Evaluation und Vergleich verschiedener dosimetrisch bestimmter

Transcrição

Evaluation und Vergleich verschiedener dosimetrisch bestimmter
Evaluation und Vergleich verschiedener
dosimetrisch bestimmter und
planungstechnisch berechneter Parameter
für das Afterloading hoher Dosisleistung
BACHELORARBEIT
zur Erlangung des Grades eines Bachelor of Science (B.Sc.)
im Studiengang Medizinische Physik an der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität in Düsseldorf
vorgelegt von
Phillip Schick
Erstprüfer
: Dr. I. Simiantonakis, Klinik für Strahlentherapie
Zweitprüfer: Prof. Dr. T. Heinzel, Lehrstuhl für Festkörperphysik
Düsseldorf, den 12.06.2013
Ehrenwörtliche Erklärung
Hiermit erkläre ich, dass ich die vorliegende Bachelorarbeit zum Thema Evaluation
und Vergleich verschiedener dosimetrisch bestimmter und planungstechnisch berechneter
Parameter für das Afterloading hoher Dosisleistung vollkommen selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie die wörtlich
oder inhaltlich übernommenen Stellen kenntlich gemacht habe.
Ort, Datum
Unterschrift
Inhaltsverzeichnis
1 Einleitung
1
2 Theoretische Grundlagen
2.1 Strahlung . . . . . . . . . . . . . . . . . . . . .
2.2 Radioaktivität und radioaktiver Zerfall . . . . .
2.2.1 Aktivität . . . . . . . . . . . . . . . . .
2.2.2 Halbwertszeit . . . . . . . . . . . . . . .
2.3 Ionisierende Strahlung und Wechselwirkung mit
2.3.1 Direkt ionisierende Strahlung . . . . . .
2.3.2 Indirekt ionisierende Strahlung . . . . .
2.4 Brachytherapie . . . . . . . . . . . . . . . . . .
2.4.1 Afterloading . . . . . . . . . . . . . . .
2.4.2 Radionuklide in der Brachytherapie . .
2.5 Grundlagen der Dosimetrie . . . . . . . . . . .
2.5.1 Wichtige dosimetrische Messgröÿen . . .
2.5.2 Dosimetrie mit Ionisationskammern . .
2.5.3 Bauformen . . . . . . . . . . . . . . . .
. . . . .
. . . . .
. . . . .
. . . . .
Materie
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
3
3
5
6
6
7
7
8
9
10
11
12
13
14
3 Material und Methoden
3.1 Afterloading-Vorrichtung . . . . . . . . . . . .
3.2 Bildgestütztes Bestrahlungs-Planungssystem
3.3 Messaufbau und Ablauf . . . . . . . . . . . .
3.3.1 Vorversuch: Haltepositionsmessung . .
3.3.2 Zylinderphantom . . . . . . . . . . . .
3.3.3 Schachtkammer . . . . . . . . . . . .
3.3.4 Vergleich der Messmethoden . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4 Ergebnisse
4.1 Bestimmung der planungstechnisch berechneten
4.2 Haltepositionsmessung . . . . . . . . . . . . . .
4.3 Zylinderphantom . . . . . . . . . . . . . . . . .
4.4 Schachtkammer . . . . . . . . . . . . . . . . . .
4.5 Vergleich der Messmethoden . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
17
18
19
20
20
23
25
Dosen
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
27
27
28
29
34
36
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5 Diskussion
39
Literaturverzeichnis
45
Danksagung
48
Anhang
49
Kapitel 1
1 Einleitung
Kaum eine Diagnose ist so gefürchtet wie Krebs, der zu den häugsten tödlichen Krankheiten gehört. Die Krebsforschung hat in den letzten Jahren erhebliche Fortschritte gemacht,
die die Diagnose und Behandlung vieler Krankheitsbilder wesentlich verbessert haben.
Diese Fortschritte haben dazu beigetragen, neue und immer wirkungsvollere Therapien zu
entwickeln und bestehende Behandlungsansätze weiter zu optimieren. Auch die Strahlentherapie, die eine wichtige Rolle in der Behandlung von Krebserkrankungen spielt, hat sich
in den letzten Jahren enorm weiter entwickelt.
Die Wirkung der Strahlentherapie besteht darin, das behandelte Gewebe bösartiger Tumore mithilfe von ionisierender Strahlung abzutöten. Ziel der kurativen Strahlentherapie
ist die Dosis im Zielvolumen so hoch zu verabreichen, dass der Tumor eliminiert und der
Patient geheilt wird. Die palliative Strahlentherapie zielt darauf ab, die Schmerzen der
Patienten zu lindern und deren Lebensqualität zu verbessern. Bei beiden Therapien ist
von groÿer Bedeutung, dass die Bestrahlung unter maximaler Schonung des umliegenden
gesunden Gewebes, insbesondere strahlensensibler Organe, erfolgt, sodass zunehmend moderne Verfahren eingesetzt werden, die die Dosis optimal an das zu bestrahlende Gewebe
anpassen. Das Einhalten dieser Zielvorgaben ist für den Erfolg der Strahlentherapie von
entscheidender Bedeutung.
Die Strahlung kann auÿerhalb (Teletherapie) oder innerhalb des Körpers (Brachytherapie) eingesetzt werden. Bei der Brachytherapie liegt die Strahlenquelle entweder in unmittelbarer Nähe zum Tumor oder wird direkt in den Tumor eingebracht, wobei die Strahlung
im Körper nur einen kurzen (griech. brachys kurz, nah ') Weg zurücklegt. Die Brachytherapie wird zur Behandlung von kleinen Tumoren ohne Lymphknotenbefall oder in Verbindung mit anderen Therapieformen, zum Beispiel einer Operation, Teletherapie oder
Chemotherapie, eingesetzt. Am häugsten wird die Brachytherapie als Behandlungsmethode für Krebserkrankungen des Gebärmutterhalses, der Prostata, der Bronchien, des
Ösophagus, der Brust und der Haut eingesetzt [9].
Der historische Beginn der Brachytherapie geht auf das Jahr 1896 zurück. Damals entdeckte der französische Physiker Henri Becquerel die Radioaktivität. Die französischen
Physiker Marie und Pierre Curie, die die Auswirkungen der Radioaktivität untersuchten,
brachten den französischen Arzt Henri-Alexandre Danlos auf die Idee, Radioaktivität zur
Krebsbehandlung einzusetzen. 1901 probierte Danlos den Einsatz von Radioaktivität bei
der Behandlung von Krebserkrankungen aus und stellte fest, dass die Strahlung Tumore schrumpfen lieÿ. Nach dieser Entdeckung wurde die Strahlentherapie von einer Reihe
von Ärzten eingesetzt, um verschiedene Krebsarten zu therapieren, u.a. in den Bereichen
Gebärmutterhalskrebs, Prostatakrebs, sowie Brustkrebs. Dieser Weg wurde mit der Entde-
1
KAPITEL 1.
EINLEITUNG
ckung der künstlichen Radioaktivität durch Irene Curie und Frederic Joliot im Jahre 1934
erweitert [2].
Seit den 1970er Jahren stehen spezielle Maschinen zur Verfügung, die sogenannten Afterloader, bei denen die Strahlenquelle zum Schutz des medizinischen Personals und der
Patienten in einem Tresor gesichert ist. Diese Afterloader können von einem separaten
Überwachungsraum ferngesteuert werden, um die Strahlung von der Maschine direkt in
den Körper des Patienten einzubringen. Seit den 1990er Jahren werden darüber hinaus
verschiedene bildgebende Verfahren, wie Computertomograe oder Magnetresonanztomograe eingesetzt, um die Ärzte und Physiker bei der Planung der Therapie zu unterstützen
und sicherzustellen, dass die Strahlung präzise an den dafür vorgesehenen Stellen eingesetzt
wird [21].
Das Universitätsklinikum Düsseldorf (UKD) hat erst kürzlich ein neues HDR-Afterloadinggerät und ein fortschrittliches Bestrahlungsplanungssystem, bei dem zur Berechnung
der Dosen sowohl der Algorithmus TG-43 als auch der Algorithmus Acuros zur Verfügung stehen, angeschat. Im Rahmen der vorliegenden Arbeit soll zunächst überprüft
werden, ob der neue Acuros Algorithmus entsprechend den Herstellerangaben genauere
Dosisberechnungen ermöglicht? Weiterhin soll festgestellt werden, ob das neu erworbene HDR-Afterloadinggerät die geplanten Dosen appliziert und dessen radioaktive Quelle
die vom Hersteller angegebenen Kenndosisleistungen erreicht? Zu diesem Zweck werden
dosimetrische Überprüfungen mittels Zylinderphantom und Schachtkammer durchgeführt.
Die Kenndosisleistung, welche seit mehreren Jahren, den Goldstandard darstellt, wird gegenwärtig durch die Wasserenergiedosis erweitert und zukünftig gar ersetzt. Diese kommt
den realen Gegebenheiten im Körper weitaus näher. Auÿerdem besteht erstmals die Möglichkeit, die Gewebeinhomogenitäten bei der Dosisberechnung zu berücksichtigen. Diese
interessanten Näherungen werden im Rahmen dieser Ausarbeitung untersucht.
Da das Universitätsklinikum Düsseldorf zum Zeitpunkt dieser Messungen erstmals eine
HDR-Schachtkammer Typ 33004 erworben hatte, mussten zunächst deren Funktionsweise
und Arbeitsabläufe erarbeitet werden, um die geplanten Messungen durchführen zu können. Die mittels der Schachtkammer und des Zylinderphantoms ermittelten Kenndosisleistungen werden mit der vom Hersteller angegebenen Kenndosisleistung der Zerfallstabelle
verglichen und evaluiert.
Im ersten Abschnitt der Arbeit werden die notwendigen physikalischen Grundlagen erläutert. Anschlieÿend werden die für die einzelnen dosimetrischen Messungen benutzten
Materialien und die jeweiligen Vorgehensweisen beschrieben sowie die ermittelten Ergebnisse präsentiert und diskutiert. Der Ausblick zeigt potenzielle Verbesserungen und wünschenswerte Weiterentwicklungen auf.
2
Kapitel 2
2 Theoretische Grundlagen
Die Entdeckung der Radioaktivität, insbesondere der künstlichen Radionuklide, hat den
Weg für die Brachytherapie erst erönet. Um mit dem Einsatz künstlicher Radionuklide gewünschte Therapieerfolge in der Medizin zu erreichen, ist die Kenntnis von deren physikalischen Eigenschaften erforderlich. In diesem Abschnitt werden die allgemeinen physikalischtechnischen Grundlagen der Brachytherapie erläutert, soweit diese von Bedeutung sind.
2.1 Strahlung
Strahlung ist Energie- und Massentransport, der nicht an ein Medium gebunden ist. Sie
ist Energie, die in Form von Wellen bzw. Teilchen ausgesandt wird [12].
Photonenstrahlung sind elektromagnetische Wellenpakete, die räumlich und zeitlich begrenzt sind, keine Ladung und keine Ruhemasse besitzen. Die Photonenstrahlung umfasst
alle elektromagnetischen Strahlungen von Radiowellen bis hin zu der Röntgen- und Gammastrahlung. Korpuskularstrahlungen (lat. corpusculum Körperchen`) haben eine Ruhemasse und können geladen sein. Sie sind mit Materietransport verbunden.
Photonenstrahlungen und Korpuskularstrahlungen können je nach Versuchsbedingung
wegen des Teilchen-Wellen-Dualismus entweder als Teilchen oder als Welle auftreten. Dabei
sind typische Welleneigenschaften charakterisiert als die Frequenz
ν
oder die Wellenlänge
λ . Die typischen Teilcheneigenschaften sind charakterisiert als der Impuls p und die Masse
m [3, 19].
2.2 Radioaktivität und radioaktiver Zerfall
Radioaktivität ist die Eigenschaft bestimmter Atomkerne (Elemente und Isotope), sich
spontan und ohne äuÿeren Einuss unter Aussenden von Strahlungsenergie (Alpha-, Beta-,
Gamma-Strahlung) in Atomkerne anderer Art umzuwandeln (Atomzerfall, radioaktiver
Zerfall) [17].
Nuklide, die sich aufgrund Instabilität umwandeln, werden als Radionuklide bezeichnet.
Es gibt natürliche und künstliche Radionuklide. Natürliche Radionuklide kommen in der
Biosphäre oder im Erdgestein vor und tragen zur Strahlenexposition der Umwelt bei. Hierzu gehören beispielsweise die Radongase, deren Zerfallsprodukte gefährliche Alpha-Strahler
sind. Natürliche Radionuklide werden in primordiale und kosmogene Radionuklide unterteilt. Primordiale Radionuklide wurden bei der Erdentstehung gebildet und existieren bis
3
KAPITEL 2.
THEORETISCHE GRUNDLAGEN
heute, weil sie eine extrem lange Halbwertszeit besitzen, wie z.B. Uran. Kosmogene Radionuklide entstehen durch die Wechselwirkung von Höhenstrahlung mit Luftatomen, wie
z.B. das radioaktive Kohlenstosotop. Künstliche Radionuklide sind solche, die durch von
Menschen herbeigeführte Kernreaktionen oder Kernspaltungen entstehen. Viele künstliche Radionuklide kommen aufgrund ihrer geringen Halbwertszeit in der Natur nicht in
merklichen Mengen vor.
Bei allen radioaktiven Zerfällen ist die Bindungsenergie des Mutternuklids gröÿer als
die Bindungsenergie des Tochternuklids, da sonst kein natürlicher, spontaner Zerfall möglich wäre. Die Energie der frei werdenden Strahlung von Radionukliden ist ein wichtiger
Faktor für deren klinische Verwendbarkeit, da diese die Durchdringungsfähigkeit von Strahlung in Gewebe bestimmt. Die Kernumwandlungsprozesse sind dabei rein statistisch. Der
radioaktive Zerfall ndet zufällig statt, sodass eine Zerfallswahrscheinlichkeit angeben werden kann. Tochterkerne, die sich durch Teilchenemission aus Kernen gebildet haben, können wieder radioaktiv sein und erneut zerfallen. So entstehen sogenannte Zerfallsketten
[12, 19].
