Non-parametric Reconstruction of Dark Energy Equation of State
Transcrição
Non-parametric Reconstruction of Dark Energy Equation of State
1234567689A7BCDE9C23FA7CAB23D2D 67D397D6AB23D2DA6A9D728D B97F9D6A6F9AF 1223454678396AB7CBD 12345676839234A7BC5DD83E2347FD383234583423 AA832315D31 Energy Content of the Universe Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 1 SNe Ia & Dark Energy High z SNe dimmer than expected ( 1997-98) ⇒ Expansion of Universe accelerating ⇒ Dominant energy component of Universe has negative pressure = Dark Energy !! Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 2 SNe Ia & Dark Energy High z SNe dimmer than expected ( 1997-98) ⇒ Expansion of Universe accelerating ⇒ Dominant energy component of Universe has negative pressure = Dark Energy !! Cosmological Constant : w = −1 Quiessence : −1 < w =constant < −1/3 Quintessence : L = 1 ∂ φ 2 a ∂ a φ − V (φ) V = V0 /φα V = V0 exp(λφ2 )/φα V = V0 (coshλφ − 1)p Phantom fields with w < −1, Early Dark Energy Models √ k-essence : L = −V (φ) 1 − ∂a φ ∂ a φ (Chaplygin gas : P = −A/ρα ) Modified gravity models : f (r) theories, braneworld models.... Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 2 Distance Measures for Dark Energy r(z) = Z 0 µB (z) = dA (z) rs (z⋆ ) = R(zCMB ) = z dz = h(z) Z 0 z dz r Ω̃r (1 + z)4 + Ω0m (1 + z)3 + ΩΛ exp M + 5log10 [(1 + z)r(z)] r(z) c ; H(z)rs (z⋆ ) H0 (1 + z)rs (z⋆ ) p Ω0m r(zCMB ) ← SNe hR z 3(1+w(u))du 0 1+u i ← BAO ← CMB Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 3 Distance Measures for Dark Energy r(z) = z Z dz = h(z) 0 dA (z) rs (z⋆ ) = R(zCMB ) = dz r 0 Ω̃r (1 + z)4 + Ω0m (1 + z)3 + ΩΛ exp M + 5log10 [(1 + z)r(z)] ← SNe r(z) c ; H(z)rs (z⋆ ) H0 (1 + z)rs (z⋆ ) p Ω0m r(zCMB ) 0 hR z 3(1+w(u))du 0 1+u i ← BAO ← CMB 46 45 -0.2 44 -0.4 43 µ = z w(z) µB (z) Z 42 -0.6 41 -0.8 40 39 -1 0.2 0.4 0.6 0.8 1 z 1.2 1.4 38 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 z Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 3 Distance Measures for Dark Energy r(z) = Z z 0 µB (z) = dA (z) rs (z⋆ ) = R(zCMB ) = dz = h(z) Z z dz r 0 Ω̃r (1 + z)4 + Ω0m (1 + z)3 + ΩΛ exp M + 5log10 [(1 + z)r(z)] ← SNe r(z) c ; H(z)rs (z⋆ ) H0 (1 + z)rs (z⋆ ) p Ω0m r(zCMB ) 0 hR z 3(1+w(u))du 0 1+u i ← BAO ← CMB 46 35000 12 45 -0.2 30000 44 10 -0.4 42 -0.6 Hrs 25000 DA/rs µ w(z) 43 8 20000 41 6 -0.8 40 15000 39 4 -1 38 0.2 0.4 0.6 0.8 1 z 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 z 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 z 1.2 1.4 10000 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 z Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 3 Gaussian Process Modeling p(y|X) = 1 1 2 (y − f (x)) exp − 2 2 )n/2 2σn (2πσn f (x) = GP(m(x), K(x, x′ )) Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 4 Gaussian Process Modeling p(y|X) = 1 1 2 (y − f (x)) exp − 2 2 )n/2 2σn (2πσn f (x) = GP(m(x), K(x, x′ )) Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 4 Application to distance measures ′ α w(u) ∼ GP(−1, κ2 ρ|u−u | ) R s R s′ y(s) ∼ GP − ln(1 + s), κ2 0 0 ′ ρu−u dudu′ (1+u)(1+u′ ) Joint GP for y(s) and w(u): y(s) w(u) ∼ MVN − ln(1 + s) −1 Σ11 Σ12 Σ21 Σ22 , Mean for y(s) given w(u) : y(s)|w(u) = − ln(1 + s) + Σ12 Σ−1 22 (w(u) − (−1)) Obtain 2nd integral numerically, compute likelihood Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 5 Current Observations SNe Union2 compilation → 557 SNe, σmB ∼ 0.15 BAO SDSS ⇒ rs (z⋆ )(H(z)/(1 + z)2 d2A cz)1/3 = 0.19 ± 0.0061(z = 0.2) = 0.11 ± 0.0036(z = 0.35) CMB WMAP7 ⇒ R = 1.719 ± 0.019 Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 6 0.0 Current results SNe+CMB SNe+BAO SNe+BAO+CMB −1.0 −2.0 −1.5 w(z) −0.5 SNe 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 z 0.8 1.0 1.2 0.2 0.4 0.6 z 0.8 1.0 1.2 z 10 5 0 Density 15 20 z 0.0 0.2 0.4 0.6 Ωm 0.8 0.0 0.2 0.4 0.6 Ωm 0.8 0.0 0.2 0.4 0.6 Ωm 0.8 0.0 0.2 0.4 0.6 0.8 1.0 Ωm Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 7 Future Predictions 0 -0.2 w(z) -0.4 -0.6 -0.8 -1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 z Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 8 Future Predictions 0 -0.2 w(z) -0.4 -0.6 -0.8 -1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 z 0.0 −0.5 −1.0 −2.0 −1.5 w(z) −1.5 −2.0 w(z) −1.0 −0.5 0.0 BIGBOSS (20 BAO) 0.5 1.0 z 1.5 0.5 1.0 1.5 z Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 8 Future Predictions 0.0 Union2 (557 SNe), BIGBOSS (20 BAO), WMAP7 SNe+CMB SNe+BAO SNe+BAO+CMB −1.0 −2.0 −1.5 w(z) −0.5 SNe 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 z 0.6 0.8 1.0 1.2 0.5 z 1.0 1.5 0.5 z 1.0 1.5 z 0.0 WFIRST (2298 SNe), BIGBOSS (20 BAO), WMAP7 SNe+CMB SNe+BAO SNe+BAO+CMB −1.0 −1.5 −2.0 w(z) −0.5 SNe 0.5 1.0 z 1.5 0.5 1.0 z 1.5 0.5 1.0 z 1.5 0.5 1.0 1.5 z Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 9 Future Predictions 0.0 Union2 (557 SNe), BIGBOSS (20 BAO), WMAP7 SNe+CMB SNe+BAO SNe+BAO+CMB −1.0 −2.0 −1.5 w(z) −0.5 SNe 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 z 0.6 0.8 1.0 1.2 0.5 z 1.0 1.5 0.5 z 1.0 1.5 z 0.0 WFIRST (2298 SNe), BIGBOSS (20 BAO), WMAP7 SNe+CMB SNe+BAO SNe+BAO+CMB −1.0 −1.5 −2.0 w(z) −0.5 SNe 0.5 1.0 z 1.5 0.5 1.0 z 1.5 0.5 1.0 z 1.5 0.5 1.0 1.5 z Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 10 Conclusions SNe data alone– degeneracy between Ω0m and wDE Combination of SNe, BAO, CMB consistent with ΛCDM As data quality improves, parametric methods inadequate to find subtle differences in wDE Gaussian process modeling provides non-parametric, unbiased estimation of wDE GP may provide effective importance of different datasets Phys.Rev.D82:103502,2010; Phys.Rev.Lett.105:241302,2010; arXiv:1104.2041 Ujjaini Alam (COSMO11, Porto, Aug 25, 2011) – p. 11
Documentos relacionados
Exoplanets at the E
- Contrast Goal: 10-6 (50mas) to 10-9 (20mas) - Targets: M-dwarfs, young stars - Emitted (E-IFU, MIDIR) and Reflected (E-PCS) light of giant icy planets (Super-Earths?) - Broad molecular absorption...
Leia maisII Workshop on Field Theory: Topological Defects and Applications
Background Field Gravity in two and three dimensions Fermionic Representation Space 11:50-13:30 (Interlude)
Leia mais