Clique aqui para ler o trabalho na íntegra

Transcrição

Clique aqui para ler o trabalho na íntegra
1
EVIDENCES OF HOLOCENE TRANSGRESSION ON THE DOMINGOS
PETROLINI SWAMP, SOUTHERN COASTAL PLAIN,
RIO GRANDE DO SUL, BRAZIL
Soraia Girardi Bauermann (1)
Paulo César Pereira das Neves (1)
Marleni Marques-Toigo (2)
Abdul Rahman Ashraf (3)
(1) Laboratory of Palynology – Lutheran University of Brazil, Canoas/RS, CEP 92.420280, Brazil
(2) Institute of Geosciences, Federal University of Rio Grande do Sul, CEP 91501-970,
Brazil (in memoriam)
(3) Institute of Geosciences, University of Tuebingen, Tuebingen D-72076, Germany
Abstract: The Domingos Petrolini Swamp, located on the Southern Coastal Plain
of Rio Grande do Sul, near the Rio Grande town, constitutes an ample holocene lagoon
deposit. Events related to the holocene transgression and their diverse phases of
glacial-eustatic oscillations were found through palynological analysis. Based in
palynological data, four distinct phases to the paleoenvironmental evolution of
ecosystem were identified. It has also shown a transgressive restricted marine sequence
on the base, which suggests the existence of a coastal brackish lagoon or a marisme
type of environment. Later, there was a gradation for continentality conditions along with
a scarce pollinical record. The third phase is characterized by the presence of marine
components and halophyte vegetation, showing another transgressive event in that
place. Lastly, the end of direct marine influence over the swamp was recorded and also
the vegetation development as it appears these days.
Key words: paleoenvironmental, lagoon deposits, holocenic transgression
1. Introduction
The Domingos Petrolini Swamp, located on the Southern Coastal Plain of Rio
Grande do Sul, belongs to the biological estuary unit of the Patos Lagoon. The estuary
environments located in the South consist of approximately 10% of the lagoon system.
2
They are formed by shallow protected coastal bays and by the deep central body of
water of the estuary (Bonilha & Asmus, 1994).
The high level of rainfall in the region provokes an important amount of silt and
clay to move from the drainage basin to the estuary. Due to the low level of
hydrodynamic energy of the lagoon body, the material in suspension suffers deposition
while it is transported. Sediments of clay and silt are deposited in the shallow
embayments of the estuary.
On the meridional part of the Pelotas Basin lies the Domingos Petrolini Swamp
which represents a vast holocene lagoon plain connected to Barreira IV in the Coastal
Plain of the Rio Grande do Sul state (Villwock & Tomazelli, 1995; Tomazelli et al., 2004).
These systems may have evolved during the Holocene as a result of the
holocenic transgressive activity that occured on the Coastal Plain at about 5 Ka.
(Villwock & Tomazelli, 1995).
With the purpose of providing data on the evolution of this environment in the
Holocene,
sediments
were
radiochronological datings by
collected
for
palynological
analysis
and
two
14
C were set in a testimony located as 64594475;
0318046W – UTM, which reached the depth of 8.17m (Fig. 1).
2. Material and Methods
Hiller sampler was utilized to collect samples. A total of 65 samples were
extracted and processed according to the techiques used in the Palynology of the
Quaternary (Erdtman, 1952, in Faegri & Iversen, 1989). Thin lamina were then produced
for the microscopic analysis. The material was analysed and identified through
specialized bibliograph (Hooghiemstra, 1984; Neves, 1992, 19958; Colinvaux et al.,
1999; Barth, 2001; Neves & Bauermann, 2003) and by comparing it to the pollinical
material from the reference palynotheque. For a better understanding of the vegetational
phytophysiognomy of the Recent, a preliminary botanic survey was also used to make
the lamina. To calculate percentages and plot the data SIPGRADE software was used
(Cuéllar, 2003).
3
3. Climatic Aspects
The climate of the Coastal Plain of Rio Grande do Sul is considered Mild
Superdamp Mesothermic without a specific dry season and isoyetal lines
between
1,000 mm and 1,250 mm annualy (Nimer, 1979). The wind system along the region is
linked to a high pressure system of Anticyclone South Atlantic (predominantly NE-SW
winds). The NE winds which occur mainly between September and April, associated
with a high fluvial discharge cause a significant decrease in the salinity of the
hydrographic system of the southern part of the Coastal Plain. On the other hand, SW
winds which happen mainly between May and October, push the seawater through the
Patos Lagoon canal with gusts up to 150 Km to the north.