Je nach Art der beim spontanen Zerfall von Atomkernen ausgesendeten Strahlung wird
zwischen drei grundlegenden Zerfallsarten unterschieden:
Alpha-Zerfall:
Beim Alpha-Zerfall ndet eine Teilchenemission statt, wobei aus dem Mut-
terkern ein Alphateilchen, aus zwei Protonen und zwei Neutronen, emittiert wird. Hierdurch verringert sich die Massenzahl A des Ursprungskerns um 4 und die Ordnungszahl Z
um 2. Der Energieübertrag ist monoenergetisch. Die meisten Alphastrahler existieren ab
einer Ordnungszahl
Z = 82. Es gilt folgende Zerfallsgleichung für einen beliebigen Kern E,
der zu einem neuen T zerfällt:
AE
Z
4
=A−4
Z−2 T +2 α
Beispiel:
226 Ra
88
4
→222
96 Rn +2 He
Die Alphastrahlung ist positiv geladen und massebehaftet. Sie ist dicht und direkt ionisierend. Daraus folgt, dass die Reichweite in Materie im Gegensatz zur Beta- und Gammastrahlung gering (einige mm) ist. Für die meisten Brachytherapie-Anwendungen ist die
Alphastrahlung wegen der geringen Reichweite ungeeignet.
Beta-Zerfall:
Beim Betazerfall verlässt ein energiereiches Betateilchen - Elektron oder
Positron - den Atomkern. Gleichzeitig entsteht ein Antineutrino bzw. Neutrino. Der Betazerfall wird nach der Art der emittierten Teilchen unterschieden. Bei abgestrahltem Elektron handelt es sich um Beta-minus-Zerfall
plus-Zerfall
ˆ
(β − ),
bei abgestrahltem Positron um Beta-
(β + ).
Nuklide mit einem Überschuss an Neutronen zerfallen über den
β − -Prozess.
Ein
Neutron des Kerns wird in ein Proton umgewandelt und sendet dabei ein Elektron
sowie ein Antineutrino aus. Sowohl Elektron als auch Antineutrino verlassen den
Atomkern, da beide nicht der starken Wechselwirkung unterliegen. Da sich nach dem
Zerfallsprozess ein Proton mehr und ein Neutron weniger im Kern bendet, bleibt
die Massenzahl A unverändert, während sich die Kernladungszahl Z um 1 erhöht.
Der Zerfall des Neutrons kann durch folgende Formel beschrieben werden.
n → p + e− + ν 0
4
Beispiel:
137 Cs
55
0
→137
56 Ba +−1 e
2.2.
RADIOAKTIVITÄT UND RADIOAKTIVER ZERFALL
Die wichtigsten Beta-Minus-Zerfälle, die medizinisch genutzt werden, sind
192 P t
ˆ
und
60 Co
→
192 Ir
→
60 N i.
Bei Atomkernen mit starkem Protonenüberschuss tritt der
β + -Zerfall ein. Aus einem
Proton wird ein Neutron, dabei werden ein Positron und ein Neutrino emittiert. Die
Zerfallsenergie wird auf das Positron und Neutrino als kinetische Energie aufgeteilt.
p → n + e+ + ν
Beispiel:
22 N a
11
0
→22
10 N e ++1 e
Anders als beim Beta-Minus-Zerfall, nimmt die Ordnungszahl Z um eins ab, während die Massenzahl A erhalten bleibt. Wichtige Beta-Plus-Zerfälle, die medizinisch
genutzt werden, sind
18 F
→
18 O
und
13 N
→
13 C .
Das Energiespektrum des Beta-Zerfalls ist kontinuierlich. Die Energie des Zerfallsprozesses
verteilt sich als kinetische Energie auf die emittierten Teilchen. Betastrahlung ist locker
ionisierend, sodass deren Reichweite im Gewebe gröÿer ist als bei der Alphastrahlung (einige cm). Die Betastrahlung wird in der Brachytherapie besonders bei Oberächen- und
Kontaktbestrahlung eingesetzt. Werden diese Strahler in den Körper aufgenommen, sind
hohe Strahlenbelastungen in der Umgebung des Strahlers die Folge.
Gamma-Zerfall:
Ein Gamma-Zerfall liegt vor, wenn der Atomkern nach einem Zerfall
in einem energetisch angeregten Zustand verbleibt. Beim Übergang in einen energetisch
niedrigeren Zustand gibt der Atomkern durch Emission hochfrequente elektromagnetische
Strahlung, sogenannter
γ−Strahlung,
Energie ab. Die Emission von Gammastrahlung ver-
ändert nicht die Neutronen- und Protonenzahl des emittierenden Kerns. Es erfolgt lediglich
ein Übergang zwischen angeregten Kernzuständen und dem Grundzustand. Dies geschieht
meist unmittelbar nach einem Alpha- oder Betazerfall.
Beispiel:
137m Ba
56
→137
56 Ba + γ
Die wichtigsten Gammastrahler in der Medizin sind
137 Ba,99 T c,131 Xe.
Gammastrah-
lung ist ungeladen, indirekt und locker ionisierend. Sie besitzt eine hohe Reichweite in
Gewebe und ist im Gegensatz zur Alpha- und Beta-Strahlung nicht endlich. Die Gammastrahlung kommt in der Brachytherapie am häugsten zum Einsatz. Die Abschirmung von
Gammastrahlung ist am aufwendigsten [12, 17, 19].
2.2.1 Aktivität
Von groÿer Bedeutung für die klinische Verwendbarkeit von Radionukliden ist auch deren
Aktivität. Die Aktivität A einer radioaktiven Quelle gibt an, wie viele Kernzerfälle pro
Zeiteinheit stattnden. Die SI-Einheit der Aktivität ist das Becquerel. Die nach Marie
Curie benannte historische Einheit Curie ist seit 1986 nicht mehr zulässig [12, 17].
all
[A] = Becquerel(Bq) = 1 Zerf
s
Für die Teilchenzahl N der Radionuklide gilt das exponentielle Zerfallsgesetz:
N (t) = N0 · e−λt
5
KAPITEL 2.
THEORETISCHE GRUNDLAGEN
Daraus folgt für die Aktivität:
−λt
A(t) = − dN
dt = λ · N0 · e
ˆ A(t) Aktivität zum Zeitpunkt t
ˆ λ Zerfallskonstante, diese gibt die Wahrscheinlichkeit für Zerfälle pro Zeiteinheit an
ˆ N0 ursprünglich vorhandene Teilchenanzahl an Atomkernen
Aus der Aktivität folgt die
spezische Aktivität,
die der Quotient aus Aktivität A und
der Masse m einer Substanz ist.
a=
A
m
=
λ·N
m .
Tabelle 2.1: Typische Aktivitäten (veränderte Quelle: [8])
Strahlungsquelle
Aktivität (Bq)
1 Erwachsener
7000
Raumluft
typische Probe für nuklearmedizinische Diagnostik
typische Probe Strahlentherapie
Irdium-192
≤ 10/m3
7 · 107
1014 /kg
370 · 109
2.2.2 Halbwertszeit
Ein weiterer wichtiger Faktor für die Auswahl eines Radionuklids im klinischen Einsatz
T1/2 diejenige
N0 und damit auch die Aktivität A0 eines gegebenen
ist dessen Halbwertszeit. Beim radioaktiven Zerfall ist die Halbwertszeit
Zeitspanne, bis die radioaktiven Kerne
Radionuklids durch den Zerfall auf die Hälfte gesunken ist. 50 % der Atomkerne haben sich
unter Aussendung von Strahlung in ein anderes Nuklid umgewandelt; dieses kann ebenfalls
radioaktiv sein. Für jedes Nuklid ist die Halbwertszeit eine feste Gröÿe, die sich nicht (nur
in Ausnahmen ganz geringfügig) beeinussen lässt. Für die Halbwertszeit gilt die Formel
[12]:
T1/2 =
ln2
λ .
2.3 Ionisierende Strahlung und Wechselwirkung mit Materie
Die bei der Radioaktivität entstehende Strahlung ist derart hochenergetisch, dass sie in der
Lage ist, Elektronen aus den Atomhüllen bestrahlter Materie zu lösen. Wegen dieser Eigenschaft wird diese Strahlung ionisierende Strahlung genannt. Diese ionisierenden Strahlen
werden in der Krebstherapie für die Bestrahlung genutzt, da deren Energie hoch genug ist,
um bei den durchdrungenen Zellen auf molekularer Ebene Veränderungen herbeizuführen.
Allgemein ist Strahlung ionisierend, wenn die Strahlungsenergie oberhalb von 3 eV liegt,
was den typischen Bindungsenergien entspricht. Um ionisierende Strahlung in der Medizin
gezielt anwenden zu können, muss man die Wechselwirkung der Strahlung mit biologischem
Gewebe verstehen.
Ionisierende Strahlung wird in zwei Arten unterteilt, die direkt und indirekt ionisierende
Strahlung [12].
6
2.3.
IONISIERENDE STRAHLUNG UND WECHSELWIRKUNG MIT MATERIE
2.3.1 Direkt ionisierende Strahlung
Direkt ionisierende Strahlung ist Protonen-, Elektronen- oder Ionenstrahlung. Die auftretende Wechselwirkung ist die Coulomb-Kraft, die zwischen der Strahlung und dem Feld
der Hüllenelektronen oder dem Feld der Atomkerne stattndet. Für direkt ionisierende
Strahlung mittels geladener Teilchen gibt es folgende Wechselwirkungsprozesse [12]:
ˆ elastische Streuung und inelastische Stöÿe an Atomhüllen
ˆ binäre inelastische Stöÿe mit einzelnen Hüllenelektronen
ˆ elastische und inelastische Coulombstreuung an Atomkernen
ˆ Kernreaktionen
2.3.2 Indirekt ionisierende Strahlung
Bei der indirekt ionisierenden Strahlung erfolgt die Ionisation in einem Zweistufenprozess,
nämlich (1) Erzeugung von geladenen Teilchen (Sekundärteilchen) und (2) Absorption der
kinetischen Energie der frei gewordenen Sekundärteilchen; dies ist äquivalent zur direkt
ionisierender Strahlung, Unterabschnitt 2.3.1.
Indirekt ionisierende Strahlung ist beispielsweise Photonenstrahlung oder Neutronenstrahlung. In der Strahlentherapie sind insbesondere die Photonen von Bedeutung. Im
Folgenden werden die Wechselwirkungsprozesse, die zur Erzeugung der Sekundärteilchen
stattnden, und im Energiebereich der in der Strahlungstherapie verwendeten Strahlung
liegen, näher erklärt.
Photoeekt:
Ein Photon stöÿt ein Elektron aus einer inneren Schale des Atoms her-
aus und wird dabei absorbiert. Das Elektron der K- oder L-Schale wird mithilfe dieser
Energie aus der Atomhülle gelöst. Die überschüssige Energie, die von dem absorbierten
Photon stammt, wird vom Elektron als kinetische Energie aus dem Atom heraus transportiert. Beim Auüllen der Elektronenlücken (Löcher) im Atom können charakteristische
Röntgenstrahlen entstehen.
Die Wahrscheinlichkeit für das Eintreten des Photoeekts (Wirkungsquerschnitt) ist
proportional der vierten Potenz der Kernladungszahl des absorbierenden Materials und
umgekehrt proportional der dritten Potenz der Energie der Gammastrahlung. Der Photoeekt ist vor allem bei kleineren Energien, z.B. der Röntgenstrahlung in der diagnostischen
Radiologie einsetzbar. Für biologisches Gewebe ist er allerdings kaum von Relevanz.
Comptoneekt:
Als Comptoneekt wird der Stoÿ zwischen einem Photon mit der Ener-
gie E und einem Elektron bezeichnet. Nach diesem Stoÿ ist ein Teil der Energie des Photons
auf das getroene Elektron übertragen worden. Hierdurch hat das gestreute Photon eine
kleinere Energie und ändert seine Bewegungsrichtung, sodass das Atom einfach ionisierend
zurückbleibt. Diesen Prozess kann das Photon mehrfach durchlaufen. Für die klinische
Therapie ist von Bedeutung, wie sich die Energie auf ein gestreutes Photon und Elektron
aufteilt. Bei niedrigen Energien besitzt das Photon fast die gesamte Energie; ab etwa 10
MeV besitzt das Elektron den Hauptteil der Energie und sie verbleibt lokal im Gewebe.
Die Aufteilung der Energie zwischen Elektron und Photon kann je nach Streuwinkel unterschiedlich sein. Für die Dosimetrie ist das Verhalten des Wirkungsquerschnitts wichtig.
7
KAPITEL 2.
THEORETISCHE GRUNDLAGEN
Die Abgabe der Photonenenergie ist in erster Näherung proportional zur Elektronendichte
und indirekt proportional zur Photonenenergie.
Paarbildung:
Bei der Paarbildung wird ein Photon mit einer Energie von mehr als 1,022
MeV in ein Elektron-Positron-Paar umgewandelt. Dieser Prozess ndet im Feld eines Atomkerns statt. Der Wirkungsquerschnitt hängt quadratisch von der Kernladungszahl der bestrahlten Materie ab und nimmt mit wachsender Energie monoton zu. Nach der Paarbildung kann sich das Positron frei bewegen und formt mit dem Elektron eines Atoms ein
sogenanntes Positronium. Das Positronium vernichtet sich anschlieÿend und es werden zwei
Photonen emittiert (Annihilation).
Paarbildung tritt bevorzugt bei hohen Absorberordnungszahlen auf. Sie setzt auch erst
bei Energien oberhalb von 1,022 MeV ein, da die Ruheenergie des Elektron-Positron-Paares
durch das Photon bereitgestellt werden muss. In der Brachytherapie hat bei der Applikation
von Iridium-192
(Emean = 370 keV )
Kernphotoeekt:
die Paarbildung daher keine Bedeutung.
Die Energie der Gammastrahlung
Eγ
beim Kernphotoeekt muss grö-
ÿer sein als die Bindungsenergie des am schwächsten gebundenen Nukleons im Kern. Diese
Bindungsenergie liegt im Bereich von ca. 6-20 MeV. Dieser Bereich ist auÿerhalb der erreichten Energien in der Brachytherapie [12, 19].
Abbildung 2.1: Schematische Darstellung von Photoeekt, Comptoneekt und Paarbildung [12].
