Möglichkeiten und Grenzen
Transcrição
Möglichkeiten und Grenzen
5. GMTTB Jahrestagung 2015 Menschmodellierung zur Verletzungsvorhersage – Möglichkeiten und Grenzen Rainer Hoffmann, carhs gmbh www.carhs.de Ist der Mensch berechenbar? Der Mensch ist berechenbar! School Bus Accident Simulation using CAL3D Rainer Hoffmann, ME 710, Wayne State University, 1984 5th dedicated sessions Inhalt Crash Vic6m Simula6on Status der Modelle Möglichkeiten und Grenzen der Verletzungsvorhersage ZukünDige Entwicklungen Crash VicUm SimulaUon 1973: 1-‐D Lumped Mass Model: Lobdell Thorax Model 1985: 3-‐D Rigid Body Model: MADYMO3D 2013: 3-‐D Finite Element Model: Hybrid III 50th%ile male :sledoM elameF dna elaM tlud nairtsedeP dna tnapucc seziS egraL dna elddiM ,llam Crash VicUm SimulaUon Dummy Modelle 05MA 50FA aliava( sledoM nairtsedeP Mensch Modelle 50FA 05MA 59MA )elbaliava( sledoM tnapuccO Anwendungsgebiete Mensch Modelle Innova6ve Rückhaltesysteme reale Menschen (außerhalb 5th, 50th, 95th) Integrale Sicherheit Dummy-‐Entwicklung Kopfverletzungen Unfallrekonstruk6on Mercedes-Benz S-Class Seat Cushion Airbag • Seat Cushion Airbag reduces risk for submarining in reclined excecutive rear seats • Activated by crashsignal when excecutive rear seats are reclined 17 Safety Features of the new S-Class | 21.05.2014 Mercedes-Benz Quelle: Bogenrieder, SafetyUpDate 2014 Inhalt Crash Vic6m Simula6on Status der Modelle Möglichkeiten und Grenzen der Verletzungsvorhersage ZukünDige Entwicklungen THUMS (Total Human Model for Safety) 1. Model Overview entwickelt von Toyota seit 2000 Base Models: aktuell: Version 4 (1.8 Mio. Elements) • Adult Male and Female Tissue Damage and Rupture: • Occupant and Pedestrian • Internal Organ Injury (Contusion, Lacera6on) ... Strain Based Indicator • Small, Middle and Large Sizes • Brain Injury (Diffuse Axonal Injury) ... Strain Based Indicator • Skeletal Injury (Bony Fracture) ... Element Elimina6on AM95 AM50 AF05 Occupant Models (available) AF05 AM50 AM95 Pedestrian Models (available) ifiedGHBM Occupant(Global Human Body Model) Models entwickelt vom GHBMC seit 2006 aktuell: M50 4.1.1 Detail Considered More ~2.0M deformable elements Detailed GHBMC M50 Occupant GHBM (Global Human Body Model) HUMAN MODELING AND SIMULATION IN AUTOMOTIVE ENGINEERING Vorhersage von Crash Induced Injuries (CII) Crash-Induced Injury (CII) Prediction Capability 8 Stand der Vorhersagefähigkeit dokumen6ert To assess the injury prediction capability of GHBMC models, we have established 7 capability levels as defined below: Level 0 1 2 3 4 Capability Subcategories Model detail sufficient, test data available, injury mechanism understood, correlation carried out Model detail sufficient, test data available, injury mechanism understood, but validation work is incomplete or inconclusive Model detail sufficient, but test data unavailable or insufficient Model detail insufficient, test data available, additional modeling should help predict this CII Model detail insufficient, test data unavailable; additional modeling effort and test data should help predict this CII 5 Injury mechanism needs some more investigation 6 Injury mechanism needs extensive additional investigation © 2014 carhs.training gmbh 8 GHBM (Global Human Body Model) HUMAN MODELING AND SIMULATION IN AUTOMOTIVE ENGINEERING M50Beispiel: CII Capability: Level „0“ Model v4.1 – CII Capability: Level “0” 9 Crash-Induced Injury (CII) Description GHBMC M50 Capability Body Region Main Head Head Neck Neck Thorax Abdomen Abdomen Plex Plex Plex Plex Plex Plex Plex Plex Sub Skull Fracture Facial Bone Fracture Intervertebral Disc Ligament Injury Rib Cage Injuries Solid Organ Injury Solid Organ Injury Pelvis Pelvis Thigh, Knee, Leg Thigh, Knee, Leg Thigh, Knee, Leg Foot Foot Foot Cortical Layer, Diploe Layer, Vault, Base Disc Injury Rib Fracture Liver Injury Spleen Injury Pelvis, pubic