Clique aqui para ler o trabalho na íntegra
Transcrição
Clique aqui para ler o trabalho na íntegra
1 EVIDENCES OF HOLOCENE TRANSGRESSION ON THE DOMINGOS PETROLINI SWAMP, SOUTHERN COASTAL PLAIN, RIO GRANDE DO SUL, BRAZIL Soraia Girardi Bauermann (1) Paulo César Pereira das Neves (1) Marleni Marques-Toigo (2) Abdul Rahman Ashraf (3) (1) Laboratory of Palynology – Lutheran University of Brazil, Canoas/RS, CEP 92.420280, Brazil (2) Institute of Geosciences, Federal University of Rio Grande do Sul, CEP 91501-970, Brazil (in memoriam) (3) Institute of Geosciences, University of Tuebingen, Tuebingen D-72076, Germany Abstract: The Domingos Petrolini Swamp, located on the Southern Coastal Plain of Rio Grande do Sul, near the Rio Grande town, constitutes an ample holocene lagoon deposit. Events related to the holocene transgression and their diverse phases of glacial-eustatic oscillations were found through palynological analysis. Based in palynological data, four distinct phases to the paleoenvironmental evolution of ecosystem were identified. It has also shown a transgressive restricted marine sequence on the base, which suggests the existence of a coastal brackish lagoon or a marisme type of environment. Later, there was a gradation for continentality conditions along with a scarce pollinical record. The third phase is characterized by the presence of marine components and halophyte vegetation, showing another transgressive event in that place. Lastly, the end of direct marine influence over the swamp was recorded and also the vegetation development as it appears these days. Key words: paleoenvironmental, lagoon deposits, holocenic transgression 1. Introduction The Domingos Petrolini Swamp, located on the Southern Coastal Plain of Rio Grande do Sul, belongs to the biological estuary unit of the Patos Lagoon. The estuary environments located in the South consist of approximately 10% of the lagoon system. 2 They are formed by shallow protected coastal bays and by the deep central body of water of the estuary (Bonilha & Asmus, 1994). The high level of rainfall in the region provokes an important amount of silt and clay to move from the drainage basin to the estuary. Due to the low level of hydrodynamic energy of the lagoon body, the material in suspension suffers deposition while it is transported. Sediments of clay and silt are deposited in the shallow embayments of the estuary. On the meridional part of the Pelotas Basin lies the Domingos Petrolini Swamp which represents a vast holocene lagoon plain connected to Barreira IV in the Coastal Plain of the Rio Grande do Sul state (Villwock & Tomazelli, 1995; Tomazelli et al., 2004). These systems may have evolved during the Holocene as a result of the holocenic transgressive activity that occured on the Coastal Plain at about 5 Ka. (Villwock & Tomazelli, 1995). With the purpose of providing data on the evolution of this environment in the Holocene, sediments were radiochronological datings by collected for palynological analysis and two 14 C were set in a testimony located as 64594475; 0318046W – UTM, which reached the depth of 8.17m (Fig. 1). 2. Material and Methods Hiller sampler was utilized to collect samples. A total of 65 samples were extracted and processed according to the techiques used in the Palynology of the Quaternary (Erdtman, 1952, in Faegri & Iversen, 1989). Thin lamina were then produced for the microscopic analysis. The material was analysed and identified through specialized bibliograph (Hooghiemstra, 1984; Neves, 1992, 19958; Colinvaux et al., 1999; Barth, 2001; Neves & Bauermann, 2003) and by comparing it to the pollinical material from the reference palynotheque. For a better understanding of the vegetational phytophysiognomy of the Recent, a preliminary botanic survey was also used to make the lamina. To calculate percentages and plot the data SIPGRADE software was used (Cuéllar, 2003). 