2.4 Brachytherapie
Wie bereits ausgeführt hat erst die Entdeckung der Radioaktivität, insbesondere die Herstellung künstlicher Radionuklide, den Weg für die Brachytherapie erönet. In den ersten
Jahren der Brachytherapiegeschichte erfolgten die Tumorbehandlungen fast ausschlieÿlich
mit der Applikation von Radiumstrahlerquellen in der Tumorregion. Heute nden fast alle mit Brachytherapie durchgeführten Tumorbehandlungen durch die Anwendung von im
Kernreaktor künstlich gezeugten Radionukliden statt, die mittels einer Afterloadingvorrichtung in die nähere Umgebung oder direkt in den Tumor eingesetzt werden.
Bei der Brachytherapie kommt der Dosisberechnung eine zentrale Rolle zu, auf die später
(3.2) noch im Einzelnen eingegangen wird. Da das Abstandsquadratgesetz
(Dosis ∝ r12 )
gilt, wird in der unmittelbaren Umgebung der Quelle eine hohe Dosis verabreicht, die
schnell mit dem Abstand zur Quelle abfällt. Dies ermöglicht die Applikation einer hohen
Dosis im Tumor und die Schonung des gesunden Gewebes.
8
2.4.
BRACHYTHERAPIE
Üblicherweise liegen die Bestrahlungszeiten zwischen 5-15 Minuten, wobei es groÿe zeitliche Unterschiede zwischen der LDR- (low doserate) und der HDR- (high dose rate) Brachytherapie gibt. Wegen der kürzeren Bestrahlungszeiten, der höheren Dosisleistung der
HDR-Therapie von
von
<2
Gy
h
> 12
Gy
h
wird diese der LDR-Therapie mit einer Bestrahlungsleistung
vorgezogen. Die kürzeren Behandlungszeiten sind auch wesentlich angenehmer
für die Patienten und lassen sich besser in den klinischen Alltag integrieren.
Eine Unterteilung der Brachytherapie kann in Abhängigkeit von der anatomischen Tumorlokalisation und der Positionierung des Strahlers zum Tumor in drei Therapiemöglichkeiten erfolgen, wobei die Auswahl der Therapie hauptsächlich von der Entität abhängt
[6, 7]:
Oberächen-Brachytherapie:
Bei dieser Bestrahlungstechnik werden die umschlossenen
Strahlenquellen oder ein Applikator mit der äuÿeren oder inneren Hautoberäche des Patienten in Kontakt gebracht, z.B. bei der Behandlung von Hauttumoren oder auch Aderhautmelanomen (mittels Augenapplikatoren).
Interstitielle Therapie:
Bei der interstitiellen Brachytherapie werden die umschlossenen
Strahlenquellen mit oder ohne Applikatoren (Nadeln, Schläuche) direkt in das Tumorgewebe, (z.B. Prostata, Mamma, HNO-Tumore) eingesetzt.
Intrakavitäre Therapie:
Bei der intrakavitären Brachytherapie werden die Strahlerquel-
len durch natürliche Körperönungen in präformierte Körperhöhlen eingeführt, z.B. im
Rektum, oder im Uterus [6, 19].
2.4.1 Afterloading
Bei dieser Form der Brachytherapie wird die radioaktive Quelle mithilfe eines Afterloaders eingesetzt. Hierbei wird zunächst das Tumor-Gewebe mittels eines invasiven Eingris
mit nicht-strahlenden Führungen wie Schläuche, Hohlröhren oder Hohlnadeln versehen.
Daraufhin werden die Schläuche an ein Strahlungs-Gerät angeschlossen, durch das (automatisiert) Strahlenquellen über die Führungen in den Tumor eingefahren werden. Sie
verbleiben dort für einen bestimmten Zeitraum und werden danach wieder entfernt. Ein
solches Strahlungs-Gerät wird zusammenfassend wie folgt eingesetzt [18, 26]:
ˆ
Am Ende eines dünnen exiblen Führungsdrahtes bendet sich eine kleine radioaktive
Quelle (Gröÿe ca. 1 mm x 5 mm) .
ˆ
Der Afterloader führt die radioaktive Quelle durch einen eingebrachten Katheter in
das Zielvolumen ein.
ˆ
Die radioaktive Quelle kann in Millimeterschritten bewegt werden.
ˆ
Die durch ein rechenbasiertes Planungssystem ermittelte Halteposition wird "DwellPosition" genannt.
ˆ
An dieser Position bleibt die Quelle eine gewisse Zeit stehen (zuvor berechnete Standzeit = "Dwell-Time")
9
KAPITEL 2.
THEORETISCHE GRUNDLAGEN
Abbildung 2.2: Schematische Zeichnung eines Afterloaders mit Innenleben [23].
2.4.2 Radionuklide in der Brachytherapie
In der Brachytherapie werden in der Regel kombinierte Beta-Gamma-Strahler eingesetzt.
Da die Beta Strahlung eine unerwünschte Dosisüberhöhung in der unmittelbaren Nähe
des Strahlers auslösen kann, werden die Strahler von einer Edelstahlhülle umschlossen, die
die kurzreichweitigen Elektronen der Betastrahlung abschirmt. Die Hauptkomponente der
Strahlung ist die Gammastrahlung [21].
Für die Auswahl eines optimalen Strahlers müssen folgende physikalischen Eigenschaften
der Radionuklide erfüllt sein:
Halbwertszeit:
Die benötigte Halbwertszeit ist abhängig von der Art der Behandlung. Bei
einer temporären Brachytherapie sollte die Halbwertszeit möglichst lange sein (MonateJahre), da ein Quellenwechsel zeitaufwendig und teuer ist. Bei einer permanenten Brachytherapie sollte die Halbwertszeit relativ kurz (Tage-Monate) sein, um eine zu starke
Strahlenexposition zu vermeiden und den Strahlenschutz zu gewährleisten.
Photonenenergie:
Die Photonenenergie besagt, wie stark die Strahlung in Materie absor-
biert wird. Das bedeutet, dass die Photonenenergie einen starken Einuss auf den baulichen
Strahlenschutz hat. Da der Strahlenschutz sowohl für die Patienten als auch das Personal
äuÿerst wichtig ist, müssen die Energien kleiner als 400 keV sein. Auÿerdem sollten Energien unter 100 keV vermieden werden, um eine Dosisüberhöhung aufgrund des Photoeekts
zu vermeiden.
Spezische Aktivität:
Je gröÿer die spezische Aktivität des Radionuklids ist, umso klei-
neres Volumen muss dieses haben. Daher werden abhängig vom Einsatzgebiet verschiedene
passende radioaktive Nuklide verwendet.
Zerfallsprodukte:
Bei den Zerfallsprodukten von radioaktiven Stoen ist es wichtig, dass
diese nicht gasförmig sind, da dies zu erheblichen Problemen führen könnte. So zerfällt
z.B. Radium-226 in das gesundheitsgefährdende Radon, ein geruchloses und radioaktives
Edelgas. Die Gesundheitsgefährdung geht dabei von den kurzlebigen Zerfallsprodukten
des Radons aus, die sich an Staubpartikeln lagern und inhaliert werden. Durch die direkte
10
2.5.
GRUNDLAGEN DER DOSIMETRIE
Nähe der die Alpha-Strahlung emittierenden Partikel zum Bronchialepithel ndet eine
Wechselwirkung mit dem Gewebe statt, die Lungenkrebs verursachen kann [19, 22].
Verarbeitung:
Bei dem Afterloading muss die radioaktive Quelle mithilfe von Transfer-
schläuchen zum Ort der Bestrahlung gefahren werden. Hierfür müssen die Nuklide formbar
sein, sodass die Quelle in verschiedene Formen, wie beispielsweise Drähte oder Seeds, verarbeitet werden kann.
Iridium-192:
Das am meisten verbreitete Radionuklid für die Brachytherapie ist das
Iridium-192, ein Beta-Gamma Strahler mit folgenden Eigenschaften:
Tabelle 2.2: Zusammenfassung der Eigenschaften von Ir-192 [11].
Nuklid
Strahlung
T1/2
mittlere Gammaenergie / MeV
Ir-192
β,γ
74 d
0,35
Iridium-192 zerfällt als Beta- Gammastrahler zu einem Platinisotop-192. Dabei ist das
Radionuklid vollständig umschlossen, sodass zur Bestrahlung nur die Gammakomponente
beiträgt. Aus Tabelle 2.2 wird deutlich, dass Iridium-192 eine gute Kompromisslösung für
die vorher erwähnten fünf Voraussetzungen ist [11, 21].
Abbildung 2.3: Dummy-Quelle der GammaMedplus iX Afterloading-Vorrichtung (Iridium-192-
HDR-Afterloadinggerät der Firma Varian Medical Systems, Haan, Deutschland)
die bauchgleich zur Iridium-192 Quelle ist.
2.5 Grundlagen der Dosimetrie
Energiereiche Strahlung kann erhebliche gesundheitliche Folgen haben, da sie im menschlichen Gewebe Moleküle ionisiert, d.h. chemisch verändert, und damit auch biologisch bedeutsame Veränderungen mit sich bringen können. Die Anwendung ionisierender Strahlung
in der Medizin zwingt stets dazu, ihren Nutzen gegenüber möglichen Schäden abzuwägen,
was mittels klinischer Dosimetrie erfolgt.
Unter Dosimetrie versteht man allgemein eine Technik zur Messung einer Strahlendosis
im Rahmen des Strahlenschutzes. Ziel der Dosimetrie ist die Messung der durch ionisierende Strahlung auf das Gewebe übertragenen Energie E. Alle therapeutisch oder diagnostisch
eingesetzten Geräte müssen mittels klinischer Dosimetrie überwacht werden, um eine zuverlässige Bestrahlung und die physikalische Qualitätssicherung zu gewährleisten.
11
KAPITEL 2.
THEORETISCHE GRUNDLAGEN
Wegen der zentralen Bedeutung der Dosimetrie im Zusammenhang mit der Anwendung
ionisierender Strahlung am Menschen sind die Messgröÿen sowie die Messverfahren der
Dosimetrie heute weitgehend im internationalen sowie im nationalen Bereich standardisiert.
In Deutschland werden die Begrie und Verfahren der Dosimetrie durch DIN-Normen
festgelegt, speziell die Normen DIN 6800, Teil 1 5, DIN 6809, Teil 1 5 sowie die
Reihe DIN 6814, Teil 1 8. Ein groÿer Teil dieser Normen basiert auf den internationalen
Regelwerken der ICRU (International Commission on Radiation Units and Measurements)
[13, 19].
2.5.1 Wichtige dosimetrische Messgröÿen
Um die Menge, der mit dem Massenelement der bestrahlten Materie wechselwirkenden
Strahlung quantizieren zu können, sind sogenannte Dosisgröÿen eingeführt worden. Dabei wird neben dem reinen Energieübertrag durch die Strahlung auch die Reaktion des
biologischen Gewebes bei der Dosisbestimmung berücksichtigt.
Im Folgenden werden die relevanten nicht stochastischen Grundgröÿen genannt, die die
Mittelwerte oder Erwartungswerte der stochastischen Werte sind [10, 13, 19].
Energiedosis D:
Die Energiedosis
Die fundamentale Maÿeinheit in der Dosimetrie ist die Energiedosis.
D
ist der Quotient aus der mittleren Energie
dE ,
die durch ionisierende
Strahlung auf die Materie in einem Volumenelement übertragen wird und die Masse
dm
der Materie in diesem Volumenelement:
D=
dE
dm
[D] = Gray(Gy) = 1 Joule
kg
Die Energiedosis ist für jedes Material deniert. Je nach Bezugsvolumen spricht man
beispielsweise bei Wasser von der Wasserenergiedosis
DL
DW
, bei Luft von Luft-Energiedosis
, usw. [10].
Kerma K:
Die Kerma K
(kinetic energy released
per unit
mass)
beschreibt die dosime-
trische Gröÿe, die dem ersten Wechselwirkungsprozess zugeordnet ist.
K=
dEtr
dm
[K] = Gray(Gy) = 1 Joule
kg
Dabei ist
Etr
die Summe der kinetischen Energie aller von der ionisierenden Strahlung
freigesetzter Sekundärteilchen. Auch die Energiegröÿe Kerma ist materialabhängig, sodass
immer das Bezugsmaterial mit angegeben werden muss. Nach der DIN 6809-2, ICRU 38,
ICRU 58 sollen Brachytherapie Strahler mithilfe der Kenndosisleistung speziziert werden.
·
Die Kenndosisleistung ist die Luftkermaleistung
(K a )a
frei in Luft in einem Abstand von
1 m zum Schwerpunkt des Strahlers. Nach DIN-6809-2 ist dabei darauf zu achten, dass
der Abstand senkrecht zur Längsausrichtung des Strahlers gewählt wird. Die praktische
Einheit der Kenndosisleistung ist das
12
cGy
h
oder
mGy
h
[4, 10].
2.5.
GRUNDLAGEN DER DOSIMETRIE
Ionendosis J :
Die Ionendosis
J
gibt an, wie viel Ladung
dQ
pro Masse
dm
durch die
ionisierende Strahlung eines Luftvolumens freigesetzt wird. Deniert ist sie als der Dierenzialquotient [10]:
J=
dQ
dm
[J] =
C
kg
Einzig diese kann direkt gemessen werden.
2.5.2 Dosimetrie mit Ionisationskammern
Essenziell für die klinische Dosimetrie sind Ionisationskammern, mit denen radioaktive
Strahlung gemessen wird. Diese Messung erfolgt, indem der elektrische Strom gemessen
wird, der entsteht, wenn Strahlung das Gas in der Kammer ionisiert und damit elektrisch
leitend macht. Die einfachste Ionisationskammer ist aufgebaut wie ein Plattenkondensator,
bei dem die gegenüber angeordneten Platten (Elektroden) mit einer Gleichspannungsquelle
verbunden werden. Die hochenergetische Strahlung ionisiert die Luftmoleküle. Die dabei
frei werdenden Elektronen und die ionisierten Moleküle werden durch die elektrische Ladung zu den Elektroden gezogen. An den Platten ndet ein Ladungsaustausch statt. Um
die Spannung zu erhalten, muss Strom zwischen den Platten ieÿen. Je mehr Luftmoleküle
ionisiert werden und zu den Platten wandern, desto höher ist der Strom, der zwischen den
Platten ieÿt.
(a)
Skizze einer planparallelen Ionisationskam-(b)
mer. Die hochenergetische Strahlung ionisiert die Luftmoleküle. Die dabei entstehenden Ladungen werden von den Platten
angezogen. Damit die Spannung konstant
bleibt, muss ein Strom ieÿen [13].
