MAMs - bfb
Transcrição
MAMs - bfb
Technical Criteria to Evaluate Mitochondria-ER Contact Sites (MAMs) Giovanna Cenini (AG Voos) Bonn 27.07.2016 ructure of ER Membrane-Contact Sites (MCSs) Plasma membrane s and Voeltz 2016, Nature Reviews Mitochondria-ER Contact Sites: MAMs Mitochondrion Giorgi et al 2015, Antiox & Redox Sign MAMs: Not Just Structural Issue, But Also Function!!! Lipid-biosynthesis - Synthesis of PtdEt out of PtdSer in the mitochondrial membrane - Lipid Transport occurs non-vesicular Apoptosis - Calcium reaching a cytotoxic concentration caspases Destruction of the Cell Release of cytochrome C Activation of Regulation of mitochondrial fission - ER forms tubules, that wrap around mitochondria and determine the fission site Calcium Transfer - Activation of enzymes of the citric acid cycle - Via IP3 signaling Vance 2014, BBA Review MAMs: Role in Alzheimer Disease (AD) Gomez and Schon, 2016 MAMs: Not just Membranes, but also Protein Complexe Phillips and Voeltz 2016, Nature Reviews MAMs Complexes: VAPB-PTPIP51 • VAPB: Vesicle associated membrane protein-associated protein • VAPB is ER membrane protein • Mutation of VAPB causes ALS-type 8 • PTPIP51: Protein tyrosine phosphatase-interacting protein 5 • PTIPIP51 is mitochondrial OM protein PTPIP51-VAPB interaction regulates Calcium homeostasis MAMs: Technical Approaches 1. Microscopy Immunofluorescence Density gradient + Western Blot 2. Biochemical and Analytical Methods Density gradient + Quantitative Mass Spectrometry MAMs: Microscopy Approach • Morphology of ER, mitochondria and MAM 1. Transfection HeLa cells with VAPB or PTPIP51 or VAPB+PTPIP51DNA for 24h 2. Primary Antibodie: F1b (mitochondrial marker) and VAPB (ER marker) 3. Secondary Antibody (Alexa488; Cy3) 4. Fluorescence Microscopy • Overexpression MAM markers to stabilize ER-Mitochondria contacts Morphology of Mitochondria and ER β - Mitochondria Sfl AMG Microscope (AG Voos) α-VAPB - ER Morphology of Mitochondria and ER β - Mitochondria can Zeiss Confocal Microscope α-VAPB - ER β PIP51 PB Sfl AMG Microscope (AG Voos) MAMs Detection α-VAPB ovPTPIP51 + VAPB Another way to visualize MAMs: Scatter Plot TPIP51+VAPB can Zeiss Confocal Microscope MAMs Morphology α α-F1β ovPTPIP51+VAPB ovPTPIP51+VAPB an Zeiss Confocal Microscope AG Voos Microscopy Criteria to Detected MAMs 1. Stabilization of MAMs trough overexpression of MAMs components 2. Co-localization of mitochondria-ER components 3. Change of morphology of ER and mitochondria 4. Linear distribution on a Scatter Plot Principle Behind Density Gradients Taken from Cells, A laboratory Manual. Spector, Goldaman, & Leinwand MAMs: Biochemical and Analytical protocol Percoll Gradient: Western Blot results -1Mouse Liver Mouse Embryonic Fibroblast (MEF) Nature/Vance Protocol 2009 = MAM marker Nature/Vance Protocol performed in University of Fer in 2013 Percoll Gradient: Western Blot Results -2Mouse Liver Mitochondria Markers MAMs Markers PDI Grp75 Pure MAM ER Crude Pure HeLa SY5Y Mito Mito Crude Mouse Brain Mito Mito MAM Pure Crude MAM Crude Pure MAM ER 57,1 KDA 75 kDa IP3R 308 kDa VDAC 32 kDa Type1 Tom 40 40 kDa Tim 23 23 kDa Percoll Gradient: Quantitative Mass Spectrometry iver and Brain Mouse Ca.1700 proteins identified Comparison with MAMs markers of literature MS Identified Molecular chaperones Calnexin MS MAM Identified Enriched bolic Enzymes oA: Cholesterol acyltransferase (ACAT) glycerol acyltransferase 2 (DGAT2) o-6-phosphatase chain fatty acid-CoA ligase type 4 (FACL4) chain fatty acid-CoA ligase type 1 (FACL1) hotidylserine synthase -1, -2 (PSS-1, PSS-2) KB) ✔ ✔ ✗ ✗ ✔ ✔ PSS-1 ✔ ✗ ✔ liver ✗ ✗ ✗ ✔ liver ✗ dine Receptors endoplasmic reticulum Ca2+ -ATPase (SERCA) /BiP ERp57 Grp75/Mortalin-2 ✔ liver ✗ ✔ ✗ ✔ liver ✗ ✔ ✗ S-100 protein S100B Ubiquitin Ligase MET30 E3 ubiquitin ligase Autocrine motility factor receptor (AMFR) Phosphoacidic cluster sorting protein (PACS-2) ✔ ✔ ✔ ✗ ✗ ✔ ✗ ✗ ✔ brain ✔ liver ✗ ✗ ✔ ✗ ✔ ✔ ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✗ ✗ ✗ Electron transport chain protein Cytochrome c Mitochondrial Fission proteins ✗ ✗ Mitofusin 2 Dynamin-related protein 1 (DRP1) Others cular chaperones -1 Receptor Calreticulin ERp44 ✔ ✗ Vesicular-sorting protein channel or transporter ceptors MAM Enriche ✗ ✔ ✗ ✔ liver Voltage-dependent anion channel 1 (VDAC1) Voltage-dependent anion channel 2 (VDAC2) Voltage-dependent anion channel 3 (VDAC3) MAMs Isolation through Percoll gradient No reproducibility