3 3. Climatic Aspects The climate of the Coastal Plain of Rio Grande do Sul is considered Mild Superdamp Mesothermic without a specific dry season and isoyetal lines between 1,000 mm and 1,250 mm annualy (Nimer, 1979). The wind system along the region is linked to a high pressure system of Anticyclone South Atlantic (predominantly NE-SW winds). The NE winds which occur mainly between September and April, associated with a high fluvial discharge cause a significant decrease in the salinity of the hydrographic system of the southern part of the Coastal Plain. On the other hand, SW winds which happen mainly between May and October, push the seawater through the Patos Lagoon canal with gusts up to 150 Km to the north. 4. Geological Aspects The Coastal Province of the Rio Grande do Sul is formed by the Crystalline Basement and in part by the Pelotas Basin, a meridional segment to the marginal basins that comprise the Brazilian continental margin (Villwock & Tomazelli, 1995; Tomazelli et al., 2004). The Pelotas Basin (Ghignone, 1960) is a shallow marginal basin (classified as coastal type III C according to St. John et al., 1984) with a sedimentary package of about 14,000 m thick (Fontana, 1990 a,b) composed of clastic terrigenous, transitional and marine sedimentation accumulated mainly in the Cenozoic Era. Its origin is related to the Waldenian Reactivation (Almeida, 1969) that took place in the Mesozoic Era (approximately 130,000 Ka) responsible for the Serra Geral magmatism and the splitting of the Gondwana mega-continent where South-american and African continental masses began to drift, thus beginning the South Atlantic proto-ocean formation and consequently the Pelotas Basin. The Coastal Plain of the Rio Grande do Sul state was structured in a Lagoon/Barrier System (CECO, 1984; Villwock & Tomazelli 1995). These system is an evolutive model based in sedimentary facies. In the local studied occur the Laggoon/Barrier IV, relationship to the last depositional event occurred in the Southern 4 Coastal Plain of the Rio Grande do Sul, during the Lower Holocene (before 5 ka). Consists stratigraphically in Qbd4 and Qbc4 facies (eolian dunes deposits composed by sands of beach and lagoon origin respectively), Qp4 facies (peat bogs lagoon deposits) and Qt (peat bogs). The Domingos Petrolini swamp is located on the southern part of the Coastal Plain of Rio Grande do Sul and consists of a marshy deposit related to parallic peat bogs on the coastline of Rio Grande do Sul (Wildner et al., 1988). Its represented by Qt and Qp4 facies (Villwock, 1984; Villwock & Tomazelli, 1995), as a marshy deposit formed by heterogeneous peats, alternated and mixed with sand and plastic mud with localized diatomic levels. The Qt and Qp4 facies of the site are bordered by Qdr4 facies (dunes resulting from holocene eolian action) and Qbc2 + Qbd2 (dunes and crests of undivided beaches of the Pleistocene). 5. Botanical Aspects The first botanical descriptions of the region were done by traveling naturalists. Recently, studies were carried out about community structures and floristic aspects like the ones performed by Cordazzo & Seeliger (1988), Waechter (1990), Irgang & Gastal Jr. (1996), Seeliger et al., (1998), Waechter & Jarenkow (1998), Costa et al. (2003), among others. The site studied is located in a coastal swamp taken principally by Cyperus giganteus Vahl (Cyperaceae). Near the sample area there are isolated clumps of trees where in the arboreal stratum, could be observed the presence of Cupania vernalis Cambess. and Allophylus edulis (St. Hil.) Raldk. (Sapindaceae), Ficus organensis (Miq.) Miq. (Moraceae), Sebastiana brasiliensis Spreng. and Sapium glandulatum (Vell.) Pax (Euphorbiaceae), Casearia sylvestris Sw. (Flacourtiaceae), Syagrus