Strom-Spannungs-Charakteristik einer Ionisationskammer für unterschiedliche Dosisleistungen. Bei höheren Dosisleistungen
muss die Kammerspannung höher sein, damit der Kammerstrom möglichst gering
von der Kammerspannung abhängt. Im
Sättigungsbereich ist der Strom proportional zur Dosisleistung [13].
Abbildung 2.4: Prinzip und Charakteristik der Ionisationskammer.
Die gewählte Gleichspannung an den Platten ist wichtig, da bei zu kleiner Spannung die
Stoÿwahrscheinlichkeit der Ladungsträger erhöht wird und damit die Rekombinationsrate
steigt, sodass die Ladungsträger die Platten der Ionisationskammer nicht erreichen und
damit das Ergebnis verfälschen. Diese Rekombinationsrate ist zusätzlich vom Gasdruck
13
KAPITEL 2.
THEORETISCHE GRUNDLAGEN
und dem Füllgas abhängig. Wird die Spannung erhöht, wird der Rekombinationsbereich
verlassen, sodass die Rekombinationsrate vermindert wird und die Ladungsträgerpaare mit
hoher Wahrscheinlichkeit getrennt werden. Wird die Spannung weiter erhöht, strebt die Ionisationskammer einen Sättigungsbereich an, bei dem der Strom bis auf geringe Verluste
den erzeugten Ladungsträgern entspricht. Dieser Bereich wird Sollarbeitsbereich genannt.
Bei noch gröÿeren Spannungen ndet eine weitere Beschleunigung der Ladungsträger statt,
sodass es zu zusätzlichen Stoÿionisationen kommen kann. In Abbildung 2.4b ist ersichtlich, wie der Kammerstrom für unterschiedliche Dosisleistungen bis zu einem bestimmten
Sättigungswert zunimmt. In diesem ist der Strom proportional zur Dosisleistung [13].
2.5.3 Bauformen
Es gibt unterschiedliche Bauformen von Ionisationskammern. Diese werden im Folgenden
kurz skizziert, wobei sich die Ausführungen auf die Zylinderkammer und die Schachtkammer beschränken.
Zylinderkammer:
Bei der Zylinderkammer entspricht die Anordnung der Elektroden ei-
nem Zylinderkondensator (Abbildung 4.3). Sie sind die wichtigsten Gebrauchsdosimeter für
die Strahlentherapie. Wegen ihres rotationssymmetrischen Aufbaus sind sie bei seitlicher
Einstrahlung weitgehend unabhängig von der Einstrahlrichtung. Abgerundete Zylinderkammern werden auch Fingerhutkammern genannt (Abbildung 4.3 rechts) [1, 13].
Schachtkammer:
Bei den Schachtkammern sind die Strahler fast völlig umgeben. Sie
enthalten als Füllgas meistens Argon und werden zum Erreichen einer besseren Nachweiswahrscheinlichkeit mit erhöhtem Gasdruck betrieben. Zur Messung werden die Proben in
einen Schacht in das Innere der Ionisierungskammer gebracht (Abbildung 2.5b).
Bei der Messung mit der Schachtkammer muss der Referenzpunkt, also der Punkt in
der Kammer mit dem höchsten Ansprechvermögen, experimentell bestimmt werden. Bei
HDR-Strahlern kann allerdings das Ansprechvermögen zu hoch sein, sodass Einsätze mit
bekannter Schwächung verwenden werden müssen [1, 13].
14
2.5.
GRUNDLAGEN DER DOSIMETRIE
(a)
Die Ionisationskammer sind aufgebaut
wie Zylinderkondensatoren, wobei die
Innenelektrode von der Auÿenelektrode
umgeben ist. Zwischen den Elektroden
bendet sich das Messvolumen [13].
(b)
Skizze einer Schachtkammer
mit 4π-Gemetrie. Die Innenelektrode ist die schraerte
Leitung, die von der Auÿenelektrode umgeben ist, dazwischen bendet sich das mit
Argon gefüllte Messvolumen
[13].
Abbildung 2.5: (a) Bauformen von Zylinderkammern und (b) Prinzip der Schachtkammer.
Jede dosimetrisch eingesetzte Ionisationskammer ist einzigartig, sodass die für die klinische Dosimetrie eingesetzten Ionisationskammern kalibriert werden müssen. Das bedeutet,
dass in einem Kalibrierlabor unter Referenzbedingungen ein Kalibrierfaktor N ermittelt
wird. Mit diesem Faktor kann der durch das Dosimeter angezeigte Messwert M in die
Energiedosis umgerechnet werden.
Tabelle 2.3: Bedingungen der Kalibrierung für die klinische Dosimetrie von Photonenstrahlung
[19].
Einussgröÿe
Strahlungsqualität
Strahlungseinfallsrichtung
Dosisleistung bei der Dosismessung
Phantommaterial
Phantomabmessungen
Temperatur
Druck
Feuchte
Kammerspannung
Polarität der Kammerspannung
Schutzhülse zur Abdichtung der Ionisationskammer
Positionierung der Ionisationskammer
Abstand Quelle-Messort
Bezugsbedingung
Co-γ -Strahlung
Festgelegte Vorzugsrichtung
Keine Sättigungsverluste
Wasser
Quasiendlicher Halbraum
293,15 K
101,325 hPa
Relative Feuchte 50 %
Bei der Kalibrierung festgelegt
Bei der Kalibrierung festgelegt
Bei der Kalibrierung festgelegt
Bezugspunkt in 5 cm Tiefe
100 cm
60
15
KAPITEL 2.
16
THEORETISCHE GRUNDLAGEN
Kapitel 3
3 Material und Methoden
3.1 Afterloading-Vorrichtung
Gegenstand der Messung ist eine moderne Afterloading-Vorrichtung der Firma Varian Medical Systems (Palo Alto, California, USA), das GammaMedplus iX. Diese Vorrichtung
entspricht dem neuesten Sicherheitsstandard, wie beispielsweise einem eingebauten Dosisüberwachungssystem mit dem zu jeder Zeit die Dosis im Raum kontrolliert werden kann.
Darüber hinaus verfügt die Vorrichtung über einen einzigartigen Applikatorendtest. Bei
diesem wird die Dummy-Quelle, eine zweite nichtradioaktive Quelle mit identischen Ausfahreigenschaften wie die radioaktive Quelle, an das Ende des Kanals ausgefahren und
weitere 5 mm gedrückt, um zu gewährleisten, dass der Applikator geschlossen ist. Die
Dummy-Quelle verhält sich identisch zur radioaktiven Quelle, sodass bei diesem Applikatorendtest auch der Quellenfahrweg auf Obstruktionen überprüft werden kann. Gesteuert
wird der Afterloader über eine Überwachungskonsole, mit der während der Bestrahlung sowohl Haltezeit, Halteposition und weitere sicherheitsrelevante Parameter überprüft werden
[26].
Tabelle 3.1: Überblick über die Haupteigenschaften des GammaMedplus iX [26].
Quelle
Iridium-192, metallisch
Aktivität
370 GBq
Quellenabmessung
0,6 mm Durchmesser, 3,5 mm Länge
Kapselabmessung
0,9 mm Kapseldurchmesser, 4,52 mm Kapsellänge
Bestrahlungskanäle
24
Haltepositionen
60 pro Kanal
maximale Ausfahrlänge
Positioniergenauigkeit
130 cm
±1
mm
Quellendraht
äuÿerst exibler Stahldraht, 13 mm Biegeradius
Ausfahrgeschwindigkeit
60 cm
s
Haltezeitauösung
0,1 s
variable Haltezeiten
0,0-999,9 s variable Haltezeiten
Schrittweiten
1-10 mm
17
KAPITEL 3.
MATERIAL UND METHODEN
3.2 Bildgestütztes Bestrahlungs-Planungssystem
Die bildgestützte Bestrahlung eines Tumors basiert auf CT- oder MRT- Bilddaten, die vom
Bestrahlungsprogramm verwertet werden. Diese Bilddaten liegen im Digital Imaging and
Communications in Medicine (DICOM) - Format vor, ein Standard zum Austausch und
zur Speicherung von medizinischen Bildinformationen, der das Importieren und Exportieren von Bilddaten erheblich erleichtert. Die Bilddaten können in 3D-Ansicht betrachtet
werden, um alle Achse gedreht und verschoben werden.
Die Dosisberechnung kann mit unterschiedlichen Algorithmen erfolgen. Allgemein werden bei einer Verteilung mehrere Haltepositionen einer Quelle in einem Zielvolumen berechnet, in dem die einzelnen Beiträge überlagert werden.
Der erste Algorithmus
AAPM Task Group 43
(TG-43) berechnet die Dosis aus-
schlieÿlich für Wasser unter der Annahme, dass der bestrahlte Körper homogen ist. Dabei
wird eine zweidimensionale Dosisgleichung für eine zylindrisch symmetrische Linienquelle
zugrunde gelegt [1, 21, 25]:
·
·
D(r, θ) = K a,d · d2 · Λr0 ·
h
G(r,θ)
G(r0 ,θ0 )
i
· g(r) · F (r, θ)
ˆ
r Distanz in cm vom Quellenzentrum bis zum Punkt, an dem die Dosisberechnung stattnden soll.
ˆ
r0 Referenzabstand (meist 1 cm).
ˆ
θ Polarwinkel vom Quellenzentrum zu dem Punkt, an dem die Dosisberechnung stattnden soll.
ˆ
K a,d Kenndosisleistung im Abstand d, in der Regel ist dieser Abstand d=100 cm.
ˆ
Λr0 Wasserenergiedosisleistung pro Kenndosisleistung in r0 .
ˆ
G(r, θ) Geometriefunktion
ˆ
g(r) radiale Dosisleistungsfunktion, abstandsabhängige Abnahme der Dosisleistung entlang der Transversa-
ˆ
F (r, θ) Anisotropiefunktion, Winkelabhängigkeit der Dosisleistung.
·
lachse.
Abbildung 3.1: Veranschaulichung der Dosisberechnung mit der zweidimensionalen Dosisglei-
chung einer aktiven Quelle mit der Länge L in Polarkoordinaten [1].
Bei der Bestrahlungsplanung werden in einem Abstand von 5 mm zum Applikatorrand
Referenzlinien gezeichnet, wodurch die Dosis optimiert wird. Für die Optimierung werden
18
3.3.
MESSAUFBAU UND ABLAUF
dem System die maximalen Abweichungen angegeben. Bei der Patientenbestrahlung des
Universitätsklinikum Düsseldorf darf maximal 5% des Volumens eine Dosisüberhöhung von
110% der Solldosis erhalten (Gyn. Applikation).
Der zweite Algorithmus
Acuros
bietet eine Erweiterung der Dosisberechnungsfunktion
von BrachyVision. Beim TG-43 Algorithmus erfolgt die Dosisberechnung in der Annahme,
der Strahler bendet sich im Wasser. Ein Patient besteht allerdings nicht homogen aus
Wasser, sondern aus vielen Geweben mit unterschiedlicher Dichte, wie Knochen oder Luft.
Acuros berechnet erstmalig Bestrahlungspläne, die durch diese Inhomogenitäten korrigiert
sind, indem es CT-Bilddaten zur Berücksichtigung von verschiedenen Patientengeweben
mit berechnet [24].
Beide Algorithmen berechnen die Haltepositionen Dwell Position
der radioaktiven
Quelle. Dabei ist darauf zu achten, dass die Halteposition nicht kleiner ist als die benötigte Fahrzeit zwischen den jeweiligen Haltepositionen. Die minimale Haltezeit sollte nicht
kleiner als 0,2 s sein, da die Afterloading-Vorrichtung diese sonst nicht einhalten kann.
Eine groÿe Erleichterung des BrachyVision 10.0 ist das Dosis-Volumen-Histogramm (DVH),
das kumulative, dierenzielle oder natürliche Histogramme für jede eingezeichnete Struktur
(Zielvolumen und Risikoorgane) anzeigt [25].
Planungstechnisch berechnete Dosen:
Im Universitätsklinikum Düsseldorf wird die
Kenndosisleistung der Ir-192 Quelle des Afterloaders mit einem Plexiglas-Zylinderphantom
(PMMA-, Polymethylmetacrylat-Phanthom) der Firma PTW (Freiburg) gemessen. Vor
den Dosis Messungen sollen die applizierten Dosen mithilfe der Bestrahlungsalgorithmen
berechnet werden. Mit dem Computertomografen PQ 2000 der Firma Picker International (Highland Heights, Ohio/USA) wurden dafür axiale Schichtaufnahme des Zylinderphantoms erstellt. Es wurde eine Schichtdicke von 3 mm bei 49 Schichten gewählt. Bei
der Computertomograeaufnahme wurden in das Zylinderphantom statt der Stielionisationskammer M23332 (PTW, Freiburg) die Blasensonde Typ T9113 (PTW, Freiburg) und
Rektumssonde Typ T9112 (PTW, Freiburg) eingesetzt. Diese in-vivo Sonden bestehen aus
Gummi und haben einen kleineren Absorptionskoezienten, der zu geringer Artefaktbildung führt. Die Stielionisationskammer hat eine hohe Metalldicke, sodass es wegen des
hohen Abschwächungskoezienten zu einer Totalabsorption der Röntgenstrahlung käme.
Diese CT-Aufnahme wurde an das BrachyVision 10.0 übermittelt, wo die Strukturen des
Applikators und der Sonden eingezeichnet wurden.
Es wurden mit dem TG-43 und dem Acuros Algorithmus die Dosen berechnet, die mit
der Stielionisationskammer veriziert werden sollen. Bei der Bestrahlungsplanung muss der
Abstand zwischen der Quelle und dem Messpunkt 8 cm betragen, wobei beide in der exakt
gleichen Höhe im Zylinderphantom positioniert sind. Die Halteposition betrug 130 cm, die
Haltezeit wie bei den späteren Messungen 60 s.
3.3 Messaufbau und Ablauf
Laut der aktuellen DIN 6809-2 Abschnitt 3 muss vor jeder klinischen Bestrahlung einer
Afterloading-Vorrichtung die Kenndosisleistung dosimetrisch bestimmt werden, um zu gewährleisten, dass klinische Bestrahlungen sicher und geplant durchgeführt werden können.
Um Einüsse auf die Kenndosisleistung mit zu erfassen, wird die Dosimetrie am besten
mit den in der klinischen Bestrahlung eingesetzten Sonden durchgeführt. [5]
19
KAPITEL 3.