4. Geological Aspects
The Coastal Province of the Rio Grande do Sul is formed by the Crystalline
Basement and in part by the Pelotas Basin, a meridional segment to the marginal basins
that comprise the Brazilian continental margin (Villwock & Tomazelli, 1995; Tomazelli et
al., 2004).
The Pelotas Basin (Ghignone, 1960) is a shallow marginal basin (classified as
coastal type III C according to St. John et al., 1984) with a sedimentary package of
about 14,000 m thick (Fontana, 1990 a,b) composed of clastic terrigenous, transitional
and marine sedimentation accumulated mainly in the Cenozoic Era. Its origin is related
to the Waldenian Reactivation (Almeida, 1969) that took place in the Mesozoic Era
(approximately 130,000 Ka) responsible for the Serra Geral magmatism and the splitting
of the Gondwana mega-continent where South-american and African continental
masses began to drift, thus beginning the South Atlantic proto-ocean formation and
consequently the Pelotas Basin.
The Coastal Plain of the Rio Grande do Sul state was structured in a
Lagoon/Barrier System (CECO, 1984; Villwock & Tomazelli 1995). These system is an
evolutive model based in sedimentary facies. In the local studied occur the
Laggoon/Barrier IV, relationship to the last depositional event occurred in the Southern
4
Coastal Plain of the Rio Grande do Sul, during the Lower Holocene (before 5 ka).
Consists stratigraphically in Qbd4 and Qbc4 facies (eolian dunes deposits composed by
sands of beach and lagoon origin respectively), Qp4 facies (peat bogs lagoon deposits)
and Qt (peat bogs).
The Domingos Petrolini swamp is located on the southern part of the Coastal
Plain of Rio Grande do Sul and consists of a marshy deposit related to parallic peat
bogs on the coastline of Rio Grande do Sul (Wildner et al., 1988). Its represented by Qt
and Qp4 facies (Villwock, 1984; Villwock & Tomazelli, 1995), as a marshy deposit
formed by heterogeneous peats, alternated and mixed with sand and plastic mud with
localized diatomic levels. The Qt and Qp4 facies of the site are bordered by Qdr4 facies
(dunes resulting from holocene eolian action) and Qbc2 + Qbd2 (dunes and crests of
undivided beaches of the Pleistocene).
5. Botanical Aspects
The first botanical descriptions of the region were done by traveling naturalists.
Recently, studies were carried out about community structures and floristic aspects like
the ones performed by Cordazzo & Seeliger (1988), Waechter (1990), Irgang & Gastal
Jr. (1996), Seeliger et al., (1998), Waechter & Jarenkow (1998), Costa et al. (2003),
among others.
The site studied is located in a coastal swamp taken principally by Cyperus
giganteus Vahl (Cyperaceae). Near the sample area there are isolated clumps of trees
where in the arboreal stratum, could be observed the presence of Cupania vernalis
Cambess. and Allophylus edulis (St. Hil.) Raldk. (Sapindaceae), Ficus organensis (Miq.)
Miq. (Moraceae), Sebastiana brasiliensis Spreng. and Sapium glandulatum (Vell.) Pax
(Euphorbiaceae), Casearia sylvestris Sw. (Flacourtiaceae), Syagrus romanzoffiana
(Cham.) Glassm. (Arecaceae), Psidium cattleyanum Sabine (Myrtaceae), Citharexylum
myrianthum Cham. (Verbenaceae) and Salix humboldtiana Willd. (Salicaceae), among
others. In the shruby stratum where found Guettarda uruguensis (Cham. et Schlecht.)
DC.
and
Randia
armata
(Sw.)
DC.
(Rubiaceae),
Equisetum
giganteum
L.
(Equisetaceae), Ilex dumosa Reiss. (Aquifoliaceae), Cereus hildmannianus K. Schum,
5
(Cactaceae), Lithraea brasiliensis Mart. and Schinus polygamus (Cavanilles) Cabrera
(Anacardiaceae),
Daphnopsis
racemosa
Griseb.
