GIF , HTR
Transcrição
GIF , HTR
GIF , HTR Prof. Wolfgang Kröger ((http://www.riskcenter.ethz.ch, p , [email protected]) g @ ) Generation IV Initiative – Aims (1/2) Nuclear energy-systems including fuel cycles of the 4th generation should ... SR-1 ... be excellent regarding g g safety y and reliability y while in operation. SR-2 ... have very low core damage frequency and little consequences. consequences SR-3 ... eliminate the need for emergency planning outside of the plant. p EC-1 ... clear lifecycle-cost advantages over other energy sources. EC-2 ... comparable financial risk to other energy projects. Spring 2012 / Prof. W. Kröger Safety of Nuclear Power Plants 2 Generation IV Initiative – Aims (2/2) Nuclear energy energy-systems systems including fuel cycles of the 4th generation should ... SU-l ... produce sustainable energy, following regulations for air pollution prevention and enhancing the long term availability of the system and efficient usage of fuel. SU-2 ... minimise the nuclear waste and disposing it, especially they will reduce administration efforts on a long term scale and hence improve the protection of health and environment environment. SU-3 ... increase the certainty that they are an undesirable and difficult source to obtain dangerous materials for usage in weapons. Spring 2012 / Prof. W. Kröger Safety of Nuclear Power Plants 3 Selected Generation IV Concepts (out of 21) GEN IV Concepts Sodium Cooled Fast L d All Lead Alloy-Cooled C l d Gas-Cooled Fast Very High Temperature Supercritical Water Cooled Molten Salt Spring 2012 / Prof. W. Kröger Acronym Spectrum Fuel cycle Pressure SFR LFR GFR VHTR SCWR MSR Fast F t Fast Fast Thermal Th.&Fast Thermal Closed Cl Closed d Closed Once-Through Once/Closed Closed Safety of Nuclear Power Plants Temperature [°C] 530-550 550 800 550-800 490-850 640-1000 280-510 280 510 565-850 [bar] 1 1 90 70 250 <5 4 VHTR - Technology gaps Process-specific R&D gaps exist to adapt the chemical process and the nuclear heat source Qualification of high-temperature alloys and coatings. Performance issues include development of a highperformance helium turbine. Modularization of the reactor and heat utilization systems is another challenge for commercial deployment of the VHTR. Spring 2012 / Prof. W. Kröger Safety of Nuclear Power Plants 5 Concept of a modular HTR (1/3) Fuel element and restraining the fission products up to 1600°C Fuel element SiC coating Graphite 10,000 to 20,000 coated particles Spring 2012 / Prof. W. Kröger Safety of Nuclear Power Plants 6 Concept of a modular HTR (2/3) 15 11 feedwater 12 5 steam 10 9 2 3 8 1 7 to the filter G 13 16 Spring 2012 / Prof. W. Kröger M 4 6 Thermal power 300MW Circular core Pre-stressed primary loop as an burst prove inclusion Interior concrete cell with a limitation on air amount Underground U d d arrangementt off th the reactor building Use of the primary loop to steam production, gas turbines and process heat applications (with inbetween heat exchanger) 14 Safety of Nuclear Power Plants 7 Concept of a modular HTR (3/3) Underground arrangement of the reactor 18 20 15 0 0 19 12 11 5 10 Speisewasser 9 3 Frischdampf 8 2 7 17 1 G 14 M 16 Spring 2012 / Prof. W. Kröger 13 4 Safety of Nuclear Power Plants 6 8 Accident behaviour of a modular HTR (1/10) Accident assumptions internal Causes • Full loss of coolant • Full loss of the active residual heat removal • Massive water ingress into the primary system • Massive air ingress into the primary system external Causes external causes (beyond licensing) • Crash of a plane (Phantom) • Terrorist attacks with planes (Boeing 747) • Gas cloud explosion • Sabotage • Earthquake (b < 0,3 g) • Impacts of war (missiles) • Fire • Extreme earthquakes (b > 0,3 g) • Tornados, hurricanes and floods • Meteorites • Extreme reactivity