rami fracture Pelvis, hip fracture Proximal femur fracture Mid-shaft femur fracture Distal femur fracture Calcaneus fracture Talus fracture Ankle and sub-talar joint injury © 2014 carhs.training gmbh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Quelle: 9 J.T. Wang, SAE G&I 2014 GHBM CII Coverage of GHBMC M50 Model based on 1998-2009 (Global Human Body Model) NASS-CDS Data GHBMC M50 model is validated for • GHBMC M50 model is validated for 38%• of38% of all crash-‐induced AIS2+ injuries all crash-induced AIS2+ injuries 13%• AIS5+ injuries 13% AIS5+ injuries • GHBMC M50 model is detailed enough GHBMC M50 model is detailed enough for simula6ng for simulating Model based on 1998-2009 • 80% of all crash-‐induced AIS2+ injuries 80% of all crash-induced AIS2+ injuries 63% AIS5+ injuries 63%• AIS5+ injuries • Phase II targets CII capability equal or better than M50 Model ries• Should additional funding become available in the future, we will h Conduct more validation work for Level 1&2 CIIs ries Increase the detail level of the model to predict Level 3&4 CIIs Quelle: J.T. Wang, SAE G&I 2014 SAE INTERNATIONAL SUFEHM (Strasbourg University FE Head Model) SUFEHM PRESENTATION 50th%ile Adult Human Head, 13.208 Elemente Brain Membranes (Viscoelastic G0=49kPa, G =16.7kPa, β=145s-1) (Elastic E=31.5MPa, =0.23) CSF (Elastic E=12kPa, =0.49) Brainstem (Viscoelastic G0=49kPa, G =16.7kPa, β=145s-1) Skull (Shell elements, composite law with failure criterion) Scalp (Elastic E=16.7MPa, =0.42) Face (rigid) Quelle: R. Willinger, carhs Seminar T141 Inhalt Crash Vic6m Simula6on Status der Modelle Möglichkeiten und Grenzen der Verletzungsvorhersage ZukünDige Entwicklungen Garbage in, garbage out. „Garbage In-‐garbage Out“ Paradigma GARBAGE DATA PERFECT MODEL GARBAGE RESULTS PERFECT DATA GARBAGE MODEL GARBAGE RESULTS EVERYTHING SHOULD BE MADE AS SIMPLE AS POSSIBLE, BUT NOT SIMPLER. ALBERT EINSTEIN How simple is simple enough? Beispiel: Hirnverletzung 1 Element -‐ Head Injury Criterion (HIC) 10K -‐ 300K Elemente -‐ Strain-‐Based Criterion Steps to building an FE model of the axon: Add axoplasm and myelin as solid elements: the Ranvier node (~1 μm wide) is left unsheathed. Axoplasm 1011-‐1016 Elemente -‐ Axonal Damage Cytoskeleton Membrane Ranvier node Myelin 8/15/2014 Building a Finite Element Model of Axonal Microscopic Structure 8 Variabilitäten Variabilität in den Materialien Variabilität in der numerischen Lösung Variabilität in den Randbedingungen Variabilitäten Stochastic approach Eine SimulaUon ist nicht genug um die Biomechanik des Menschen zu verstehen oder zu erklären! Each Sample/Design Input parameter Quelle: Kethu, CAE Grand Challenge, 2012 (Realistic Distributions) Output parameter lue Variabilitäten Inhalt Crash Vic6m Simula6on Status der Modelle Möglichkeiten und Grenzen der Verletzungsvorhersage Zukünhige Entwicklungen Individualisierung Photo: Howard Schatz Individualisierung Method Overview Parametric Human Model Skeleton Geometry Models BMI=25 Sitting Posture Model Baseline Models BMI=30 Mesh Morphing External Body Surface Model BMI=35 BMI=40 Quelle: UMTRI, M. Reed Individualisierung Results – Body Scans Hybrid-III ATD Quelle: UMTRI, M. Reed Low-‐G Anwendungen Quelle: Brolin, HuMoSym 2014 Pre-‐Crash Szenarien Heckaufprall of active muscles in an HBM developed for crash simulations alidation in the low g loading regime. Fahrdynamik Modell Auswahl Welches Modell kann meine Fragestellung beantworten? Wie ist der Stand der Valida6on? Wer hat das Modell entwickelt? In welchen Programm/Version läuD das Modell? Modell Auswahl über Verletzungen (AIS-‐codiert) Zusammenfassung Menschmodelle können Verletzungen beim Unfall voraussagen Simula6on mit Menschmodellen sind noch keine industrielle Anwendung Zusammenarbeit in der Entwicklung und Transparenz der ModelleigenschaDen sind notwendig Vielen Dank. www.carhs.de