romanzoffiana (Cham.) Glassm. (Arecaceae), Psidium cattleyanum Sabine (Myrtaceae), Citharexylum myrianthum Cham. (Verbenaceae) and Salix humboldtiana Willd. (Salicaceae), among others. In the shruby stratum where found Guettarda uruguensis (Cham. et Schlecht.) DC. and Randia armata (Sw.) DC. (Rubiaceae), Equisetum giganteum L. (Equisetaceae), Ilex dumosa Reiss. (Aquifoliaceae), Cereus hildmannianus K. Schum, 5 (Cactaceae), Lithraea brasiliensis Mart. and Schinus polygamus (Cavanilles) Cabrera (Anacardiaceae), Daphnopsis racemosa Griseb. (Thymelaeceae), Erythroxylum argentinum O. Sch. (Erytroxylaceae), Ocotea pulchella Mart. (Lauraceae), Gomidesia palustris (DC.) Legr. (Myrtaceae), Eupathorium tremulum Hook. et Arn. (Asteraceae), Buddleja sp. (Buddlejaceae), Tibouchina asperior (Cham.) Cogn. (Melastomataceae) and Styrax leprosus Hook. et Arn. (Styracaceae), among others. In the wet herbaceous stratum, besides Poaceae (Leersia hexandra Sw., Panicum helobium Nees ex Henrard and Paspalum sp.) and Cyperaceae (Cladium jamaicense Crantz, Rymchospora sp., Cyperus obtusatus (C. Presl.) Mattf. & Kuk., C. polystachyos Rottb., Eleocharis sp. and Scleria hyrtella Sw.), must to be mentioned Juncus microcephalus H.B.K. and J. scirpioides Lam. (Juncaceae), Xyris jupicai (L.) C. Rich. (Xyridaceae), Ludwigia sp. (Onagraceae), Polygonum meissnerianum Cham. & Schltr. (Polygonaceae), Nymphoides indica (L.) O. Kzl. (Menyanthaceae), Hydrocotyle bonarienses Lam., Eryngium pandanifolium Cham. & Schltr. and Centella asiatica (L.), Urban (Apiaceae), Typha domingensis Pers. (Typhaceae), Hygrophila guianensis Nees. (Acanthaceae), Sphagnum spp. (Sphagnaceae), Symplocos uniflora (Pohl) Benth. (Symplocaceae), Blechnum brasiliense Desv. (Blechnaceae), Thelypteris interrupta (Willd.) K. Iwats. (Thelypteridaceae) and Elephantopus molle L. (Asteraceae). Isolated samples of Erythrina crista-galli L. (Fabaceae) are also found. In the dry herbaceous stratum, occurs principally Achyrocline satureoides (Lam.) DC. and Baccharis trimera DC. (Asteraceae), Drosera brevifolia Pursh. (Droseraceae), Cuphea sp. (Lythraceae), Bromelia antiacantha Bert. (Bromeliaceae), Pavonia astata Cavanilles (Malvaceae) and Galium latoramosum (Hook. et Arn.) Clos (Verbenaceae), As a result of the anthropic activity some areas around the swamp present Eucalyptus spp. (Myrtaceae) and Pinus spp. (Pinaceae) in addition to the extensive monocultures of Oryza sativa L. (Poaceae), which tend to turn it into a homogeneous landscape. 6. Discussion and final considerations 6 The Barrier IV, on the Coastal Plain of Rio Grande do Sul, was formed during the Holocene as a result of a several oscillations of the sea level. The age of 5 Ka (Villwock & Tomazelli, 1995) is attributed to the highest transgressive event on our coastline. These events had decreased from the Lower Holocene until its reached the Present situation. The palynological groups near the base of the testimony (Fig. 2) suggest the existence of restricted marine influence in the region of Domingos Petrolini through the presence of Spiniferites mirabilis (Roosig.) Sarjeant, Operculodinium centrocarpum (Defl.&Cook) Wall, achritarchs and microforaminiferous theca, in addition to pollen grains of halophyte herbaceous vegetation like Gomphrena and the AmaranthusChenopodiaceae type. Such organisms reflect systems that may grade from mixohalines to saline suggesting therefore the existence of a brackish coastal lagoon or even a marisme system (through the presence of Poaceae pollen, possible representatives of the Spartina and Paspalum genera). Around the same region, the palynological group identified the presence of flooded areas due aquatic macrophytes Myriophyllum aquaticum (Vell.) Verdcourt, Hydrocotyle, T. domingensis Pers., Cyperaceae (typical family of local swamps), Blechnum