MATERIAL UND METHODEN
Grundsätzlich gibt es drei unterschiedliche Arten, um die Kenndosisleistung zu bestimmen [15, 27].
1. Die direkte Messung der Luftkermaleistung in 1 m Abstand in Luft.
2. Die Messung der Kenndosisleistung mit Kompakt-Ionisationskammern in kalibrierten
Festkörperphantomen.
3. Die Messung der Kenndosisleistung mit der Schachtkammer.
Zur Überprüfung der Kenndosisleistungen von Afterloadingquellen sind Freiluftmessungen
in der Regel ungeeignet. Bei der Frei-Luftmessung muss streng darauf geachtet werden, dass
durch den Messaufbau keine zusätzlichen Streustrahlungsquellen in die Nähe der Quelle
oder Sonde gelangen, die die Messanzeige des Dosimeters beeinussen können. Auÿerdem
sind Frei-Luftmessungen nur mit groÿvolumigen Messsonden zu realisieren, die den meisten
Kliniken nicht zur Verfügung stehen. In der klinischen Dosimetrie wird daher die Kenndosisleistung regelmäÿig mit einer Stielionisationskammer in einem Zylinderphantom oder
einer Schachtionisationskammer gemessen.
3.3.1 Vorversuch: Haltepositionsmessung
Zunächst erfolgten Haltepositionsmessungen mit dem speziellen Phantom source step
viewer (Varian Medical Systems, Haan, Deutschland), um die arbeitstägliche Bestrahlungskontrolle im Rahmen der Qualitätssicherung durchzuführen. Anschlieÿend wurde überprüft, ob die radioaktive Quelle die vorher denierten Positionen abfährt. Die Kontrollsoftware des GammaMedplus iX überprüft die Haltepositionsmessung, indem die radioaktive
Quelle an der maximalen Ausfahrposition hält und sich bei einer Schrittweite von beispielsweise 1 cm alle 5 s Haltezeit zurückzieht. Es sollen 10 Haltepositionen abgefahren werden,
bis sich die Quelle in die Ruheposition zurückzieht.
Abbildung 3.2: Spezielles Haltepositionsphantom source step viewer (Varian Medical Systems,
Haan, Deutschland) für das GammaMedplus iX.
3.3.2 Zylinderphantom
Wie bereits in Unterabschnitt 3.2 ausgeführt, wird im Universitätsklinikum Düsseldorf die
Kenndosisleistung der Ir-192 Quelle im Afterloader mit einer Zylinderkammer im PlexiglasZylinderphantom (PMMA-, Polymethylmetacrylat-Phanthom) der Firma PTW (Freiburg)
20
3.3.
MESSAUFBAU UND ABLAUF
gemessen. Das Zylinderphantom hat fünf Plexiglaseinschübe, wobei der Einschub in der
Mitte des Phantoms der Strahlereinschub ist. Das Zylinderphantom ist 3-dimensional und
hat einen Durchmesser von 20 cm, eine Höhe von 12 cm und einen Kammer-Strahlerabstand
von 8 cm. Der Abstand von 8 cm ist so gewählt, dass die endliche Geometrie der Quelle und der Sonde keine Korrektur erfordert. Die Einschübe sind so konstruiert, dass die
maximale Ausfahrposition der Quelle auf der gleichen Höhe wie der Punkt des maximalen
Ansprechverhaltens der Messsonden ist.
Abbildung 3.3: Zylinderphantom mit eingesetzter Zylinderkammer und Stahlsonde. Zur Bestim-
mung von Temperatur und Luftdruck sind geeignete Thermo-/Barometer zu sehen.
In Abbildung 3.3 ist der Messaufbau mit dem Zylinderphantom dargestellt. Die Ionisationskammern sind sogenannte Stielionisationskammern, die an das Dosimeter UNIDOS webline (PTW, Freiburg) angeschlossen werden. Damit die Streuung möglichst gering ist, wurde in die nicht verwendeten Aufnahmebuchsen ein Blindstopfen eingesetzt. Die Streuung
der Umgebung wurde minimalisiert, indem die Messung auf einem Stativ in ausreichender
Höhe durchgeführt wurde. Laut Gebrauchsanweisung des Afterloading-Kalibrierphantoms
Typ 9193 soll ein Abstand von 60 cm zum Boden eingehalten werden, damit der Streubeitrag des massiven Betonbodens kleiner als 0,2% ist. Auÿerdem soll ein Abstand von 30
cm zu massiven Streuern eingehalten werden (Abbildung 3.4). Die deutsche Gesellschaft
für Medizinische Physik (DGMP) empehlt einen Abstand von 1 m zum nächsten groÿen
Streuer [4, 15].
21
KAPITEL 3.
Abbildung 3.4: Funktion der Streueinüsse der 0,3
cm3
MATERIAL UND METHODEN
PTW-Stielkammer im Zylinderphantom
zum Abstand zur Wand [15].
Stielionisationskammer:
Die eingesetzten Stielionisationskammern M23332 - 726 und
M23332 - 270 (PTW, Freiburg) sind kommerziell erhältliche Zylinderkammern. Sie weisen ein Messvolumen von 0,3
cm3
, eine Länge von 1,8 cm und einen Innenradius von 0,25
cm auf. Beide Stielkammern sind zur Messung der Kenndosisleistung kalibriert. Die Kalibrierungsfaktoren sind bereits im Dosimeter UNIDOS webline eingetragen und hinterlegt
[4].
Abbildung 3.5: Stielionisationskammern
(PTW, Freiburg). Oben: M-23332-270; Unten: M-
23332-726.
Messung der Kenndosisleistung mit verschiedenen Sonden:
Zur Messung der Kenn-
dosisleistung wurden im Zylinderphantom die klinisch wichtigsten Sonden eingesetzt. Es
wurde zunächst die Stahlsonde eingesetzt. Danach wurde dieselbe Messung mit der Kunststosonde durchgeführt. In dieser Messung wurde die radioaktive Quelle auf die maximale
Ausfahrposition gefahren, sodass bei jeder Messung der Kenndosisleistung dieselbe Ausgangssituation gegeben war. An dieser Position verweilte die radioaktive Quelle 500 Sekunden, sodass mittels Dosimeter UNIDOS webline drei Integralmessungen über 60 Sekunden
gemacht werden konnten. Laut DIN 6809-2 muss die Kenndosisleistung in vier unterschied-
° Grad versetzt sind, gemessen werden (Abbildung 3.6).
lichen Positionen, die jeweils um 90
Damit eventuelle Anisotropien oder Positionierungsfehler der Sonde vermieden werden,
wurden die vier Messungen gemittelt [15].
22
3.3.
MESSAUFBAU UND ABLAUF
Abbildung 3.6: Zylinderphantom mit den vier Messpositionen.
Abbildung 3.7:
Applikatorsonden: oben: neuartige Kunststosonde; unten: 3 mm herkömmliche
Stahlsonde.
3.3.3 Schachtkammer
Es wurde die Kenndosisleistung mittels Schachtkammer gemessen, wobei, wie in den vorherigen Messungen, sowohl die Stahlsonde als auch die Kunststosonde (Abbildung 3.7)
eingesetzt wurden.
HDR-Schachtkammer:
Die Messung erfolgte durch eine HDR-Schachtkammer Typ 33004
(PTW, Freiburg). Diese Schachtkammer kann sowohl für die Aktivitätsmessung als auch
für die Messung der Kenndosisleistung von High Dose Rate (HDR), Pulse Dose Rate
(PDR) oder Low Dose Rate (LDR) Afterloading-Vorrichtung eingesetzt werden. Sie ist
3-dimensional und weist ein Messvolumen von 200
cm3
auf. Der Arbeitsablauf ist wie
folgt:
1. Die HDR-Schachtkammer wird an ein Elektrometer angeschlossen, das für die Schachtkammer eine Kammerspannung von 400 V vorsieht.
2. Im zweiten Schritt werden der Einschub und die Sonde in die Schachtkammer eingeführt.
3. Bevor die Kenndosisleistung gemessen wird, muss die Halteposition der Quelle ermittelt werden. Hierfür ndet eine Referenzpunktmessung statt, bei der der Punkt
23
KAPITEL 3.
MATERIAL UND METHODEN
mit dem maximalen Ansprechverhalten gesucht wird. Eine Empndlichkeitskurve,
die den gemessenen Strom gegenüber der Position des Strahlers zeigt, soll den Referenzpunkt bestimmen.
4. Nach DIN 6809-2 ist der Strahler bei der Messung der Kenndosisleistung im Maximum dieser Empndlichkeitskurve zu platzieren.
Als Elektrometer stand das UNIDOS webline (PTW, Freiburg) zur Verfügung. Bei der
Schachtkammer wurde nicht die radiologische Messgröÿe, d.h. die Dosis, gemessen, sondern
der Strom. In das Elektrometer waren bereits die Kalibrierfaktoren vom Kalibrierschein
der Schachtkammer eingetragen und hinterlegt. Die Messung des Referenzpunktes erfolgte,
weil am Punkt des maximalen Ansprechverhaltens die Kalibrierfaktoren gelten. Auch bei
der Schachtkammer soll zur Vermeidung von Streustrahleinüssen ein Abstand von 30 cm
zu massiven Streuern eingehalten werden [4].
Abbildung 3.8: Messaufbau mit GammaMedplus iX, Schachtkammer und Stahlsonde.
24
3.3.
MESSAUFBAU UND ABLAUF
Abbildung 3.9: Schematische Abbildung der Schachtkammer Typ 33004, in der die Position mit
dem voraussichtlich maximalen Ansprechverhalten (reference point) eingezeichnet ist (veränderte Quelle: [16]).
Messung der Kenndosisleistung mit verschiedenen Applikatoren:
Bei der Messung des
Referenzpunktes wurden drei unterschiedliche Pläne erstellt. Bei der ersten Messung fuhr
die radioaktive Quelle insgesamt 50 Haltepositionen in der Schachtkammer mit jeweils einer Schrittweite von 2 mm ab. Bei der zweiten Messung wurde der Referenzpunkt näher
untersucht. Hierbei wurde ein distaler Oset von 3 cm gewählt, sodass die erste Halteposition bei 127 cm lag. Insgesamt wurden 40 Haltepositionen mit einer Haltezeit von 5 s
abgefahren. Die Schrittweite betrug, anders als beim ersten Versuch, 0,1 cm. Bei der anschlieÿenden Messung des Referenzpunktes wurde ein distaler Oset von 3,5 cm gewählt,
sodass die erste Halteposition bei 126,5 cm lag. Es wurden 20 Haltepositionen abgefahren,
wobei die Haltezeit 5 s und die Schrittweite 0,1 cm betrug.
Nachdem der Referenzpunkt ermittelt worden war, konnte die eigentliche Messung zur
Bestimmung der Kenndosisleistung beginnen. Hierbei fuhr die Quelle zum Referenzpunkt
mit einer Verweildauer von 500 Sekunden. In dieser Zeit wurde der Ionisationsstrom mittels
UNIDOS webline gemessen. Auch bei der Schachtkammermessung wurde ein Vergleich
der Sonden durchgeführt, wobei zuerst die Stahlsonde und danach die Kunststosonde
eingeführt wurde.
3.3.4 Vergleich der Messmethoden
Der Vergleich der Messmethoden erfolgte mit dem Zylinderphantom sowie mit der Schachtkammer. Die Messung mit dem Zylinderphantom wurde, wie in Unterabschnitt 3.3.2 beschrieben, an allen vier Positionen durchgeführt. Die Ergebnisse wurden gemittelt. Die
Messung mit der Schachtkammer erfolgte so wie in Unterabschnitt 3.3.3 beschrieben. Beide Messungen wurden mit der Stahlsonde durchgeführt. Die Messmethoden sind mittels
Stahlsonde unter Referenzbedingungen kalibriert.
25
KAPITEL 3.
26
MATERIAL UND METHODEN
Kapitel 4
4 Ergebnisse
4.1 Bestimmung der planungstechnisch berechneten Dosen
Bei der Berechnung der Dosis mit den Algorithmen TG-43 und Acuros wurden Isodosen um
die Quellenposition dargestellt. Diese wurden mittels BrachyVision 10.0 berechnet, unter
der Annahme, dass die Quellenaktivität von 370 GBq vorliegt, was einer frischen Quelle
entspricht. Deshalb wurde die Referenzmessung mittels Stielionisationskammer einen Tag
nach dem Quellenwechsel durchgeführt.
Tabelle 4.1: Berechnete und gemessene Dosen bei einer Haltezeit von 60 s der Quelle und ei-
ner Halteposition von 130 cm. Die gemessene Dosis wurde einen Tag nach dem
Quellenwechsel an Position 4 des Zylinderphantoms mit der Stielionisationskammer
durchgeführt. Die Aktivität der Quelle betrug zu diesem Zeitpunkt 370,4 GBq.
Dosis in mGy
Abweichung
gemessene Dosis
100
TG-43
118
18%
Acuros
103
3%
Abbildung 4.1: Abbildung der Bestrahlungsplanung mittels BrachyVision 10.0, mit einer Halte-
zeit von 60 s bei der Halteposition von 130 cm. Links: Isodosenberechnung mittels
TG-43. Rechts: Isodosenberechnung mittels Acuros.
Bei dieser Messung war zu beobachten, dass der Acuros Algorithmus eine Dosis berechnet
die weniger von der Referenzdosis abweicht als die Dosis des TG-43 Algorithmus.
27
KAPITEL 4.
ERGEBNISSE
4.2 Haltepositionsmessung
Das Ergebnis der Haltepositionsmessung wurde mittels source step viewer Phantom (Varian Medical Systems, Haan) aufgenommen. Die Dummy-Quelle fuhr etwas weiter als 130
cm, da das GammaMedplus iX überprüft, ob die Dummy-Quelle anstöÿt und somit das
Applikatorende geschlossen ist. Nach dem erfolgreichen Dummy-Durchlauf fuhr die radioaktive Quelle die vorgegebenen Haltepositionen ab. Dabei waren mithilfe des source step
viewer keine Abweichungen der Haltepositionen von den geplanten Haltepositionen zu
erkennen. Diese Qualitätssicherung wird im Rahmen der technischen Maschinenprüfung
von Varian Technikern nach jedem Quellenwechsel durchgeführt. Zusätzlich soll sie in die
arbeitstägliche Routinekontrolle integriert werden.
