Z. Gong, M. Reddy, A. Sharkhuu, Y. Manabe, S. Yokoi, J.K. Zhu, R.A. Bressan, and P.M. Hasegawa. Cterminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci USA 2002, 99(16), 10893-10898. Wolucka B.A., G. Persiau, J. Van Doorsselaere, M.W. Davey, H. Demol, J. Vandekerckhove, M. Van Montagu, M. Zabeau, and W. Boerjan. Partial purification and identification of GDPmannose 3",5"-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc Natl Acad Sci USA 2001, 98(26), 14843-14848. 8.2.5. Mammalian Cell Line Expression Blin-Wakkach C., F. Lezot, S. Ghoul-Mazgar, D. Hotton, S. Monteiro, C. Teillaud, L. Pibouin, S. Orestes-Cardoso, P. Papagerakis, M. Macdougall, B. Robert, and A. Berdal. Endogenous Msx1 antisense transcript: in vivo and in vitro evidences, structure, and potential involvement in skeleton development in mammals. Proc Natl Acad Sci USA 2001, 98(13), 7336-7341. Gomes M.D., S.H. Lecker, R.T. Jagoe, A. Navon, and A.L. Goldberg. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 2001, 98(25), 14440-14445. Kudo T., T. Iwai, T. Kubota, H. Iwasaki, Y. Takayma, T. Hiruma, N. Inaba, Y. Zhang, M. Gotoh, A. Togayachi, and H. Narimatsu. Molecular cloning and characterization of a covel UDPGal:GalNAc(alpha) peptide beta 1,3-galactosyltransferase (C1Gal-T2), an enzyme synthesizing a core 1 structure of O-glycan. J Biol Chem 2002, 277(49), 47724-47731. Lao G., D. Polayes, J.L. Xia, F.R. Bloom, F. Levine, and J. Mansbridge. Overexpression of trehalose synthase and accumulation of intracellular trehalose in 293H and 293FTetR:Hyg cells. Cryobiology 2001, 43(2), 106-113. Liu J., F. Yao, R. Wu, M. Morgan, A. Thorburn, R. Finley, and Y.Q. Chen. Mediation of the DCC apoptotic signal by DIP13alpha. J Biol Chem 2002, 277(29), 26281-26285. Loftus S., D. Larson, L. Baxter, A. Antonellis, Y. Chen, X. Wu, Y. Jiang, M. Bittner, J. Hammer, and W. Pavan. Mutation of melanosome protein RAB38 in chocolate mice. Proc Natl Acad Sci USA 2002, 99(7), 4471-4476. Pandey A., N. Ibarrola, I. Kratchmarova, M.M. Fernandez, S.N. Constantinescu, O. Ohara, S. Sawasdikosol, H.F. Lodish, and M. Mann. A novel Src homology 2 domain-containing molecule, Src-like adapter protein-2 (SLAP-2), which negatively regulates T cell receptor signaling. J Biol Chem 2002, 277(21), 19131-19138. 8.2.6. Miscelleaous Blaszczyk J., J.E. Tropea, M. Bubunenko, K.M. Routzahn, D.S. Waugh, D.L. Court, and X. Ji. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 2001, 9(12), 1225-1236. Bloom F.R., P. Price, G. Lao, J.L. Xia, J.H. Crowe, J.R. Battista, R.F. Helm, S. Slaughter, and M. Potts. Engineering mammalian cells for solidstate sensor applications. Biosens Bioelectron 2001, 16(7-8), 603-608. Brizuela L., P. Braun, and J. LaBaer. FLEXGene repository: from sequenced genomes to gene repositories for highthroughput functional biology and proteomics. Mol Biochem Parasitol 2001, 118(2), 155-165. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007 Genomics & Proteomics Core Facility 25/25 Hammarstrom M., N. Hellgren, S. van Den Berg, H. Berglund, and T. Hard. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Science 2002, 11(2), 313-321. Hoover D.M., and J. Lubkowski. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 2002, 30(10), e43. Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M, Niedenthal R. Ubc9 fusiondirected SUMOylation (UFDS): a method to analyze function of protein SUMOylation. Nat Methods. 2007, 4, 245-50. Jhoti H. High-throughput structural proteomics using x-rays. Trends Biotechnology 2001, 19(10), 67-71. Ko M.S. Embryogenomics: developmental biology meets genomics. Trends Biotechnology 2001, 19(12), 511-518. Matthews L.R., P. Vaglio, J. Reboul, H. Ge, B.P. Davis, J. Garrels, S. Vincent, and M. Vidal. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". Genome Res 2001, 11(12), 2120-2126. Monchois V., R. Vincentelli, C. Deregnaucourt, J. Claverie, and C. Abergel. Proficient target selection in structural genomics by in-vitro protein expression. Biochemica (Roche) 2002, 1, 22. Ohara O., and G. Temple. Directional cDNA library construction assisted by the in vitro recombination reaction. Nucleic Acids Res 2001, 29(4), e22. Ohara O., T. Nagase, G. Mitsui, H. Kohga, R. Kikuno, S. Hiraoka, Y. Takahashi, S. Kitajima, Y. Saga, and H. Koseki. Characterization of size-fractionated cDNA libraries generated by the in vitro recombination-assisted method. DNA Res 2002, 9(2), 47-57. Reboul J., P. Vaglio, N. Tzellas, N. Thierry-Mieg, T. Moore, C. Jackson, T. Shin-i, Y. Kohara, D. Thierry-Mieg, J. Thierry-Mieg, H. Lee, J. Hitti, L. Doucette-Stamm, J.L. Hartley, G.F. Temple, M.A. Brasch, J. Vandenhaute, P.E. Lamesch, D.E. Hill, and M. Vidal. Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nat Genet 2001, 27(3), 332-336. Simpson J.C., V.E. Neubrand, S. Wiemann, and R. Pepperkok. Illuminating the human genome. Histochem Cell Biol 2001, 115(1), 23-29. Simpson J.C., R. Wellenreuther, A. Poustka, R. Pepperkok, and S. Wiemann. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep 2000, 1(3), 287-292. Walter G., K. Bussow, A. Lueking, and J. Glokler. High-throughput protein arrays: prospects for molecular diagnostics. Trends Mol Med 2002, 8(6), 250-253. Wiemann S., B. Weil, R. Wellenreuther, J. Gassenhuber, S. Glassl, W. Ansorge, M. Bocher, H. Blocker, S. Bauersachs, H. Blum, J. Lauber, A. Dusterhoft, A. Beyer, K. Kohrer, N. Strack, H.W. Mewes, B. Ottenwalder, B. Obermaier, J. Tampe, D. Heubner, R. Wambutt, B. Korn, M. Klein, and A. Poustka. Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Res 2001, 11(3), 422435. Bernhard Korn Gateway Full ORF Clone Manual 10.04.2007