type, Phaeoceros laevis (L.) Prosk., that might represent the innundation plain in this ancient place. Plantago pollen, Baccharis type, Vernonia type and Poaceae would represent the vegetation of the coastline at that Epoch. The rare presence of arboreal pollen (Myrsine and Anacardiaceae) as well as spores of the Marattia type would indicate incipient forest formations in that phase. The pollen of Podocarpus was also recorded whose arboreal grains might have migrated from adjacent highlands (Serra do Sudeste) located nearby. A radiochronological dating by 14 C, at the base of this sequence, showed 4,43 Ka (Neves 1998; Neves & Bauermann, 2001), also recorded the presence of marine taxons on sediments of swampy forests in Capão do Leão, about 10 Km northwest of Domingos Petrolini swamp. Possibly due to a negative local oscillation of the sea level, the palynological groups recorded show a vegetation community basically composed of a continental origin. There was a slighlty positive oscillation at about 6.5m of depth with the 7 appearance of O. centrocarpum and S. mirabilis. This fact meant the beginning of the maximum transgressive of the region as high sea conditions returned. The palynological groups are well represented by marine and halophyte components at a depth of 6.0m or more (Fig.2). In relation to the pollen of herbaceous and arboreal elements we have notice a greater diversity, compared to the previous zones. The presence of aquatic macrophytes as Monteiroa bullata Krap. type, Polygonum, Senecio type and Osmunda was pointed out as something new. Among field components were Gnaphalium, Apiaceae, Eryngium, Jungia type, Valeriana, Borreria and Cerastium-Stellaria type. And arboreal components were Celtis, Palmae type, Myrtaceae and Alchornea. There were also spores peculiar to the deep forest like the Dryopteris type. Zygospores of Mougeotia were recorded among algae. The frequency peak of marine elements occured at 4.75m of depth whose interpolated age was estimated to be 3,4 Ka. Neves (1998) dated 3,9 Ka the maximun transgressive in Capão do Leão, a region topographically higher than the Domingos Petrolini swamp. The end of the direct marine influence over the present-day Domingos Petrolini swamp corresponded to a depth of 3.0m whose interpolated age indicated 3 Ka. From then on, no more marine palynomorphs occurred in that region, which meant that a new regressive event took place in the region. Among the aquatic macrophytes the main palynomorphs found down were Polygonum, Monteiroa bullata type, Cyperaceae and Eryngium. The field palynomorphs were represented by Poaceae, Plantago, Baccharis type, Vernonia type and Senecio type. Among the arboreal palynomorphs were Anacardiaceae and Myrtaceae. Among the spores of pteridophytes were Blechnum type, Dryopteris type, Cyatheaceae and Osmunda. The interpretation of palynological data gathered about the Domingos Petrolini swamp allowed us to demonstrate its evolution under the influence of a transgressive marine sequence that date 4,4 Ka. The system has graded from a lagoon and/or marisme into a continental one during high sea phases showing a scarce presence of palynomorphs. There were signs of a return to salinity at age 3,4 Ka due to the presence of marine palynomorphs and halophyte vegetation. However, the surrounding vegetation was already exuberant with herbaceous and arboreal elements possibly as a result of better climate conditions in the region. 