(a)
Aufnahme der Haltepositionsmessung an der Halteposition bei 125 cm.
(b)
Vergröÿerte Abbildung der Halteposition bei 125 cm aus a).
Abbildung 4.2: Bilderstrecke zur Haltepositionsmessung mit dem source step viewer Phantom
(Varian Medical Systems, Haan, Deutschland).
28
4.3.
ZYLINDERPHANTOM
Abbildung 4.3: Darstellung des Applikatorendtests der Dummy-Quelle, wobei der wellende Quel-
lendraht ersichtlich ist, der andeutet, dass die Dummy-Quelle ans Applikatorende
anstöÿt.
Die Abbildung 4.2 zeigt die exakte Einhaltung der Haltepositionen. Varian Medical Systems wirbt für das GammaMedplus iX mit einer Positioniergenauigkeit von
±1
mm, die
veriziert werden konnte. Die Dummy-Quelle fährt etwas weiter als 130 cm aus. Sie stöÿt
an, sodass sich der Quellendraht wellt.
Anhand der vorliegenden Testmessungen wird sie zukünftig standardmäÿig in klinische
Tagesprüfungen integriert werden.
4.3 Zylinderphantom
Im Universitätsklinikum Düsseldorf wurde bis vor Kurzem zur Messung der Kenndosisleistung die Stielionisationskammer im Zylinderphantom angewandt, sodass bereits entsprechende Messprotokolle existierten. Die Messwerte der Integralmessung über 60 s wurden in
einer Excel-Tabelle eingetragen. Der Wert der Kenndosisleistung wurde anschlieÿend mit
dem errechneten Wert der Zerfallstabelle verglichen, der dort als Air Kerma Rate (AKR)
bezeichnet ist. Die Abweichung der Kenndosisleistung von der AKR der Zerfallstabelle
darf maximal 3% betragen. Bei Überschreitung dieses Wertes ist eine Bestrahlung bis zur
Fehlerbehebung nicht mehr zulässig [4].
Berechnung der Kenndosisleistung:
Die Messergebnisse M aus den Integralmessungen
des Dosimeters UNIDOS webline über die Messzeit
τ = 60
s mussten in die Kenndosisleis-
tung umgerechnet werden [4, 27].
·
(K a,100 )a = kτ · kT p · kr · kzp · kap · kQ · NK · M
Dabei mussten folgende Faktoren berücksichtigt werden:
ˆ kτ Messzeitkorrekturfaktor für die Umrechnung von τ (min) auf 1 h.
kτ =
60
τ
ˆ kT p Da die Temperatur T und der Druck p von der Kalibrierungstemperatur T0 und dem
Kalibrierungsdruck p0 abweichten, musste korrigiert werden. Dieser Korrekturfaktor wurde
wie folgt berechnet:
29
KAPITEL 4.
kT p =
ERGEBNISSE
(273,2+T )·p0
(273,2+T0 )·p
◦ T Temperatur im Messvolumen in [°C]
◦ p Luftdruck am Messort [hPA]
◦ T0 Kalibriertemperatur 293 K
◦ p0 Kalibrierdruck 1013,25 hPA
ˆ kr Abstandskorrektur von r = 8 cm auf den Referenzabstand von 1 m. Die Berechnung
mittels Abstandsquadratgesetz:
8 2
kr = ( 100
) = 0, 0064
ˆ kzp Dieser Korrekturfaktor berücksichtigt das Plexiglas-Zylinderphantoms anstatt des Mediums Luft. Zusätzlich enthält der Faktor die Volumenkorrektur der Stielionisationskammer
Typ M23332 im Abstand von 8 cm.
kzp = 1, 187 ± 0, 012
ˆ kap Feldstörungskorrektur beim Übergang von Plexiglas zu Luft. Laut DIN 6809-2 kann
dieser kap ≈ 1 gewählt werden.
ˆ kQ Korrektionsfaktor für die abweichende Strahlenqualität von Co-60. Bei modernen Kompaktkammern kann kQ = 1 gewählt werden, da diese nur sehr gering strahlenqualitätabhängig sind.
ˆ NK Kalibrierfaktor für Luftkerma in Luft für Co-60-Strahlung.
1. Messung:
Gemessen wurde mit der Stahlsonde sowie mit der Stielionisationskammer
Typ M23332-726.
Tabelle 4.2:
Messung an Position 4; Druck
p = 1019, 6 hP a
; Temperatur
Messung
Messwert über 60 s in Gy
1
0, 1003
0, 1004
0, 1004
0, 10037
2
3
hM i
·
(K a,100 )a
in
mGym2 h−1
T = 20, 9
°C.
40, 8569
In der Excel-Tabelle wurden die drei Messergebnisse der Tabelle 4.2 gemittelt und die
Kenndosisleistung für den Mittelwert der Messwerte
hM i
errechnet. Die Abweichung der
gemessenen Kenndosisleistung von der AKR der Zerfallstabelle betrug 0,39% (Abbildung
4.4).
30
4.3.
ZYLINDERPHANTOM
Abbildung 4.4: Ausschnitt aus der im Anhang vollständig vorhandenen Kalibriertabelle. In dieser
wird die
Air Kerma Rate (AKR) angegeben, die der Kenndosisleistung oder
Kermaleistung entspricht.
2. Messung:
Wie in Unterabschnitt 3.3.2 beschrieben, sollten bei der Messung mit dem
Zylinderphantom geometrische Einüsse, wie z.B. seitliche Lageunsicherheiten der Sonden, ausgeglichen werden, indem in allen vier Positionen gemessen und die Mittelung der
Messergebnisse erfolgt. Die Messungen wurden mit der Stahlsonde und der Stielionisationskammer Typ M23332-726 durchgeführt.
Tabelle 4.3: Vergleich der vier möglichen Positionen für die Messsonde.
Messung
1
2
3
Messwert in Gy über 60 s
0, 08075
0, 08082
0, 08083
0, 08080
hmi
(a)
Messung
1
2
3
hmi
Messwert in Gy über 60 s
0, 08167
0, 08170
0, 08174
0, 08170
Messung an Position 1; Druck p = (b) Messung an Position 2; Druck p =
;Temperatur T = 21, 4 °C.
999, 3 hP a ;Temperatur T = 21, 45 °C.
999, 8 hP a
Messung
1
2
3
hmi
(c)
Messwert in Gy über 60 s
0, 08364
0, 08363
0, 08368
0, 08365
Messung
1
2
3
hmi
Messwert in Gy über 60 s
0, 08238
0, 08237
0, 08239
0, 08238
Messung an Position 3; Druck p = (d) Messung an Position 3; Druck p =
999, 15 hP a ;Temperatur T = 21, 55
999, 25 hP a ;Temperatur T = 21, 6 °C.
°C.
31
KAPITEL 4.
ERGEBNISSE
Für die Mittelung aller vier Positionen folgte:
hM i = 0, 08213
Gy
Daraus errechnete sich eine Kenndosisleistung von:
·
(K a,100 )a = 33, 5351 mGym2 h−1
Der Zerfallswert der AKR in der Zerfallstabelle betrug
AKR = 33, 8 mGym2 h−1 .
Es
bestand somit eine Abweichung von 0,78%. Die maximale Abweichung in der Messung
lieferten die Position 1 und die Position 3, wobei hier eine Dierenz des Messwerts von
0,00285 Gy bestand. Dies entspricht einer maximalen Abweichung von 3,41%.
Abbildung 4.5: Ausschnitt aus dem im Anhang vollständig vorhandenen neuen Quellendosis-
schein der Messung mit Stielionisationskammer im Zylinderphantom für vier
Positionen.
32
4.3.
ZYLINDERPHANTOM
Abbildung 4.6: Diagramm der gemessenen Kenndosisleistungen mit Stielionisationskammer an
einer festen Position im Zylinderphantom an unterschiedlichen Messtagen. Der
Zerfall der Ir-192 ist ersichtlich; die Kenndosisleistung verringert sich ab dem
Quellenwechsel, am 19.Feb.13, gemäÿ Zerfallsgesetz (Unterabschnitt 2.2.1).
3. Messung:
Bei dieser Messung wurde untersucht, ob die Verwendung einer Stahlsonde
oder einer Kunststosonde Auswirkungen auf das Messergebnis hat. Die jeweilige Messung
wurde entsprechend der 2. Messung durchgeführt.
Tabelle 4.4: Vergleich der Messwerte gemessen mit der Stielionisationskammer Typ M23332-726
und verschiedenen Sonden.
Messung
gem. Dosis der Integralmessung über 60 s in Gy
1 Messposition
0,07686
2 Messposition
0,07807
3 Messposition
0,07805
4 Messposition
0,07559
hM i
0,07714
·
(K a,100 )a in mGym2 h−1
31, 4981
(a) Messung der Kenndosisleistung mit der Stahlsonde an Position 1 des Zylinderphantoms.
Gem. Druck p = 988 hP a; gem. Temperatur T = 21, 4 °C.
Messung
gem. Dosis der Integralmessung über 60 s in Gy.
1 Messposition
0,07791
2 Messposition
0,07899
3 Messposition
0,07835
4 Messposition
0,07703
hM i
0,07807
·
(K a,100 )a in mGym2 h−1
31, 8768
(b) Messung der Kenndosisleistung mit der Kunststosonde an Position 1 der Zylinderphantoms. gem. Druck p = 988 hP a; gem. Temperatur T = 21, 6 °C.
33
KAPITEL 4.
ERGEBNISSE
Es wird ersichtlich, dass die Kenndosisleistung bei Verwendung der Kunststosonde
0, 3787 mGym2 h−1
höher ist als bei Verwendung der Stahlsonde, dies entspricht 1,19%.
4.4 Schachtkammer
In der Messung Unterabschnitt 3.3.3 wurde der Referenzpunkt an der Halteposition 14
gemessen. Bei einer Schrittweite von 1 mm und bei einem ersten Haltepunkt bei 126,5 cm
befand sich der gemessene Referenzpunkt 92 mm unterhalb der Oberäche der Kammer. In
der Tabelle 4.5 wurden die Ionisationsströme dieser Messung für die abgefahrenen Haltepositionen in der Kammer aufgeführt. Diese Haltepositionsmessung wurde vor jeder Messung
wiederholt, um die Position mit dem maximalen Ansprechverhalten bei jeder Strommessung zu bestimmen. Nach der Gebrauchsanweisung der HDR-Kammer Typ 33004 soll der
Punkt des maximalen Ansprechverhaltens, der sogenannte reference point, ca. 84,5 mm
unterhalb der Oberkante der Kammer liegen. (Abbildung 3.9) [16].
Tabelle 4.5: Referenzpunktbestimmung mittels Schachtkammer Typ 33004.
34
Messposition
Ionisationsstrom
relativer Kammerstrom
Abstand zur Oberäche der Kammer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
35,11 nA
35,18 nA
35,25 nA
35,31 nA
35,37 nA
35,41 nA
35,46 nA
35,50 nA
35,53 nA
35,56 nA
35,57 nA
35,59 nA
35,59 nA
35,60 nA
35,59 nA
35,58 nA
35,56 nA
35,54 nA
35,51 nA
35,47 nA
0,9862
0,9882
0,9902
0,9918
0,9935
0,9947
0,9961
0,9972
0,9980
0,9989
0,9991
0,9997
0,9997
1
0,9997
0,9994
0,9989
0,99831
0,9975
0,9963
105 mm
104 mm
103 mm
102 mm
101 mm
100 mm
99 mm
98 mm
97 mm
96 mm
95 mm
94 mm
93 mm
92 mm
91 mm
90 mm
89 mm
88 mm
87 mm
86 mm
4.4.
SCHACHTKAMMER
Abbildung 4.7: Empndlichkeitskurve. Der relative Kammerstrom ist zum Abstand zur Oberä-
che der Schachtkammer aufgetragen. Im Maximum der Kurve, bei 92 mm Abstand zur Oberäche der Schachtkammer, ist die Quelle zur Messung der Kenndosisleistung positioniert.
Berechnung der Kenndosisleistung:
Die Messergebnisse
IM ax
werden in die Kenndosis-
leistung umgerechnet [4]:
·
(K a,100 )a = NK · kT p · kIon · Imax
ˆ NK Kalibrierfaktor für die Luftkermaleistung.
ˆ kT p Temperatur- und Druck-Korrekturfaktor, siehe Abschnitt 4.3.
ˆ kIon Kehrwert der Sättigung Aion da die Kammerspannung höher als 300 V beträgt, kann
kion = 1 angenommen werden.
1. Messung:
Nachdem der Messwert
I = 35, 6 nA
für die Ermittlung der Kenndosisleis-
tung feststand, wurde dieser mittels Kalibrierschein überprüft. Es sollte festgestellt werden,
ob die tatsächlich ermittelten Werte der Kenndosisleistung von den angegebenen Sollwerten
abweichen. Der Quellendosismessungs-Schein muss bei jedem Quellewechsel erneut ausgefüllt werden, sodass für die Schachtkammer genau wie für die Messung mit Stielionisationskammer im Zylinderphantom eine Kalibrier-Tabelle erstellt wurde. Nach den in der
Kalibrier-Tabelle festgehaltenen Ergebnissen (siehe Anhang) lag bei der Schachtkammer
die Abweichung zwischen der gemessenen Kenndosisleistung und dem AKR bei 0,55%. In
dem Prüfschein der Schachtkammer Nr. 1202631 (PTW, Freiburg) erlaubt der Hersteller
für das GammaMedplus iX eine Abweichung von maximal 4%.
Tabelle 4.6: Messung mit der Schachtkammer. Druck p=1011,9 hPa; Temperatur: T= 23,4 °C
gemessener Ionisationsstrom
Imax
(nA)
35, 60
·
(K a,100 )a (mGym2 h−1 )
2 −1 )
Zerfallstabelle (mGym h
Kenndosisleistung
AKR der
Abweichung der Kenndosisleistung von der AKR der Zerfallstabelle
35, 90
36, 10
0,54%
35
KAPITEL 4.
ERGEBNISSE
Abbildung 4.8: Ausschnitt aus dem im Anhang vollständig vorhandenen Quellendosisschein für
die Schachtkammer.