(Thymelaeceae),
Erythroxylum
argentinum O. Sch. (Erytroxylaceae), Ocotea pulchella Mart. (Lauraceae), Gomidesia
palustris (DC.) Legr. (Myrtaceae), Eupathorium tremulum Hook. et Arn. (Asteraceae),
Buddleja sp. (Buddlejaceae), Tibouchina asperior (Cham.) Cogn. (Melastomataceae)
and Styrax leprosus Hook. et Arn. (Styracaceae), among others.
In the wet herbaceous stratum, besides Poaceae (Leersia hexandra Sw.,
Panicum helobium Nees ex Henrard and Paspalum sp.) and Cyperaceae (Cladium
jamaicense Crantz, Rymchospora sp., Cyperus obtusatus (C. Presl.) Mattf. & Kuk., C.
polystachyos Rottb., Eleocharis sp. and Scleria hyrtella Sw.), must to be mentioned
Juncus microcephalus H.B.K. and J. scirpioides Lam. (Juncaceae), Xyris jupicai (L.) C.
Rich. (Xyridaceae), Ludwigia sp. (Onagraceae), Polygonum meissnerianum Cham. &
Schltr. (Polygonaceae), Nymphoides indica (L.) O. Kzl. (Menyanthaceae), Hydrocotyle
bonarienses Lam., Eryngium pandanifolium Cham. & Schltr. and Centella asiatica (L.),
Urban (Apiaceae), Typha domingensis Pers. (Typhaceae), Hygrophila guianensis Nees.
(Acanthaceae), Sphagnum spp. (Sphagnaceae), Symplocos uniflora (Pohl) Benth.
(Symplocaceae), Blechnum brasiliense Desv. (Blechnaceae), Thelypteris interrupta
(Willd.) K. Iwats. (Thelypteridaceae) and Elephantopus molle L. (Asteraceae). Isolated
samples of Erythrina crista-galli L. (Fabaceae) are also found. In the dry herbaceous
stratum, occurs principally Achyrocline satureoides (Lam.) DC. and Baccharis trimera
DC. (Asteraceae), Drosera brevifolia Pursh. (Droseraceae), Cuphea sp. (Lythraceae),
Bromelia antiacantha Bert. (Bromeliaceae), Pavonia astata Cavanilles (Malvaceae) and
Galium latoramosum (Hook. et Arn.) Clos (Verbenaceae),
As a result of the anthropic activity some areas around the swamp present
Eucalyptus spp. (Myrtaceae) and Pinus spp. (Pinaceae) in addition to the extensive
monocultures of Oryza sativa L. (Poaceae), which tend to turn it into a homogeneous
landscape.
6. Discussion and final considerations
6
The Barrier IV, on the Coastal Plain of Rio Grande do Sul, was formed during the
Holocene as a result of a several oscillations of the sea level. The age of 5 Ka (Villwock
& Tomazelli, 1995) is attributed to the highest transgressive event on our coastline.
These events had decreased from the Lower Holocene until its reached the Present
situation.
The palynological groups near the base of the testimony (Fig. 2) suggest the
existence of restricted marine influence in the region of Domingos Petrolini through the
presence of Spiniferites mirabilis (Roosig.) Sarjeant, Operculodinium centrocarpum
(Defl.&Cook) Wall, achritarchs and microforaminiferous theca, in addition to pollen
grains of halophyte herbaceous vegetation like Gomphrena and the AmaranthusChenopodiaceae type. Such organisms reflect systems that may grade from mixohalines
to saline suggesting therefore the existence of a brackish coastal lagoon or even a
marisme system (through the presence of Poaceae pollen, possible representatives of
the Spartina and Paspalum genera). Around the same region, the palynological group
identified the presence of flooded areas due aquatic macrophytes Myriophyllum
aquaticum (Vell.) Verdcourt, Hydrocotyle, T. domingensis Pers., Cyperaceae (typical
family of local swamps), Blechnum type, Phaeoceros laevis (L.) Prosk., that might
represent the innundation plain in this ancient place. Plantago pollen, Baccharis type,
Vernonia type and Poaceae would represent the vegetation of the coastline at that
Epoch. The rare presence of arboreal pollen (Myrsine and Anacardiaceae) as well as
spores of the Marattia type would indicate incipient forest formations in that phase. The
pollen of Podocarpus was also recorded whose arboreal grains might have migrated
from adjacent highlands (Serra do Sudeste) located nearby. A radiochronological dating
by
14
C, at the base of this sequence, showed 4,43 Ka (Neves 1998; Neves &
Bauermann, 2001), also recorded the presence
of marine taxons on sediments of
swampy forests in Capão do Leão, about 10 Km northwest of Domingos Petrolini
swamp.