8 From 3,0 Ka on, marine palynomorphs and halophytes did not occur in the same site anymore. Thus, there was an increase of continental palynomorphs (aquatic macrophytes, field bushes and arboreal elements) outlining today's landscape. Some pollen grains from exotic vegetation like Pinus and Eucalyptus occurred in that region showing forestations which account for the homogeneous condition of the present-day region. As for the Domingos Petrolini swamp, no palynological signs were found concerning the second holocene marine transgression, which was recorded by Lorscheitter & Dillenburg (1998) in the Tramandai Lagoon for the age 1,8 Ka. References Almeida, F. F. M. de Origem e evolução da Plataforma brasileira. Boletim da Divisão de Geologia e Mineralogia. Rio de Janeiro, 241: 1-36, 1967. Barth, O. M. Palynomorphs from a Recent soil covered with a Savanna-like vegetation in Coxiuanã, Pará, Brazilian Amazon. Pesquisas em Geociências. 28(2): 285-301, 2001. CECO - CENTRO DE ESTUDOS DE GEOLOGIA COSTEIRA E OCEÂNICA. Nota Explicativa. In: CECO, ed. Atlas geológico da Província Costeira do Rio Grande do Sul. CECO/DGC, Instituto de Geociências, UFRGS, Porto Alegre, 1984. Cordazzo, C. V., Seeliger, U. Guia ilustrado da vegetação costeira do extremo sul do Brasil. Rio Grande, 275p., 1988. Costa, C. S. B., Irgang, B. E., Peixoto, A. R., Marangoni, J. C. Composição florística das formações vegetais sobre uma turfeira topotrófica da Planície Costeira do Rio Grande do Sul., Brasil.Acta Botanica Brasilica, l7(2): 1-9, 2003. Cuéllar, V. G. I. Sistema de Procesamiento y Graficación de Datos Estratigráficos. Sin Publicar, Tesis de Licenciatura de la Facultad de Ingeniería de la Universidad Autónoma de Baja California. Baja California, México. 2003 Faegri, K., Iversen, J. Textbook of pollen analysis. New York, Hafner Press, 295 pp., 1989. 9 Fontana, R. L. Desenvolvimento Termomecânico da Bacia de Pelotas e Parte Sul da Plataforma de Florianópolis. In: Raja Gabaglia G. P. & Milani E. J. (Coords.) Origem e Evolução das Bacias Sedimentares. PETROBRÁS, Rio de Janeiro, p. 377-400, 1990a. Fontana, R. L. Investigações Geofísicas Preliminares sobre o Cone de Rio Grande, Bacia de Pelotas - Brasil. Acta Geologica Leopoldensia, 13(30): 161-170, 1990b. Ghignoni, J. I. Reconhecimento gravimétrico na Bacia de Pelotas. Boletim Técnico da Petrobrás. 3(2):73-79, 1960. Irgang, B. E., Gastal Jr., C. V. de S. Macrófitas aquáticas da planície costeira do RS. Porto Alegre (produção independente), 290 p., 1996. Lorscheitter, M. L., Dillenburg, S. R. Holocene palaeoenvironments of the Northern Coastal Plain of Rio Grande do Sul, Brazil. Reconstructed from palynology of Tramandaí Lagoon sediments. Quaternary of South America and Antarctic Peninsula, 11: 73-97, 1998. Neves, P. C. P. das. Palinologia de sedimentos quaternários no Estado do Rio Grande do Sul, Brasil: Guaíba e Capão do Leão. Curso de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul. Tese de Doutorado (inédito), 513p, 1998. Neves, P. C. P. das, Bauermann, S. G. 2001. Feições de uma mata de restinga em Capão do Leão, Planície Costeira Sul, Rio Grande do Sul, Brasil. Pesquisas, 51: 73-86, 2001. Neves, P. C. P. das & Bauermann, S. G. Catálogo palinológico em coberturas quaternárias do Estado do Rio Grande do Sul (Guaíba e Capão do Leão), Brasil. Descrições taxonômicas – Parte III: Magnoliophyta (Liliopsida) e Gymnospermae. Acta Geológica Leopoldensia, 56: 35-45, 2003. Nimer, E. Climatologia do Brasil. Rio de Janeiro, IBGE, 422 p., 1979. Seeliger, U., Odbrecht, C., Castello, J. P. Os Ecossistemas Costeiro e Marinho do Extremo Sul do Brasil. Rio Grande, Ed. Ecoscientia, 326 pp, 1998. St. John, 10 Tomazelli, L. J., Dillenburg, S. R., Villwock, J. A. Geological evolution of Rio Grande do Sul Coastal Plain, Southern Brazil. Journal of Coastal Research, V. SI, 39, 2004. Villwock, J. A., & Tomazelli, L. J. Geologia Costeira do Rio Grande do Sul. Notas Técnicas, 8: 1-45, 1995. Waechter, J. L. Comunidades vegetais das restingas do Rio Grande do Sul. Anais, II Simpósio de Ecossistemas da Costa Sul e Sudeste Brasileira. Águas de Lindóia, Brasil, 3: 228-248 1990. Waechter, J. L., Jarenkow, J. A. A composição e estrutura do componente