Outline: Saddle Point Problems - Lehrstuhl Numerische Mathematik
Transcrição
Outline: Saddle Point Problems - Lehrstuhl Numerische Mathematik
Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Outline: Saddle Point Problems I. Examples for saddle point problem: Stokes problem, contact problems, mortar method II. Stability of saddle point problems and their discretizations III. Iterative solvers Kapitel III (SPPoutline) 1 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Specialized Literature • Theory on saddle point problems in general – D. Braess: Finite Elemente. Theorie, schnelle Löser und Anwendungen in der Elastizitaetstheorie, Springer-Lehrbuch, 2003. – S. Brenner, R. Scott: The Mathematical Theory of Finite Element Methods, Springer Texts in Applied Mathematics, Vol. 15, 2008 – D. Boffi, F. Brezzi et.al.: Mixed Finite Elements, Compatibility Conditions, and Applixations, Springer, 2008 • Mortar methods – A. Quarteroni, A. Valli: Domain Decomposition Methods for Partial Differential Equations, Qxford Science Publications, 1999 (Chapter 2.5.1) • Iterative solvers – M. Benzi, G.H. Golub, J. Liesen: Numerical solution of saddle point problems, Acta Numerica(2005), pp. 1-137 Kapitel III (SPPoutline) 2 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Reminder: Quadratic Programming The constrained quadratic minimization problem 1 T x Ax + f T x 2 s.t. Bx = g min can be transformed to a linear equation system, if we introduce the Lagrange multiplier λ. Kapitel III (2) T f u A B = g λ B 0 3 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik PDEs as constrained minimization problems Some techniques from finite dimensional minimization also work for variational formulations. As an example, the Stokes equation is equivalent to the energy minimization problem (see your homework sheet) 1 s.t. div u = 0 min k∇uk20 + hf , xi, 2 In this case, the pressure p works as the Lagrange multiplier: −∆u + ∇p = f in Ω, div u = 0 in Ω pressure field Streamlines: uniform 20 Example: Flow through a channel with a ”step”. 15 10 5 0 0 1 2 4 Kapitel III (3) 0 −1 4 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Contact Problems: Two body contact Energy minimization with an inequality constraint 1 ε(V ) : Cε(v) − fv v∈K 2 Ω Ω 2 2 1 1 K = {v ∈ H0,ΓD (Ω1) × H0,ΓD (Ω2) , g − [v · n] ≥ 0 on ΓC } inf Z Z g − [ v · n ] is the gap between the two deformed bodies ([ · ] is the jump of the function on ΓC ) Kapitel III (5) 5 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Contact Problems in life and industry ⇒ fine geometrical resolution nearly incompressible materials ⇒ small forming zone thermal and plasticity effects The contact condition yields an inequality constraint for the energy minimization. Kapitel III (4) 6 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Mortar: Tearing and connecting master tearing dual variable for interface Γ connecting slave Interface conditions on Γ := ∂Ωm ∩ ∂Ωs um = us σn(um) = σn(us) Kapitel III (1) 7 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Mortar Methods: General Idea −∆u = f, in Ω, u = g on ∂Ω, Ω = (0, 2) × (0, 1) γ • Decompose the geometry Ωm Ωs • Discretize the pde independently on each subdomain • Ensure global continuity in a weak sense, by integral equations: Z (um − us)Ψj dx = 0 γ (these constraints yield a saddle point problem) Kapitel III (1) 8 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Mortar: Optimal Convergence in Different Situations straight and curvilinear different meshsize ratios Kapitel III (1) different number of subdomains 9 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Inf-Sup Condition pressure field • b inf-sup stable: 20 b(v, µ) inf sup ≥β>0 µ∈M v∈X kvkX kµkM 15 10 5 0 1 −5 0 0 2 4 • a coercive on {v ∈ X : b(v, µ) = 0, µ ∈ M } −1 =⇒ an unstable discretization pressure field The saddle point problem 20 15 a(u, v) + b(v, λ) = f (v), 10 b(u, µ) = g(µ), 5 0 v∈V µ∈M 1 0 2 0 4 −1 has a unique solution (u, µ) ∈ X × M . a stable discretization Kapitel III (6) 10 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Checkerboard instability Q1 × P0 is not inf-sup stable. (⇔ ∃p0 ∈ Mh : b(vh, p0) = 0, ∀vh ∈ Vh) The checkerboard mode serves as a counter-example: Arbitrary velocity (in each direction) Checkerboard−mode: p c 1 0.5 0.8 0.4 0.3 0.2 0.2 0 0 −0.5 −0.2 −0.4 −1 −0.6 1 0.5 0 y 0.2 0 0.6 0.4 −0.8 1 0.8 Arbitrary velocity field: u 0.6 0.5 p The pressure mode: 0.4 1 0.1 0 −0.1 −0.2 1 0.8 −1 1 0.6 0.8 0.6 0.4 0.2 x 0.2 0 y Pn−1 Pn 0.4 0 x R b(vh, pc) = i=1 j=1 ev u 2(−1)i+j−1 + . . . (vertical part) ij These are integrals along grid lines. The integral along each line is zero. 1 0.4 0.9 0.3 0.8 0.2 0.7 0.1 0.6 i-th horizontal line The integrand has zero mean value: 0.5 0.4 0 −0.1 0.3 −0.2 0.2 −0.3 0.1 0 Kapitel III (7) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 11 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Driven Cavity: Checkerboard Modes Q1P0-Discretization Pressure along y = 0.22 u = (1, 0)T 20 × 20 elements 0.2 Ω = (0, 1) 2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 −0.05 −0.05 −0.1 −0.1 −0.15 −0.15 −0.2 Kapitel III (7) 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 40 × 40 elements −0.2 1 12 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Is there any remedy for the inf-sup stability The special structure of the inf-sup condition b(vh, ph) inf sup ≥β>0 ph ∈Mh v ∈V kvh kkph k h h shows us two possibilities, that might improve the inf-sup stability • Enrich the velocity space Vh • Reduce the pressure space Mh. Further possibilities are to generalize the saddle point formulation, e.g. by • penalization, • stabilization or by • constructing a divergence-free velocity space (for a divergence-free Stokes) Kapitel III (8) 13 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Reducing the pressure space: Makro elements The instability of the checkerboard mode shows us, which elements we have to remove from the pressure space: + - + Remaining basis functions on a makro element (four elements grouped together): + + + + + + - - + + - Uniform stability (see e.g. Braess) Kapitel III (9) 14 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Enhancing the velocity space: Taylor Hood, MINI The Taylor-Hood element has two versions. One enlarges the polynomial degree of the velocity space, the other one defines the velocity space on a finer mesh. Vh Mh The MINI element adds bubble-functions to the velocity space to ensure inf-sup stability. Compared to the Taylor-Hood elements this yields a smaller dimension and an easy solution by static condensation. Vh Mh • cubic bubble function. Kapitel III (10) 15 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Penalization Instead of demanding div v = 0 directly, we can introduce it as a penalty term: 1 min 2 Z (∇v)2 + ε−1 (div v)2 − 2f v dx Using p = ε div u yields the weak formulation a(u, v) + b(v, p) = f (v) v ∈ H01(Ω)d, b(u, q) − ε(p, q)0,Ω = 0 q ∈ L2,0(Ω). The discretized system is a linear system of the form T f u A B = 0 p B −εC For ε → 0, we have convergence to our solution. Kapitel III (11) 16 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Stabilization Another stabilization is based on adding a least-squares term (based on the strong formulation) to the minimization: k − ∆u + ∇p − f k20,Ω For linear velocity elements, the variational equation yields the simple form to find (uh, ph) ∈ Vh × Qh ⊂ H 1(Ω)d × H 1(Ω), such that a(uh, vh ) + b(vh, ph) = f (vh), v ∈ Vh X X 2 h2T (∇qh, fh)0,T , hT (∇qh, ∇ph)0,T = −α b(uh, qh) − α T ∈Th qh ∈ Qh. T ∈Th More details, e.g. in Donea, J., Huerta, A. Finite Element Methods for Flow Problems, Wiley, 2003 (Chapter 6.5.8) Kapitel III (13) 17 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik Divergence-free non-conforming Crouzeix-Raviart element The Crouzeix-Raviart element is divergence-free by construction. Hence, the solution can be computed without the construction of a pressure space (which can still be constructed as a post-process to compute the pressure). 1 d The downside is, that the elements are nonconforming, due to Xnc h 6⊂ H (Ω) . 2 1 1 0 0.8 −1 0.6 −2 1 0.4 0.8 0.6 0.2 0.4 0.2 0 Kapitel III (12) 0 18 Prof. Dr. Barbara Wohlmuth Lehrstuhl für Numerische Mathematik H(div, Ω)-finite elements Mixed formulation of the Poisson problem: (σ, u) ∈ H(div, Ω) × L2(Ω) (σ, τ )0,Ω + (div τ, u)0,Ω = 0 τ ∈ H(div, Ω), (divσ, v)0,Ω = −(f, v)0,Ω Example: Raviart–Thomas–elements RT0 in 2D RT1 in 2D v ∈ L2(Ω). RT0 in 3D Ansatz for RT0: a x φ(x, y, z) = b + d y c z Kapitel III (fe15eng) Further examples for H(div, Ω)-elements - Brezzi–Douglas–Marini - Brezzi–Douglas–Fortin–Marini 19