2. Messung:
Es wurde eine Vergleichsmessung zwischen der Stahlsonde und der Kunst-
stosonde in der Schachtkammer durchgeführt. Die Messergebnisse sind in der nachfolgenden Tabelle festgehalten:
Tabelle 4.7: Vergleichsmessung mit der Schachtkammer, Stahlsonde und Kunststosonde.
·
Ionisationsstrom
Imax
in nA
1. Kenndosisleistung
(K a,100 )a
Stahlsonde
30,92
31,184
Kunststosonde
31,26
31,527
Abweichung
1,09%
1,09%
in
mGym2 h−1
4.5 Vergleich der Messmethoden
Im letzten Versuch wurden die Messmethoden einerseits mit dem Zylinderphantom und
andererseits mit der Schachtkammer verglichen, wobei die Messungen am selben Tag erfolgten. Es wurde bei beiden Messungen die Stahlsonde benutzt.
Messung mit dem Zylinderphantom:
Die Messung wurde an allen vier Positionen mit
der Stielionisationskammer Typ M23332-726 vorgenommen. Die ermittelten Messergebnisse ergeben sich aus der folgenden Tabelle:
36
4.5.
VERGLEICH DER MESSMETHODEN
Tabelle 4.8: Messergebnisse für die vier möglichen Positionen der Messsonde.
Messung
Messwert in Gy über 60 s
0, 07687
0, 07685
3
0, 07687
hmi
0, 07686
Messung an Position 1; Druck p = 987, 9
hP a; Temperatur T = 21, 5 °C.
1
2
(a)
Messung
0, 07804
2
0, 07804
3
0, 07808
hmi
0, 07805
Messung an Position 3; Druck p = 988
hP a; Temperatur T = 21, 5 °C.
Messwert in Gy über 60 s
0, 07804
0, 07807
3
0, 07809
hmi
0, 07807
(b) Messung an Position 2; Druck p = 987.95
hP a; Temperatur T = 21, 4 °C.
1
2
Messwert in Gy über 60 s
1
(c)
Messung
Messung
Messwert in Gy über 60 s
0, 07556
2
0, 07560
3
0, 07562
hmi
0, 07559
(d) Messung an Position 4; Druck p = 988
hP a; Temperatur T = 21, 3 °C.
1
Für die Mittelung über alle vier Positionen ergab sich:
hM i = 0, 07714
Gy
Daraus berechnete sich eine Kenndosisleistung von:
·
(K a,100 )a = 31, 498 mGym2 h−1
Messung mit der Schachtkammer:
Für die Messung der Kenndosisleistung wurde der
Referenzpunkt ermittelt, der entsprechend der nachfolgenden Tabelle bei Position 92 mm
unter der Oberäche der Schachtkammer lag.
Die Messung des Ionisationsstroms an dieser Position ergab:
Imax = 30, 92 nA
Für diesen Strom berechnete sich eine Kenndosisleistung von:
·
(K a,100 )a = 31, 18 mGym2 h−1
37
KAPITEL 4.
ERGEBNISSE
Tabelle 4.9: Referenzpunktbestimmung mittels Schachtkammer Typ 33004. Druck p=987,8 hPa ;
Temperatur T=21,5 °C.
Messposition
Ionisationsstrom (nA)
relativer Kammerstrom
Abstand zur Oberäche der Kammer (mm)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
30,47
30,54
30,60
30,66
30,71
30,76
30,80
30,83
30,86
30,89
30,90
30,91
30,92
30,92
30,91
30,90
30,88
30,86
30,83
30,80
0,9854
0,9877
0,9897
0,9916
0,9932
0,9948
0,9961
0,9971
0,9981
0,9990
0,9994
0,9997
1,0000
1,0000
0,9997
0,9994
0,9987
0,9981
0,9971
0,9961
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
Tabelle 4.10: Zusammenfassung der Ergebnisse mit den unterschiedlichen Messmethoden.
Kenndosisleistung
Stielionisationskammer
Schachtkammer
31, 498
31, 9
31, 184
31, 9
1,26%
2,30%
(mGym2 h−1 )
AKR der Zerfallstabelle
(mGym2 h−1 )
Abweichung
Die Abweichung der gemessenen Kenndosisleistung von Stielionisationskammer in Zylinderphantom und Schachtkammer betrug 0,997%.
38
Kapitel 5
5 Diskussion
Es werden nun die Ergebnisse der Messungen diskutiert und interpretiert. In dieser Arbeit
wurden zunächst die beiden Algorithmen zur Berechnung der Bestrahlungsdosen TG-43
und Acuros verglichen und evaluiert. Damit überhaupt ein Vergleich stattnden konnte,
wurden beiden Algorithmen gleiche Vorgaben gestellt. Die von den Algorithmen errechneten Dosen wurden als Isodosenlinien angegeben. Dabei war zu beobachten, dass die von
beiden Algorithmen, unter Berücksichtigung der gemachten Vorgaben, errechneten Dosen
12,7% voneinander abwichen. Um zu überprüfen, welches Berechnungsergebnis der tatsächlich applizierten Dosis näher kommt, wurde diese mit der Stielionisationskammer im
Zylinderphantom ermittelt. Das durch die Stielionisationskammer gemessene Ergebnis wies
im Vergleich zu der Berechnung des TG-43 eine Abweichung von 18% und im Vergleich
zu der Berechnung von Acuros in Höhe von nur 3% auf. Die gröÿere Abweichung des von
TG-43 errechneten Ergebnisses ist darauf zurückzuführen, dass hiermit ausschlieÿlich die
Wasserenergiedosis berechnet werden kann, dessen Absorptionsvermögen geringer ist als
das des PMMA-Zylinderphantoms. Diese Abweichung von immerhin 18% ist allerdings
im klinischen Alltag nicht von so hoher Relevanz, weil bei der klinischen Bestrahlung im
Rahmen der Brachytherapie kürzere Abstände zwischen Tumor und radioaktiver Quelle
bestehen als bei der Berechnung durch den TG-43 auf Grundlage des Zylinderphantoms
(8 cm) eingegeben wurde.
Der Acuros Algorithmus, der CT-Bilddaten auswertet, ist im Gegensatz zum TG-43
Algorithmus in der Lage, Inhomogenitäten zu berücksichtigen, die im Phantom und auch
im menschlichen Körper vorhanden sind. Dies führt zu präziseren Dosisberechnungen, was
veriziert werden konnte. Die dennoch festgestellte geringe Abweichung von 3% ist damit
zu erklären, dass Inhomogenitäten der Materie bis zu einer Dichte von maximal 2,25
g
cm3
berücksichtigt werden und darüber hinausgehende Dichten bei der Berechnung durch den
Acuros Algorithmus keine Berücksichtigung mehr nden [24].
Im weiteren Verlauf der Ausarbeitung wurden die beiden Messmethoden mittels Stielionisationskammer im Zylinderphantom und mittels Schachtkammer verglichen und evaluiert.
Als Vorversuch wurden Haltepositionsmessungen mit dem source step viewer- Phantom
durchgeführt. Diese Messungen waren aufwendig, weil sie aus Sicherheitsgründen mit einer
Videokamera aufgenommen werden mussten und somit in dieser Form nicht in die klinische Routine eingeführt werden können. Alternativ könnte jedoch im klinischen Alltag
eine visuelle Kontrolle als Bestandteil des Tageschecks erfolgen, da die fest installierte
Überwachungskamera AXIS 214 PTZ Network Camera in der Lage ist, Haltepositionsunsicherheiten von
±1
mm darzustellen. Nach den im Rahmen des Vorversuchs durchgeführ-
ten Messungen hielten sowohl die radioaktive Quelle als auch die Dummy-Quelle exakt die
39
KAPITEL 5.
DISKUSSION
vorher denierten Positionen ein, sodass keine Haltepositionsunsicherheiten veriziert werden konnten. Bei der Ausfahrt der Dummy-Quelle war zu beobachten, dass diese 130 cm
ausfuhr und dann noch gegen das Applikatorende gedrückt wurde, wodurch sich der Quellendraht wellte. Dieser Anschlag an das Sondenende ist gewählt, damit bei der Ausfahrt
der radioaktiven Quelle gewährleistet ist, dass die Sonde geschlossen ist.
Nach dem Vorversuch wurden die eigentlichen Messungen der jeweiligen Kenndosisleistung durchgeführt und mit dem vom Hersteller der radioaktiven Quelle im GammaMedplus
iX angegebene Sollwerte verglichen. Hierfür stehen dem Universitätsklinikum Düsseldorf
sowohl eine Stielionisationskammer mit Zylinderphantom (PTW, Freiburg) als auch eine
Schachtkammer (PTW, Freiburg) zur Verfügung. Alle Messungen durch die Stielionisationskammer im Zylinderphantom über vier Positionen gemittelt (4.3) ergaben eine Abweichung von unter 3% der angegebenen Sollwerte. Die im GammaMedplus iX eingesetzte
radioaktive Quelle kann somit zur klinischen Bestrahlung sicher eingesetzt werden. Die
Messwerte von nahe 3% wurden aus Sicherheitsgründen in den darauf folgenden Tagen
erneut überprüft und veriziert.
Die Abweichungen aller vier Positionen der Stielionisationskammer im Zylinderphantom von dem vom Hersteller angegebenen Sollwert lagen ebenfalls jeweils unter 3%, wobei
die Messergebnisse der einzelnen Positionen untereinander nicht konsistent waren. Diese Dierenzen sind mit den Positionierungsunsicherheiten der Sonden zu erklären. Da das
Abstandsquadratgesetz erhebliche Auswirkungen auf die gemessenen Dosen muss eine Mittelung aller Positionen erfolgen.
Bei der Auswertung der Referenzpunktmessung der Schachtkammer (4.4) wurde eine
Referenztiefe von 92 mm zur Oberäche gemessen. Nach dem Prüfschein Nr. 1202631
(PTW, Freiburg) soll sich der Referenzpunkt für eine Ir-192 Quelle der Schachtkammer
Typ TM33004 bei 96 mm unterhalb der Oberkante benden, sodass die gemessene Abweichung von nur 4 mm zu akzeptieren ist. Auÿerdem können Streueekte, beispielsweise des
Patiententisches, eine Verschiebung des Referenzpunktes bewirken. Die Abweichung der
gemessenen Kenndosisleistung von der der Zerfallstabelle blieb unter dem Grenzwert von
4%. Die radioaktive Quelle konnte somit zu jedem Zeitpunkt der Messungen zur klinischen
Bestrahlung von Patienten sicher eingesetzt werden.
Ein Vergleich der Messmethoden (4.5) ergab, dass die einerseits mittels Schachtkammer
und andererseits mittels Stielionisationskammer im Zylinderphantom jeweils gemessenen
Kenndosisleistungen um etwa 1% abweichen. Die Abweichung der gemessenen Kenndosisleistung bei der Stielionisationskammer im Zylinderphantom von 1,3% und bei der Schachtkammer von 2,3% liegen beide weit unter den empfohlenen Grenzwerten. Die geringfügigen
Abweichungen sind durch Positionierungsschwankungen während der Messungen, beispielsweise Lageunsicherheiten der Sonden, oder auch Streueinüsse während der Messungen zu
erklären. Insgesamt kann festgehalten werden, dass die Messungen durch die Schachtkammer im Vergleich zu der Messung mittels Kompakt-Ionisationskammer in Festkörperphantom im klinischen Alltag vorteilhafter sind, weil sie schneller durchgeführt werden kann,
da nur eine Messung an einer Position erfolgen muss.
Ein Vergleich der Messungen mittels Stahlsonde und Kunststosonde ergab, dass durch
die Stahlsonde nur wenig Gamma-Strahlung abgeschirmt wurde. In den Vergleichsmessungen der Sonden betrug der Unterschied der Kenndosisleistung weniger als 1,5%. Dies ist
darauf zurückzuführen, dass hauptsächlich Alpha- und Beta-Strahlung abgeschirmt werden. Stahl hat eine erheblich höhere Dichte als Kunststo, sodass Stahl die Strahlung
40
stärker abschirmt. Aus diesem Grund war die mittels Stahlsonde applizierte Kenndosisleistung geringer, als die mittels Kunststosonde applizierte Kenndosisleistung. Die Ir-192
Quelle strahlt hauptsächlich mit Gamma-Strahlung, wo von relativ wenig durch die Sonden abgeschirmt wird. Zur besseren Vergleichbarkeit der Messungen und Messergebnisse
sollte regelmäÿig eine einheitliche Sonde benutzt werden. Da im klinischen Alltag für die
Kalibrierung die Stahlsonde eingesetzt wird, ist es sinnvoll diese auch für die Messung der
Kenndosisleistung zu benutzen.
Fazit
Als Fazit bleibt festzuhalten, dass sowohl TG-43 als auch Acuros die später gemessenen Dosen vorhersagt. Allerdings errechnet der Acuros Algorithmus die Dosen tendenziell genauer
aufgrund der vorher bereits erwähnten Berücksichtigungen durch CT-Bildinformationen.
Im Universitätsklinikum Düsseldorf sind die meisten Anwendungen gynäkologisch, bei diesen ist der Abstand von der radioaktiven Quelle zum Zielvolumen meist kleiner als 8 cm,
wodurch die Abweichung von applizierter Dosis zu berechneter Dosis des TG-43 deutlich
kleiner wird. Trotzdem soll in der kommenden Zeit die klinische Bestrahlung basierend auf
CT-Bilddaten hauptsächlich mit dem Acuros Algorithmus durchgeführt werden.
Des Weiteren ist zu erwähnen, dass beide Methoden zur Messung der Kenndosisleistung
mit Vor- und Nachteilen verbunden sind. Bei der Messung mittels Schachtkammer ist
von Vorteil, dass der Abstand zu Streuern geringer ist als bei der Messung durch das
Zylinderphantom. Die DGMP empehlt insoweit für die Schachtkammer einen Abstand
von 30 cm, während für das Zylinderphantom ein Abstand zu Streuern von 1 m angeraten
wird, um den Streubeitrag unter 0,1% zu halten [4].
