Experimental Physics EP2a – Reflection and refraction –
Transcrição
Experimental Physics EP2a – Reflection and refraction –
Experimental Physics EP2a Electricity and Wave Optics – Reflection and refraction – Rustem Valiullin http://research.uni-leipzig.de/valiu/ Experimental Physics IIa - Reflection and refraction of light 1 Malus law E B I0 1 2 I0 1 2 I0 I 12 I 0 cos 2 Experimental Physics IIa - Reflection and refraction of light 2 The Brewster’s law n1 n2 Sir David Brewster B n1 Born 11 December 1781 Canongate, Jedburgh, Roxburghshire Died 10 February 1868 (aged 86) Allerly House, Gattonside, Roxburghshire n2 1 2 90 tan B Experimental Physics IIa - Reflection and refraction of light n2 n1 3 The boundary conditions A2 l 2 1 ŝ A d E ds dt B dA d B ds 0 I 0ε0 dt E dA A1 E, B B d (1) B dA1 n dt d ( 2) ( 2) E ds B t 1 dt n dA1 (1) E t ds1 Et(1) Et( 2 ) (1) t Qin E EdA ε0 B B dA 0 B ( 2) t En(1) En( 2 ) (1) n B B ( 2) n dBn(1) dBn( 2 ) dt dt Experimental Physics IIa - Reflection and refraction of light B B0ei (t kr ) 4 The boundary conditions E (e ) E ( e ) i (t k r ) 1 E e ( r ) i ( ( r )t k ( r ) r ) 1 E Re ( d ) i ( ( d )t k r ) 2 E De (r ) n1 n2 z E (d ) y reflektierte durchgehende (r) (d ) A(r )eit B( r )ei t C (r )ei t 0 ( r ) ( d ) x Ae entfallende i ( k1 x x k1 y y ) Be i ( k1( xr ) x k1( yr ) y ) k k k k 2 1 2 1x 2 1y 2 1z i ( k2 x x k2 y y ) Ce 2 c2 (r) n k1 2 1 2 k1x k1(xr ) k2 x 0 k1 y k1(yr ) k2 y k k k k 2 2 Experimental Physics IIa - Reflection and refraction of light 2 2x 2 2y 2 2z 2 c2 n22 5 The boundary conditions k k k 2 1 E (e ) k1 y 0 E (r ) n1 n2 z E (d ) y k1 2 1z k k k 2 2 2 2x k1(zr ) k12 k12x k22 k12x x 2 1x 2 2z 2 c2 2 c 2 n12 k1( r ) 2 n22 k 2 z () k 22 k12x k2 z k22 k12x k1 sin 1 k1x = k2 sin 2 k2 x z (r) k1 1 2 x k2 k22 k12x n2 n1 sin 1 Snell’s law k2 z i k12x k22 i 2h total internal reflection z (d ) i ( t k2 x x ) E Dei (t k2 x xk2 z z ) De 2 h e Experimental Physics IIa - Reflection and refraction of light 6 To remember! Light beam reflected under the Brewster angle looses its component polarized perpendicular to the plane of incidence. At the interface between two media with different refractive indexes tangential and normal components of both electric and magnetic fields are continuous. All properties relevant to reflection and to refraction (like the Snell’s law) are natural consequences of the boundary conditions. Experimental Physics IIa - Reflection and refraction of light 7 The Fresnel equations: E(e) û1 E û1(r) (e ) E N̂ k 1 û y ||û1 (r ) R R û y R||û1(r) D D û y D||û 2 n1 z0 n2 z E (d ) y û 2 û x x || û1 û x || cos 1 x k1 û x,y,z û y y z (r) k1 1 2 x k2 ûz z || û1 ûz || sin 1 Ex( e ) || cos 1; E y( e ) ; Ez( e ) || sin 1 i (t k r ) e i (t k x x k y y k z z ) e Experimental Physics IIa - Reflection and refraction of light 8 The Fresnel equations: B(e) û1 E û1(r) (e ) E N̂ k 1 E y û y ||û1 (r ) z0 z E B v n1 1 cB N̂ k1 E k k E n2 v1B N̂ k1 û y || N̂ k1 û1 v1B û1 || - û y û x,y,z (d ) û 2 x k1 N̂ k1 v1Bx û1 û x cos 1 z (r) k1 1 2 x k2 v1By || v1Bz û1 ûz sin 1 v1Bx( e ) cos 