Possibly due to a negative local oscillation of the sea level, the palynological
groups recorded show a vegetation community basically composed of a continental
origin. There was a slighlty positive oscillation at about 6.5m of depth with the
7
appearance of O. centrocarpum and S. mirabilis. This fact meant the beginning of the
maximum transgressive of the region as high sea conditions returned.
The palynological groups are well represented by marine and halophyte
components at a depth of 6.0m or more (Fig.2). In relation to the pollen of herbaceous
and arboreal elements we have notice a greater diversity, compared to the previous
zones. The presence of aquatic macrophytes as Monteiroa bullata Krap. type,
Polygonum, Senecio type and Osmunda was pointed out as something new. Among
field components were Gnaphalium, Apiaceae, Eryngium, Jungia type, Valeriana,
Borreria and Cerastium-Stellaria type. And arboreal components were Celtis, Palmae
type, Myrtaceae and Alchornea. There were also spores peculiar to the deep forest like
the Dryopteris type. Zygospores of Mougeotia were recorded among algae. The
frequency peak of marine elements occured at 4.75m of depth whose interpolated age
was estimated to be 3,4 Ka. Neves (1998) dated 3,9 Ka the maximun transgressive in
Capão do Leão, a region topographically higher than the Domingos Petrolini swamp.
The end of the direct marine influence over the present-day Domingos Petrolini
swamp corresponded to a depth of 3.0m whose interpolated age indicated 3 Ka. From
then on, no more marine palynomorphs occurred in that region, which meant that a new
regressive event took place in the region. Among the aquatic macrophytes the main
palynomorphs found down were Polygonum, Monteiroa bullata type, Cyperaceae and
Eryngium. The field palynomorphs were represented by Poaceae, Plantago, Baccharis
type, Vernonia type and Senecio type. Among the arboreal
palynomorphs
were
Anacardiaceae and Myrtaceae. Among the spores of pteridophytes were Blechnum
type, Dryopteris type, Cyatheaceae and Osmunda.
The interpretation of palynological data gathered about the Domingos Petrolini
swamp allowed us to demonstrate its evolution under the influence of a transgressive
marine sequence that date 4,4 Ka. The system has graded from a lagoon and/or
marisme into a continental one during high sea phases showing a scarce presence of
palynomorphs. There were signs of a return to salinity at age 3,4 Ka due to the presence
of marine palynomorphs and halophyte vegetation. However, the surrounding vegetation
was already exuberant with herbaceous and arboreal elements possibly as a result of
better climate conditions in the region.
8
From 3,0 Ka on, marine palynomorphs and halophytes did not occur in the same
site anymore. Thus, there was an increase of continental palynomorphs (aquatic
macrophytes, field bushes and arboreal elements) outlining today's landscape. Some
pollen grains from exotic vegetation like Pinus and Eucalyptus occurred in that region
showing forestations which account for the homogeneous condition of the present-day
region.
As for the Domingos Petrolini swamp, no palynological signs were found
concerning the second holocene marine transgression, which was recorded by
Lorscheitter & Dillenburg (1998) in the Tramandai Lagoon for the age 1,8 Ka.
References
Almeida, F. F. M. de Origem e evolução da Plataforma brasileira. Boletim da Divisão de
Geologia e Mineralogia. Rio de Janeiro, 241: 1-36, 1967.
Barth, O. M. Palynomorphs from a Recent soil covered with a Savanna-like vegetation in
Coxiuanã, Pará, Brazilian Amazon. Pesquisas em Geociências. 28(2): 285-301,
2001.
CECO - CENTRO DE ESTUDOS DE GEOLOGIA COSTEIRA E OCEÂNICA. Nota
Explicativa. In: CECO, ed. Atlas geológico da Província Costeira do Rio Grande do
Sul. CECO/DGC, Instituto de Geociências, UFRGS, Porto Alegre, 1984.
Cordazzo, C. V., Seeliger, U. Guia ilustrado da vegetação costeira do extremo sul do
Brasil. Rio Grande, 275p., 1988.
Costa, C. S. B., Irgang, B. E., Peixoto, A. R., Marangoni, J. C. Composição florística das
formações vegetais sobre uma turfeira topotrófica da Planície Costeira do Rio
Grande do Sul., Brasil.Acta Botanica Brasilica, l7(2): 1-9, 2003.