disturbances • Massive damage of reactor components Spring 2012 Prof. W. Kröger Safety of Nuclear Power Plants 9 Accident behaviour of a modular HTR (2/10) Stabilitätsprinzip nichtschmelzbare Brennelemente und Corestrukturen nukleare Stabilität selbsttätige Begrenzung von nuklearer Leistung und Brennstofftemperaturen thermische Stabilität selbsttätige Nachwärmeabfuhr aus dem Reaktorsystem chemische Stabilität selbsttätiger g Schutz gegen Korrosion mechanische Stabilität Spring 2012 / Prof. W. Kröger Wirkung selbsttätiger Schutz gegen mechanische C Corezerstörung tö Requirements for a non melting inherent safe modular HTR Fulfilment of the principles for all accidents id t d due tto iinternal t l and d foreseeable external cause (requirements from licensing) Fulfilment of the principles for all accidents including unforeseeable occurrences such as terrorist attacks or extreme earthquakes Accident behaviour of a modular HTR (3/10) Automatic removal of the residual heat in the case of failing of all active heat removal (for example: PBMR, additionally the total failure of the first shut down system was assumed) max T Brennst. (°C) 1600 1400 1200 1000 800 max 600 TBrennst. 400 TBrennst. Brennst 200 0 Zeit (h) 0 20 Spring 2012 / Prof. W. Kröger 40 60 80 100 120 Fuel elements can never melt Maximum fuel temperature remains below 1600°C Most fuel elements stayy far below this temperature Total fission product release stays below 10-5 of the inventory Accident behaviour of a modular HTR (4/10) Biological g analogue g for the automatic residual heat removal and limitation of accident temperature Tmax < 1600 °C C QN Tw Tmax < 38 °C < 400 °C QN a A ( Tw - Tu) Q Tmax - To QN /H 4c Tmax QN 600 kW To Tw Tu Spring 2012 / Prof. W. Kröger Safety of Nuclear Power Plants < 37 °C Q a A ( To - Tu) Tmax - To Q/H 4 i Tmax (entspricht der Nachwärme eines Cores mit Pth = 300 MW nach etwa 30 h ) To To Tu Q 60 W (entspricht der Wärmeabgabe eines Menschen unter “normalen” Bedingungen) 12 Accident behaviour of a modular HTR (5/10) New safety requirements for nuclear technology 105 t K (t) 1,1 10 4 t zukünftige Annahmen Flamment temperatur t (°C) max 1200 °C max. C zukünftige Annahmen heutige Annahmen heutige Annahmen 800 °C t Schutz der Gebäude gegen Penetration und Zerstörung Spring 2012/ Prof. W. Kröger 0 30 min 2h t Schutz gegen langandauernde Flammeneinwirkungen mit hohen Temperaturen bei Kerosinbrand Safety of Nuclear Power Plants 13 Accident behaviour of a modular HTR (6/10) Reaktor Bauschutt (mit Isolationswirkung) T (°C) 1500 Core (maximum) 1000 Reaktordruckbehälter 500 Behälter zu 60% isoliert B hält zu 99% iisoliert Behälter li t 0 0 20 40 60 80 100 120 140 160 180 200 220 240 Zeit (h) Spring 2012 / Prof. W. Kröger Automatic removal of the residual h t after heat ft the th destruction d t ti off the th reactor building (for example caused by an extreme earthquake or a plane l crash h caused db by tterrorists) i t ) Reactor totallyy covered with rumble Residual heat is still removed automatically, au o a ca y, but bu sslowed o ed do down Maximum fuel temperature stays below 1600°C Total fission product release stays below 10-5 of the inventory Safety of Nuclear Power Plants 14 Accident behaviour of a modular HTR (7/10) P/PO 6000 (%) 0.1 s 1.0 s 4000 Leistung des Reaktors 10 0 s 10.0 2000 t/s 0 0 10 20 Strongly negative temperature coefficient ends the excursion Transient heat is quickly and for the most part stored in the ffuel el element graphite Maximum fuel temperature stays b l below 1600°C TB 1300 (°C) 1200 1100 0.1 s 1000 1.0 s 10.0 s 900 Brennelementtemperatur 800 Automatic limitation of nuclear power and fuel temperature when faced with extreme reactivity transient (total loss of the first shut down system: ρ = 1,2 % in a short period of time) 700 t/s 0 