1; v1By( e ) || ; v1Bz( e ) sin 1 Experimental Physics IIa - Reflection and refraction of light 9 The Fresnel equations: E(r) and B(r) û1 E û1(r) (e ) E N̂ k 1 û y ||û1 (r ) n1 z0 n2 z E (d ) y û 2 û (r) 1 z (r) k1 1 2 N̂ k1 û1 ûx cos 1 x k1 R R û y R||û1(r) D D û y D||û 2 û x,y,z x k2 û x cos 1 E x( r ) R|| cos 1 v1Bx( r ) R cos 1 E y( r ) R v1B y( r ) R|| E z( r ) R|| sin 1 v1Bz( r ) R sin 1 Experimental Physics IIa - Reflection and refraction of light 10 The Fresnel equations: E(d) and B(d) û1 E û1(r) (e ) E N̂ k 1 û y ||û1 (r ) n1 z0 n2 z E y (d ) û x,y,z N̂ k1 û 2 û2 ûx cos 2 x k1 R R û y R||û1(r) D D û y D||û 2 z (r) k1 1 2 x k2 E x( d ) D|| cos 2 v2 Bx( d ) D cos 2 E y( d ) D v2 B y( d ) D|| E z( d ) D|| sin 2 v2 Bz( d ) D sin 2 Experimental Physics IIa - Reflection and refraction of light 11 The Fresnel equations cos 1 E x( e ) E x( r ) E x( d ) || E y( e ) E y( r ) E y( d ) v1Bz( e ) sin 1 Bx( e ) Bx( r ) Bx( d ) E (e) x || cos 1 v1B (e) x E (e) y v1B (e) y E (e) z || sin 1 B y( e ) B y( r ) B y( d ) E x( r ) R|| cos 1 v1Bx( r ) R cos 1 E y( r ) R v1B y( r ) R|| E z( r ) R|| sin 1 v1Bz( r ) R sin 1 E x( d ) D|| cos 2 v2 Bx( d ) D cos 2 (d ) y D|| E y( d ) D v2 B E z( d ) D|| sin 2 v2 Bz( d ) D sin 2 || R|| cos 1 D|| cos 2 R D R v1 cos 1 Dv2 cos 2 Experimental Physics IIa - Reflection and refraction of light || R|| v1 D||v2 12 The Fresnel coefficients R D R v1 cos 1 Dv2 cos 2 n1 cos 1 n2 cos 2 r n1 cos 1 n2 cos 2 R d D 2n1 cos 1 n1 cos 1 n2 cos 2 r sin(1 2 ) sin(1 2 ) 2 cos 1 sin 2 d sin(1 2 ) || || R|| v1 D||v2 R|| cos 1 D|| cos 2 r|| R|| || n2 cos 1 n1 cos 2 n2 cos 1 n1 cos 2 2n1 cos 1 d|| || n2 cos 1 n1 cos 2 D|| r|| tan(1 2 ) tan(1 2 ) 2 cos 1 sin 2 d|| sin(1 2 ) cos(1 2 ) Experimental Physics IIa - Reflection and refraction of light 13 Analysis of the Fresnel equations sin(1 2 ) r sin(1 2 ) 1 0 tan(1 2 ) r|| tan(1 2 ) r r|| 1 / 2 r R n1 cos 1 n2 cos 2 n1 cos 1 n2 cos 2 n1 n2 n1 n2 r|| 1 2 / 2 R|| || n2 cos 1 n1 cos 2 n2 cos 1 n1 cos 2 r|| 0; r 0 r r|| 1 E (e ) k1 z (r) k1 1 x 2 k2 E (r ) n1 z0 n2 z E (d ) y x Experimental Physics IIa - Reflection and refraction of light 14 Analysis of the Fresnel equations 1,0 0,8 || 0,6 I (r) (e) I Brewster's angle Reflection coefficient Air-Water 0,4 Reflection Transmission coefficients I (d ) b (e) I b 1; || b|| 1 iso 12 || 0,2 0,0 0 10 20 30 40 50 60 70 80 90 Angle of incidence 1,0 || 0,6 photoelement 0,8 Critical angle Reflection coefficient Water-Air 0,4 Total internal reflection 0,2 0,0 0 10 20 30 40 50 60 70 80 90 membrane Angle of incidence Experimental Physics IIa - Reflection and refraction of light 15 To remember! The Fresnel equations allow to quantify the fractions of reflected and refracted light intensities. They also allow to trace the intensities for different light polarizations. The Brewster’s law is naturally predicted by the Fresnel equations. At low angles of incidence the reflectance coefficient is close to one. In practice, the reflectance and transmission coefficients are used. Experimental Physics IIa - Reflection and refraction of light 16