Cuéllar, V. G. I. Sistema de Procesamiento y Graficación de Datos Estratigráficos. Sin
Publicar, Tesis de Licenciatura de la Facultad de Ingeniería de la Universidad
Autónoma de Baja California. Baja California, México. 2003
Faegri, K., Iversen, J. Textbook of pollen analysis. New York, Hafner Press, 295 pp.,
1989.
9
Fontana, R. L. Desenvolvimento Termomecânico da Bacia de Pelotas e Parte Sul da
Plataforma de Florianópolis. In: Raja Gabaglia G. P. & Milani E. J. (Coords.) Origem
e Evolução das Bacias Sedimentares. PETROBRÁS, Rio de Janeiro, p. 377-400,
1990a.
Fontana, R. L. Investigações Geofísicas Preliminares sobre o Cone de Rio Grande,
Bacia de Pelotas - Brasil. Acta Geologica Leopoldensia, 13(30): 161-170, 1990b.
Ghignoni, J. I. Reconhecimento gravimétrico na Bacia de Pelotas. Boletim Técnico da
Petrobrás. 3(2):73-79, 1960.
Irgang, B. E., Gastal Jr., C. V. de S. Macrófitas aquáticas da planície costeira do
RS. Porto Alegre (produção independente), 290 p., 1996.
Lorscheitter, M. L., Dillenburg, S. R. Holocene palaeoenvironments of the Northern
Coastal Plain of Rio Grande do Sul, Brazil. Reconstructed from palynology of
Tramandaí Lagoon sediments. Quaternary of South America and Antarctic
Peninsula, 11: 73-97, 1998.
Neves, P. C. P. das. Palinologia de sedimentos quaternários no Estado do Rio Grande
do Sul, Brasil: Guaíba e Capão do Leão. Curso de Pós-Graduação em
Geociências, Universidade Federal do Rio Grande do Sul. Tese de Doutorado
(inédito), 513p, 1998.
Neves, P. C. P. das, Bauermann, S. G. 2001. Feições de uma mata de restinga em
Capão do Leão, Planície Costeira Sul, Rio Grande do Sul, Brasil. Pesquisas, 51:
73-86, 2001.
Neves, P. C. P. das & Bauermann, S. G. Catálogo palinológico em coberturas
quaternárias do Estado do Rio Grande do Sul (Guaíba e Capão do Leão), Brasil.
Descrições taxonômicas – Parte III: Magnoliophyta (Liliopsida) e Gymnospermae.
Acta Geológica Leopoldensia, 56: 35-45, 2003.
Nimer, E. Climatologia do Brasil. Rio de Janeiro, IBGE, 422 p., 1979.
Seeliger, U., Odbrecht, C., Castello, J. P. Os Ecossistemas Costeiro e Marinho do
Extremo Sul do Brasil. Rio Grande, Ed. Ecoscientia, 326 pp, 1998.
St. John,
10
Tomazelli, L. J., Dillenburg, S. R., Villwock, J. A. Geological evolution of Rio Grande do
Sul Coastal Plain, Southern Brazil. Journal of Coastal Research, V. SI, 39, 2004.
Villwock, J. A., & Tomazelli, L. J. Geologia Costeira do Rio Grande do Sul. Notas
Técnicas, 8: 1-45, 1995.
Waechter, J. L. Comunidades vegetais das restingas do Rio Grande do Sul. Anais, II
Simpósio de Ecossistemas da Costa Sul e Sudeste Brasileira. Águas de Lindóia,
Brasil, 3: 228-248 1990.
Waechter, J. L., Jarenkow, J. A. A composição e estrutura do componente arbóreo nas
matas turfosas do Taím, Rio Grande do Sul, Biotemas, 11(1) 45-69, 1998.
Wildner, W., Lopes, R. da C., & Camozatto, E. Turfa na Província Costeira do Brasil
meridional, do Chuí à Laguna. Anais, XXXV Congresso Brasileiro de Geologia,
Belém, SBG, 6: 2514-2527, 1988.