Spring 2012 / Prof. W. Kröger 10 20 Safety of Nuclear Power Plants 15 Accident behaviour of a modular HTR (8/10) Concepts for minimising the consequences of an air ingress accident: Vluft 5000m3 Granulat 6 8 1 2 4 5 3 7 1) Internal concrete cell (sealed against outside air) 2)) Reactor building g 3) Draining channel 4) Sealing flaps (gravity) 5) Sealing plug 6)) G Granulate silo 7) Filter 8) Flue Spring 2012 / Prof. W. Kröger Draining the primary Helium g p pipes p over a filter through Automatic limitation on the amount of air within the concrete cell (V < 5000 m3) by automatic closing mechanisms (flaps and pouring granulate) Limitation of possible graphite g C and corrosion to < 500 kg therefore no radiological consequences Limitation of possible graphite corrosion to < 100 kg by simple intervention methods (protection of investment) Safety of Nuclear Power Plants 16 Accident behaviour of a modular HTR (9/10) Begrenzung der Menge an Luft Begrenzung der Mengenrate an Luft Verhine derung der Korrosion von Brennelementen Volumen der inneren Betonzelle ist begrenzt (<5000m³) Vorgespannter ReaktorReaktor druckbehälter mit kleinen Öffnungen Korrosionsbeständige SiC-beschichtete Brennelemente nach erfolgter Druckentlastung schließt eine Klappe oder ein Granulatvorrat den Kanal ab Berst-Schutz für di B die Behälter hält innere Betonzelle ist mit Inergas gefüllt innere Betonzelle wird mit Inertgas gefüllt Spring 2012 / Prof. W. Kröger Intervention in innerer Betonzelle Safety of Nuclear Power Plants 17 Accident behaviour of a modular HTR (10/10) Comparison of the fuel behaviour after loss of the active residual heat removal. PWR 5 ~ HTR Brennstofftemperatur TB (°C) 1Ci ~< Partikel Tmelt = 2850 °C 10 Ci Brennstab Zr ZrCanning 0 S Brennstofft temperatur t <1600 °C UO2-Kern TC ~ 600°C UO2Tablette TB C 1h SiC t Schäden an den B Brennelementen l t 30 h t C C Matrix S Schäden an den Brennelementen 1 -5 10 1h Spring 2012 / Prof. W. Kröger t 30 h Safety of Nuclear Power Plants t 18 Total Assessment of Safety (1/2) Integral proof of safety behaviour elektrische Widerstandsheizung Spring 2012 / Prof. W. Kröger Simulation of the residual heat in a graphite-sphere-pile hit h il b by electrical l ti l resistance heating. (~ 2 MW for a 300 MWth - Core) Analysis of all assumable accidents (total loss of coolant, air ingress, water ingress, pressure discharge, mechanical impacts on the elements of the shut down system, component damage when pressure relief) Validation of all calculating programs for extreme accidents (heat transfer throughout all structures, flow phenomena, acts of pressure discharge). Safety of Nuclear Power Plants 19 Total Assessment of Safety (2/2) Fuel elements can never melt; there is no heating up of the fuel elements to a temperature above 1600°C The principal of automatic residual heat removal can never fail, even after the destruction of the reactor building it stays intact. Th reactor The t would ld even stay t resistant i t t against i t extreme t reactivity ti it transient. t i t There is no temperature raise of the fuel elements to above 1600°C The pre-stressed reactor containment can not burst; It is impossible that an unacceptable p amount of air enters the p primary y loop, p g graphite p corrosion is minimal. The ingress of larger amounts of water into the primary loop will not lead to unacceptable states of the reactor; in the case of gas turbines operating this accident is not applicable. Against extreme, in future even more severe external impacts, the underground way of building with covering mound, and fast removal of spherical fuel elements as protection Th There iis no accident id t iin which hi h case a significant i ifi t amountt off radiation di ti iis released l d Spring 2012/ Prof. W. Kröger Safety of Nuclear Power Plants 20