all the tested samples MAMs Literature Markers missing Is the Percoll highest ring really MAMs fraction?? Sucrose gradient MAMs Isolation: Sucrose Gradient Protocol 1 Isolation of HeLa mitochondria through manual pottering and differential centrifugation steps Sucrose density gradient 20-35% UZ 1h 33000 RPM 4° C 2 3 4 5 6 7 8 Grp78 VAPB PTPIP51 Tim23 3. Fractionation and TCA 72% precipitation 4. SDS-PAGE and Wester blot 5. Immunodecoration for ER marker (Grp78-Lumen); Mitochondria marker (Tim23-IM); MAM Markers (PTPIP51-VAPB) Expected results: • ER-Mitochondria (non-MAM) marke in different fractions • PTPIP51-VAPB MAM Markers in th SAME fractions Percoll vs Sucrose Gradient Percoll Sucrose Colloidal silica Advantages l Disadvantages l • • • • • • Lowerosmolarity Fastprepara0on Con0nuous Disaccharide • • • NoTCAprecipita0on • Requiresmore star0ngmaterial • Interferenceofgel • running TCAprecipita0on Requiresless star0ngmaterial Smallgradients: fasterandeffec0ve Prepara0ontheday before Pronetovaria0ons Highviscosity 3.2 Results Percoll vs Sucrose Gradient Results ated crude Mitochondria from HeLa cells by pottering GRP78 ER Lumen ER n ER PTPIP51 Mito OM Mitochondria MAM???? MAM??? VAPB ER Membr. ER . ER Mitochondria Tim23 Mito IM Mitochondria 30% 0% ll o c r e P 20% se o r c u S MAMs Isolation: Sucrose Gradient + Digitonin Isolation of HeLa mitochondria through digitonin (0.005%) and differential centrifugation steps Sucrose density gradient 20-35% UZ 1h 33000 RPM 4° C Fractionation and TCA 72% precipitation SDS-PAGE and Wester blot Triton % Digitonin% 0.5 0.1 0.05 0.5 0.1 0.05 0.01 0.5 0.1 0.005 0.001 0.5 0.1 0.005 0.001 mmunodecoration for ER marker (Grp78-Lumen); ochondria marker (Tim23-IM); MAM Markers (PTPIP51PB) M G T Supernatant Pellet MAMs: Digitonin 0.005% vs Pottering Pottering ER Lumen Digitoning 0.005% PTPIP51 GRP78 ER Mito OM Mitochondria MAM? Tim23 VAPB MAM? ER ER Mitochondria 50 Mitochondria 35% 20% e s o r c Su 20% se o r c u S • Isolated Mitochondria from HeLa cells MAMs: Destruction Salt Treatment (2M NaCl) washing • Destroy ionic interaction • Wash away the ribosomes • Wash away the ribosomes Puromycin Treatment Protein K digestion • Digestion of outer membrane proteins • Digestion protein-protein interaction ated crude Mitochondria from HeLa cells by pottering + ER - MAM? ER ER PTPIP51 Mito OM ER GRP78 ER Lumen MAMs Destabilization through High Salt Concentration + VAPB ER Membr. - MAM? + 30% 0% Tim23 Mito IM Mitochondria Mitochondria 35 ll Perco ted crude Mitochondria from HeLa cells by pottering 20% e s o r c Su MAMs: Quantification of Sucrose Gradient Fractions ER + Mitochondria Intensity Intensity fraction/Max Intensity Intensity fraction/Max ER + Mitochondria Fraction N u Fraction N u mb e r mber 2M NaCl Tim23 (Mitochondria IM) Grp78/BiP (ER Lumen) Tim23 (Mitochondria IM) Grp78/BiP (ER Lumen) MAM Intensity Intensity fraction/Max Intensity Intensity fraction/Max MAM Fraction N u PTPIP51 (Mitochondria OM) (ER Membrane) Fraction N u mber PTPIP51 (Mitochondria OM) (ER Membrane) mber 2M NaCl MAMs Destabilization by Puromycin and PK Control Puromycin PK (50 µg/ml) P78 umen PIP51 o OM VAPB embr. m23 to IM ated crude Mitochondria from HeLa cells by pottering / Small Gradient (2 ml) AG Voos Biochemical Criteria to Detected MAMs 1. Co-localization of MAMs markers (i.e. PTPIP51-mito and VAPB-ER) in the same fractions of density gradient 2. The ER-mitochondria non-MAM markers should run in different fractions depending on their density 3. Destabilization or destruction of MAMs (i.e. 2M NaCl): the ER, mitochondrial and MAM markers should be found in different fractions 4. Stabilization of MAMs (i.e. overexpression of PTPIP51-mito and VAPBER): the co-localization of the ER and mitochondrial markers in the same density gradient fractions should be even more pronounced (work in progress) Conclusions: 1. PubMed and MAMs: 277 articles – new research field 2. Detection of mitochondria-ER contacts is very challenging also because it is very dynamic sub-organelle 3. Stabilization and destruction 4. Microscopy fluorescence seems a very good technique to detect MAMs 5. Sucrose density gradient, but not percoll, potentially could be a good technique to isolate MAMs. Thanks to: AG Voos § Prof. Dr. Wolfgang Voos § § § § § § § § Witold Jaworek Michael Bruderek Cornelia Rüb Sabrina Yamoune Anne Wilkening Janina Friedel Rita Furhmann Karen Pollecker § § Ursula Gerken Mark Sylvester