arbóreo nas matas turfosas do Taím, Rio Grande do Sul, Biotemas, 11(1) 45-69, 1998. Wildner, W., Lopes, R. da C., & Camozatto, E. Turfa na Província Costeira do Brasil meridional, do Chuí à Laguna. Anais, XXXV Congresso Brasileiro de Geologia, Belém, SBG, 6: 2514-2527, 1988. Table I - Botanical species colected in the Domingos Petolini Swamp region and its habit ______________________________________________________________________ Achyrocline satureoides (Lam.) DC. (Asteraceae) herbaceous Allophylus edulis (St. Hil.) Raldk. (Sapindaceae) arboreous Baccharis trimera DC. (Asteraceae) herbaceous Blechnum brasiliense Desv. (Blechnaceae) herbaceous Bromelia antiacantha Bert. (Bromeliaceae) herbaceous Buddleja sp. (Buddlejaceae) shruby Casearia sylvestris Sw. (Flacourtiaceae) arboreous Centella asiatica (L.) Urban (Apiaceae) herbaceous Cereus hildmannianus K. Schum (Cactaceae) arboreous Citharexylum myrianthum Cham. (Verbenaceae) arboreous Cladium jamaicense Crantz (Cyperaceae) herbaceous Cupania vernalis Cambess (Sapindaceae) arboreous Cuphea sp. (Lythraceae) herbaceous Cyperus giganteus Vahl (Cyperaceae) herbaceous Cyperus obtusatus (C. Presl.) Mattf. & Kuk. (Cyperaceae) herbaceous 11 C. polystachyos Rottb. (Cyperaceae) herbaceous Daphnopsis racemosa Griseb. (Thymelaeceae) shruby Drosera brevifolia Pursh. (Droseraceae) herbaceous Eleocharis sp. (Cyperaceae) herbaceous Elephantopus molle L. (Asteraceae) herbaceous Equisetum giganteum L. (Equisetaceae) herbaceous Eryngium pandanifolium Cham. & Schltr. (Apiaceae) herbaceous Erythrina crista-galli L. (Fabaceae) arboreous Erythroxylum argentinum O. Sch. (Erythroxylaceae) shrubeous Eucalyptus spp. (Myrtaceae) arboreous Ficus organensis (Miq.) Miq. (Moraceae) arboreous Galium latoramosum (Hook. et Arn.) Clos (Verbenaceae) herbaceous Gomidesia palustris (DC.) Legr. (Myrtaceae) shruby Guettarda uruguensis (Cham. Et Schlecht.) DC. (Rubiaceae) herbaceous Hydrocotyle bonarienses Lam. (Apiaceae) herbaceous Hygrophila guianensis Nees. (Acanthaceae) herbaceous Ilex dumosa Reiss. (Aquifoliaceae) arboreous Juncus microcephalus H.B.K. (Juncaceae) herbaceous J. scirpioides Lam. (Jucaceae) herbaceous Leersia hexandra Sw. (Poaceae) herbaceous Lithraea brasiliensis Mart. (Anacardiaceae) shruby Ludwigia sp. (Onagraceae) herbaceous Nymphoides indica (L.) O. Kzl. (Menyanthaceae) herbaceous Ocotea pulchella Mart. (Lauraceae) shrubeous Oryza sativa L. (Poaceae) herbaceous Panicum helobium Nees ex Henrard (Poaceae) herbaceous Paspalum sp. (Poaceae) herbaceous Pavonia astata Cavanilles (Malvaceae) herbaceous Pinus spp. (Pinaceae) arboreous Polygonum meissnerianum Cham. & Schltr. (Polygonaceae) herbaceous Psidium cattleyanum Sabine (Myrtaceae) arboreous 12 Randia armata (Sw.) DC. (Rubiaceae) herbaceous Rymchospora sp. (Cyperaceae) herbaceous Sapium glandulatum (Vell.) Pax (Euphorbiaceae) arboreous Schinus polygamus (Cavanilles) Cabrera (Anacardiaceae) arboreous Scleria hyrtella Sw. (Cyperaceae) herbaceous Sebastiana brasiliensis Spreng. (Euphobiaceae) arboreous Sphagnum spp. (Sphagnaceae) herbaceous Styrax leprosus Hook. et Arn. (Styracaceae) shruby Syagrus romanzoffiana (Cham.) Glassm. (Arecaceae) arboreous Symplocos uniflora (Pohl) Benth. (Symplocaceae) herbaceous Thelypteris interrupta (Willd.) K. Iwats. (Thelypteridaceae) herbaceous Tibouchina asperior (Cham.) Cogn. (Melastomataceae) shruby Typha domingensis Pers. (Typhaceae) herbaceous Xyris jupicai (L.) C. Rich. (Xyridaceae) herbaceous ______________________________________________________________________ 13 14
Documentos relacionados
11268 - Interior Revista Chilena de Antropología Nº29.indd
of its fossils (Furon 1969). Therefore, recovering information about species composition in the past is an important contribution of zooarchaeological studies to biodiversity knowledge (Tchernov 19...
Leia mais