Für die Messung mit dem Zylinderphantom ist hingegen mehr Zeitaufwand erforderlich. Nach DIN 6809 muss die Messung beim Zylinderphantom für alle vier Positionen
durchgeführt werden, während bei der Schachtkammer aufgrund deren Geometrie die Messung nur an einer Position in der Kammer erfolgen muss. Da bei der Schachtkammer der
Strahler allseits vom Messvolumen umschlossen ist, hat diese den Vorteil, dass sich geringe Positionsverschiebungen des Strahlers nicht auf das Messergebnis auswirken. Beim
Zylinderphantom sind Abweichungen der Messergebnisse von ca. 3% unter den Positionen möglich. Dieser Wert ist relativ hoch, da die Kenndosisleistung mit einer Sicherheit
von 3% gemessen werden soll. Auÿerdem wird das Zylinderphantom seit Jahren in der
klinischen Praxis zur Messung der Kenndosisleistung eingesetzt. Es liegen somit vielfältige
Erfahrungen in der praktischen Anwendung und Vergleichswerte von Messungen vor.
Nichtsdestotrotz soll zukünftig konform zur Bestimmung der Wasserenergiedosis auf
Messungen mit der Schachtkammer übergegangen werden. Ihre Vorteile bei der Einfachheit, Schnelligkeit und Verizierbarkeit der Messung erleichtern die dosimetrische Überwachung und Konstanzprüfung im Rahmen der klinischen Brachytherapie mittels HDRAfterloading.
41
KAPITEL 5.
42
DISKUSSION
Ausblick
Im Rahmen dieser Arbeit wurden die Methoden der Qualitätssicherung durch die Messung
der Kenndosisleistung überprüft sowie die unterschiedlichen Messsysteme evaluiert und verglichen. Dabei wurden die Vor- und Nachteile der verschiedenen Messmethoden deutlich.
Das Zylinderphantom wird zukünftig vermehrt zur in-vivo Dosimetrie der Rektumssonde
und der Blasensonde eingesetzt werden. Die in-vivo Dosimetrie ist eine Methode zur Qualitätssicherung, in dem die Dosen der Risikoorgane während der Bestrahlung untersucht
werden. Dabei wird untersucht, ob die berechneten Dosen der Bestrahlungsplanungssysteme mit den tatsächlichen erhaltenden Dosen an den Organen übereinstimmen.
Die Rektumssonde und Blasensonde sind bewegliche Messsysteme und können unmittelbar vor der Bestrahlung des Patienten in das jeweilige Organ platziert werden. Mit dieser
Technik ist es möglich, die geplanten Dosen während der Bestrahlung zu messen und mit
der Planung zu vergleichen.
Die in-vivo Messungen müssen vor dem Einsatz zur Qualitätssicherung kontrolliert werden, was mit dem Zylinderphantom geschieht. Dabei wird überprüft, ob die gemessenen
Dosen der in-vivo Sonden mit den gemessenen Dosen der Stielkammer übereinstimmen.
Dies ist mit der Schachtkammer nicht möglich, da diese als Messsystem und Strahler nicht
fungieren kann und nur einen Einschub besitzt [14].
In der Strahlentherapie entwickeln sich die zum Einsatz kommenden Geräte fortlaufend.
Hiermit ist ein umfangreicher Aufbau, der immer komplexer wird, verbunden. Durch diese
schnelle Entwicklung erfassen viele Prüfvorschriften der Qualitätssicherung nicht mehr die
wesentlichen physikalisch-technischen Aspekte des Behandlungsprozesses. Deshalb sollten
die medizinischen Anforderungen und die physikalisch- technischen Überprüfungen besser
aufeinander abgestimmt werden.
Hierbei sollte sowohl die Zuordnung, was im Sinne der Prüfung zum System der Strahlentherapie gehört, als auch eindeutige Regeln für die Prüfvorschriften gefunden werden.
Dazu gehört die Erneuerung veralteter Normen, die durch die schnelle Entwicklung in der
Strahlentherapie nicht mehr den Stand der Technik widerspiegeln.
Die Strahlenschutzkommission empehlt auÿerdem die Einführung von verbindlichen Toleranzwerten für die dosimetrische und geometrische Unsicherheit sowohl der Einzelkomponenten als auch des gesamten Systems. Dabei sollten je nach therapeutischen Maÿnahmen
herstellerunabhängige Toleranzwerte festgelegt werden, deren Denition durch Physiker
und Mediziner zu erfolgen hat [20].
In den kommenden Jahren sollen allgemein verbindliche Leitlinien für die Strahlentherapien erarbeitet werden. Diese sollen die Strahlentherapien vernetzen, wodurch einheitliche
Maÿnahmen zur Qualitätssicherung und zum Strahlenschutz der Patienten und des Personals getroen werden, um weiterhin die Sicherheit garantieren zu können und die Patienten
erfolgreich und sicher therapieren zu können.
43
KAPITEL 5.
44
DISKUSSION
Literaturverzeichnis
[1]
Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. In:
[2]
Medical Physics
31 (2004), S. 634670
Untersuchung des Einusses der Patientenkörperanatomie
auf die Dosimetrie und Entwicklung eines analytischen Dosisberechnungsmodells
für die 192 Ir HDR Brachytherapie. http://www.archiv.ub.uni-heidelberg.
Anagnostopoulos G.:
de/volltextserver/6128/1/dissertation_Georgios_Anagnostopoulos_Physik_
Fakultaet_15_02_2006.pdf. Version: Februar 2006. zuletzt aufgerufen am:
25.05.2013
Medizinische Physik 2: Medizinische Strahlenphysik.
[3]
Bille, J.:
[4]
Deutsche Gesellschaft für Medizinische Physik e.V.:
Springer, 2002
DGMP-Bericht Nr.13:
Praktische Dosimetrie in der HDR-Brachytherapie. (1999)
[5]
[6]
Deutsches Institut für Normierung e.V.:
Fietkau, R.:
Universitätsklinikum Erlangen: Techniken der Brachytherapie. http://www.strahlenklinik.uk-erlangen.de/e138/e922/e937/e943/index_
ger.html.
[7]
DIN
zuletzt aufgerufen am: 26.03.2013
Hammer, J. ; Kärcher, K.H.:
Strahlentherapie.
Fortschritte in der interstitiellen und intrakavitären
W. Zuckschwerdt Verlag, 1988 (Jahrestagung der Österreichischen
Gesellschaft für Radioonkologie, Radiobiologie und Medizinische Radiophysik)
[8]
[9]
Heinzel, T.:
Einführung in die Medizinische Physik, Vorlesungsskript.
2010
Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen
(IQWiG): Merkblatt: Brachytherapie. http://www.gesundheitsinformation.de/
merkblatt-brachytherapie.303.de.html.
Version: Mai 2012. zuletzt aufgerufen
am: 25.05.2013
[10]
Kohlrausch, F.:
[11]
Kramme, R.:
[12]
Tabellen.
Praktische Physik, 3 Bde., Bd.2.
Teubner Verlag, 1996
Medizintechnik: Verfahren, Systeme, Informationsverarbeitung; mit 170
Springer, 2007
Krieger, H.:
Grundlagen der Strahlungsphysik und des Strahlenschutzes.
View-
eg+Teubner Verlag, 2007
[13]
[14]
Krieger, H.:
Strahlungsmessung und Dosimetrie.
Vieweg+Teubner Verlag, 2011
PTW:
In-vivo Dosimetry. http://www.ptw.de/fileadmin/bilder/produkte/
vivodos/Vivodos12undE_Learn%20more_In-vivo_dosimetry_Spec_en_77513900_
00.pdf. Version: 2005. zuletzt aufgerufen am: 05.04.2013
45
Literaturverzeichnis
[15]
PTW:
Gerbrauchsanweisung Afterloading-Kalibrierphantom Typ-9193. Freiburg, Sep-
tember 2009
Gebrauchsanweisung HDR KammerTyp 33004.
[16]
PTW:
[17]
Resnick, R. ; Halliday, J. W. D.:
Freiburg, Juli 2012
Halliday Physik.
Wiley-VCH Verlag GmbH,
2009
[18]
Grundlagen der therapeutischen Anwendung ionisierender Strahlung, Teil
1: Bestrahlungsgeräte. Universitätsklinikum Ulm, Klinik für Strahlentherapie http:
Salk J.:
//www.uni-ulm.de/~jsalk/vorlesung1/salk1-2x3.pdf.
zuletzt aufgerufen am:
22.04.2013
Grundlagen der Strahlentherapie, Lehrskript zur Vorlesung.
[19]
Simiantonakis, I.:
[20]
Strahlenschutzkommission:
2011
Physikalisch-technische Qualitätssicherung in der
Strahlentherapie-Vorschläge zur Prüfung des gesamten Behandlungssystems. In:
BAnz
66 (2011), S. 1563
[21]
Strnad V. ; Pötter R. ; Kovács G.:
Praktisches Handbuch der Brachytherapie.
Uni-Med Verlag Ag, 2010
[22]
[23]
Daten
zur
Umwelt.
http://www.
umweltbundesamt-daten-zur-umwelt.de/umweltdaten/public/theme.do?
nodeIdent=2890. zuletzt aufgerufen am: 20.03.2013
Umweltbundesamt:
Varian medical systems:
Fa. VARIAN medical systems.
Haan, Deutschland, . ehemals Isotopen-Technik Dr. Sauerwein
Broschüre: BrachyVision Acuros Advanced brachytherapy
dose calculation, 2009. http://www.varian.com/brachytherapy
[24]
Varian medical systems:
[25]
Varian medical systems:
Broschüre: BrachyVision Treamtent Planning,
2009.
http://www.varian.com/brachytherapy.
Broschüre: GammaMedplus iX, 3/24 iX HDR Afterloader, 2009. http://www.varian.com/brachytherapy
[26]
Varian medical systems:
[27]
Zakaria,
G. A.:
Dosimetrie an HDR-Afterloading-Geräten mit Ir-192- und Co-60-
Strahler: Vergleich verschiedener internationaler Dosimetrieprotokolle. In:
für Medizinische Physik
46
20 (2010), S. 215224
Zeitschrift
Abkürzungsverzeichnis
AAPM
American Association of Physicists in Medicine
AKR
Air Kerma Rate
AL
Afterloading
BV
BrachyVision
bzw.
beziehungsweise
CT
Computertomograe
d.h.
das heiÿt
DGMP
Deutsche Gesellschaft für Medizinische Physik e.V.
DICOM
Digital Imaging and Communications in Medicine
DIN
Deutsches Institut für Normung e. V.
DVH
Dosis-Volumen-Histogramm
HDR
High Dose Rate
ICRU
International Commission on Radiation Units and Measurements
LDR
Low Dose Rate
MRT
Magnetresonanztomograe
PDR
Pulse Dose Rate
PTW
Physikalisch-Technische Werkstätten
TG-43
Task Group 43
usw.
und so weiter
z.B.
zum Beispiel
47
Danksagung
Ich möchte mich besonders bei Herrn Dr. Ioannis Simiantonakis bedanken, der mir trotz
seiner hohen Arbeitsbelastung in der klinischen Praxis, während der Erstellung der Bachelorarbeit immer mit Rat und Tat zur Seite gestanden hat. Seine Ratschläge und Tipps, die
auf langjähriger wissenschaftlicher und praktischer Erfahrung basieren, waren stets sehr
hilfreich. Herr Dr. Simiantonakis nahm sich die Zeit, mir den sicheren Umgang mit dem
Afterloader zu zeigen und mich in die Messung mittels Zylinderphantom, die Software des
Afterloaders sowie des BrachyVision 10.0 einzuführen und stand mir bei Bedarf zur Seite,
um Fragen zu beantworten.
Auÿerdem ermöglichte mir Herr Dr. Simiantonakis einen Einblick in interessante Themen
der Strahlentherapie, in die Fortbildung der Firma Ashland über EBT2- und EBT3-Filme
und in den neuen Linearbeschleuniger.
Auÿerdem danke ich Herrn Prof. Dr. Thomas Heinzel, der sich als Zweitgutachter zur
Verfügung gestellt hat.
Des Weiteren möchte ich mich bei den Medizin-Physikern des Universitätsklinikums
Düsseldorf, Frau Dipl.-Ing. Silvia Kiggen und Herrn Dipl.-Phys. Burkhardt Bannach, ganz
herzlich bedanken, die für meine Fragen jederzeit ein oenes Ohr hatten und mir hilfreich
zur Verfügung standen. Zusätzlich möchte ich mich bei Herrn Michael Pogoda, dem Techniker der Firma Varian Medical Systems bedanken, der mir bei technischen Fragen zur
Afterloading-Vorrichtung hilfreich war.
Herrn Majid Ghorbanpour danke ich für die Hilfe beim Messen mittels Dosimeter UNIDOS webline, der durch seine Erfahrungen die Messungen sehr erleichtert hat.
Bei meinen Studienkollegen Claudia Katharina Spindeldreier, Tina Pfeiler und Oliver
Fielitz möchte ich mich für die praktischen Tipps bedanken.
48
Anhang
Im folgenden Anhang sollen die für die Ausarbeitung relevanten Dokumente und nicht
vollständig übernommenen Abbildungen nachgereicht werden, die in der Reihenfolge der
Themen aufgeführt sind. Als Dokument ist insbesondere das Quellenzertikat aufgeführt,
das die Zerfallstabelle der radioaktiven Quelle enthält und somit den täglichen AKR-Wert,
der für die Quellendosismessungs-Scheine benötigt wird.
Abbildung 5.1: Abbildung der Bestrahlungsplanung, dabei wird transversal, frontal und sagittal
abgebildet. Links: Berechnung der Isodosen mittels TG-43 Algorithmus. Rechts:
Berechnung der Isodosen mittels Acuros Algorithmus.
49
Anhang
Abbildung 5.2: Quellenzertikat der radioaktiven Iridium-192 Quelle vom 12.Febr.2013.
50
Abbildung 5.3: Alter Quellendosismessungs-Schein für das Zylinderphantom. Dabei wurde an
einer Messposition gemessen und in einer Excel-Tabelle festgehalten, diese kann
nach jeder Messung neu ausgefüllt werden und berechnet die Kenndosisleistung
sowie die Abweichung von der AKR.
51
Anhang
Abbildung 5.4: Neuer Quellendosismessungs-Schein für das Zylinderphantom, Mittelung über
vier Positionen in einer Excel-Tabelle, diese kann nach jeder Messung neu ausgefüllt werden und berechnet die Kenndosisleistung sowie die Abweichung von
der AKR.
52
Abbildung 5.5: Zusätzlicher Quellendosismessungs-Schein mit der neuen Schachtkammer in ei-
ner Excel-Tabelle, diese kann nach jeder Messung neu ausgefüllt werden und
berechnet die Kenndosisleistung sowie die Abweichung von der AKR.
53