Table I - Botanical species colected in the Domingos Petolini Swamp region and its habit
______________________________________________________________________
Achyrocline satureoides (Lam.) DC. (Asteraceae)
herbaceous
Allophylus edulis (St. Hil.) Raldk. (Sapindaceae)
arboreous
Baccharis trimera DC. (Asteraceae)
herbaceous
Blechnum brasiliense Desv. (Blechnaceae)
herbaceous
Bromelia antiacantha Bert. (Bromeliaceae)
herbaceous
Buddleja sp. (Buddlejaceae)
shruby
Casearia sylvestris Sw. (Flacourtiaceae)
arboreous
Centella asiatica (L.) Urban (Apiaceae)
herbaceous
Cereus hildmannianus K. Schum (Cactaceae)
arboreous
Citharexylum myrianthum Cham. (Verbenaceae)
arboreous
Cladium jamaicense Crantz (Cyperaceae)
herbaceous
Cupania vernalis Cambess (Sapindaceae)
arboreous
Cuphea sp. (Lythraceae)
herbaceous
Cyperus giganteus Vahl (Cyperaceae)
herbaceous
Cyperus obtusatus (C. Presl.) Mattf. & Kuk. (Cyperaceae)
herbaceous
11
C. polystachyos Rottb. (Cyperaceae)
herbaceous
Daphnopsis racemosa Griseb. (Thymelaeceae)
shruby
Drosera brevifolia Pursh. (Droseraceae)
herbaceous
Eleocharis sp. (Cyperaceae)
herbaceous
Elephantopus molle L. (Asteraceae)
herbaceous
Equisetum giganteum L. (Equisetaceae)
herbaceous
Eryngium pandanifolium Cham. & Schltr. (Apiaceae)
herbaceous
Erythrina crista-galli L. (Fabaceae)
arboreous
Erythroxylum argentinum O. Sch. (Erythroxylaceae)
shrubeous
Eucalyptus spp. (Myrtaceae)
arboreous
Ficus organensis (Miq.) Miq. (Moraceae)
arboreous
Galium latoramosum (Hook. et Arn.) Clos (Verbenaceae)
herbaceous
Gomidesia palustris (DC.) Legr. (Myrtaceae)
shruby
Guettarda uruguensis (Cham. Et Schlecht.) DC. (Rubiaceae)
herbaceous
Hydrocotyle bonarienses Lam. (Apiaceae)
herbaceous
Hygrophila guianensis Nees. (Acanthaceae)
herbaceous
Ilex dumosa Reiss. (Aquifoliaceae)
arboreous
Juncus microcephalus H.B.K. (Juncaceae)
herbaceous
J. scirpioides Lam. (Jucaceae)
herbaceous
Leersia hexandra Sw. (Poaceae)
herbaceous
Lithraea brasiliensis Mart. (Anacardiaceae)
shruby
Ludwigia sp. (Onagraceae)
herbaceous
Nymphoides indica (L.) O. Kzl. (Menyanthaceae)
herbaceous
Ocotea pulchella Mart. (Lauraceae)
shrubeous
Oryza sativa L. (Poaceae)
herbaceous
Panicum helobium Nees ex Henrard (Poaceae)
herbaceous
Paspalum sp. (Poaceae)
herbaceous
Pavonia astata Cavanilles (Malvaceae)
herbaceous
Pinus spp. (Pinaceae)
arboreous
Polygonum meissnerianum Cham. & Schltr. (Polygonaceae)
herbaceous
Psidium cattleyanum Sabine (Myrtaceae)
arboreous
12
Randia armata (Sw.) DC. (Rubiaceae)
herbaceous
Rymchospora sp. (Cyperaceae)
herbaceous
Sapium glandulatum (Vell.) Pax (Euphorbiaceae)
arboreous
Schinus polygamus (Cavanilles) Cabrera (Anacardiaceae)
arboreous
Scleria hyrtella Sw. (Cyperaceae)
herbaceous
Sebastiana brasiliensis Spreng. (Euphobiaceae)
arboreous
Sphagnum spp. (Sphagnaceae)
herbaceous
Styrax leprosus Hook. et Arn. (Styracaceae)
shruby
Syagrus romanzoffiana (Cham.) Glassm. (Arecaceae)
arboreous
Symplocos uniflora (Pohl) Benth. (Symplocaceae)
herbaceous
Thelypteris interrupta (Willd.) K. Iwats. (Thelypteridaceae)
herbaceous
Tibouchina asperior (Cham.) Cogn. (Melastomataceae)
shruby
Typha domingensis Pers. (Typhaceae)
herbaceous
Xyris jupicai (L.) C. Rich. (Xyridaceae)
herbaceous
______________________________________________________________________
13
14