String Dbranes decription from 2+1D Topological Field Theory
Transcrição
String Dbranes decription from 2+1D Topological Field Theory
[email protected] 1 2 " 2 $ 1 / 4 5 3 . - ' + * ) ( ' 0 , & $ " % # ! hep-th/0308101 5 # 3 % 4 . - ' + * ) ( ' 0 / 2 " 2 $ 1 / , & $ " ! M ∂M = Σ1 ⊕ Σ2 ∂∂M = 0 Σorb = Σ/Z2 6 2 " 2 $ 1 / 4 5 - ' + * ) . 3 % ( ' 0 , & $ " P CT ! PT # Z2 M = [0, 1] × Σ S Z T1M GTZ = 1 µν k µνλ dt dzdz̄ − F Fµν + Aµ ∂ν Aλ + Aµ J µ 4 8π 0 Σ k ij Aj Π = −F + 8π δ i Π = −i δAi k Qm,n = m + n 4 i 0i 6 2 " 2 $ 1 / 4 5 3 . - ' + * ) ( ' 0 , & $ " % # ! z z̄ hzz̄ = 1 zz̄ = i Z √ k 2 i B+ρ UΛ = exp i d z h Λ(z) ∂i E + 4π Σ ! √ Z k h ij 2 i V (z0 ) = exp −i d z E + Aj ik ∂ k ln E(z, z0 ) 4π Σ −θ(z, z0 ) ρ 6 2 " 2 $ 1 / 4 5 3 . - ' + * ) ( ' 0 , & $ " % # ! E(z, z0 ) θ(z, z0 ) = Im ln E(z, z0 )E(z0 , z0 ) h i nk n n B(z), V (z0 ) = 2πn V (z0 ) ⇒ ∆Q = − 2 nk nk ∆Q = − ⇒ Qm,n = m + 2 2 H Z Σ= 1 k ij k k 1 ij i Πi − Π − Aj i Ak + ( Fij )2 − Ai J i 8π 8π 8 Σ 2 k ij k ij 0 i Aj + ∂i Aj + J GΣ = −∂i Π − 8π 4π Σ i G∂Σ = Π ∂Σ HΣ Ψ[A, J] = EΨ[A, J] 6 2 " 2 $ 1 / 4 5 3 . - ' + * ) ( ' 0 , & $ " % # ! GΣ Ψ[A, J] = G∂Σ Ψ[A, J] = 0 ∂µ J µ = 0 , J 0 = ρ , J i = 2j i 6 2 " 2 $ 1 / 0 , & $ 4 5 3 . - ' + * ) ' ( j z̄ = Y z = 0 " Σ1 : % j z = Y z̄ = 0 # Σ0 : ! 1 ij ρ = ∂i Yj = i∂z Y z − i∂z̄ Y z̄ 2 Ψ0 [A, j] = exp Z [Dϕ] exp I exp i Z Σ0 k 8π z̄ Az̄ + j Az × 8π k 2 64π z̄ 8π z k ∂z̄ ϕ − 2Az̄ − 2 j + Y ∂z ϕ × 8π Σ0 k k ϕb (Y k − Ak ) Z ∂Σ1.orb 8π z k j Az̄ × − Az − Ψ1 [A, j] = exp 8π k Σ1 Z Z 2 64π z 8π z̄ k −∂z ϕ + 2Az + 2 j − Y ∂z̄ ϕ × [Dϕ] exp 8π Σ1 k k I q k k AΣ exp i ϕb (Y − A ) Πd(∂z ϕ)d(∂z̄ ϕ)Πdϕb [Dφ] = det∇2 Z 6 2 " 2 $ 1 / 4 5 3 . - ' + * ) ( ' 0 , & $ " % # ! ∂Σ0.orb 5 # 3 % 4 . - ' + * ) ( ' 0 6 2 " 2 $ 1 / , & $ " ! Z2 PT P CT Λ 7−→ Λ ϕ 7−→ ϕ A0 7−→ A0 A0 7−→ −A0 A⊥ 7−→ A⊥ A⊥ 7−→ −A⊥ Ak 7−→ −Ak Ak 7−→ Ak Az 7−→ Az Az 7−→ −Az ∂i E i 7−→ ∂i E i ∂i E i 7−→ −∂i E i B 7−→ B B 7−→ −B 4 5 3 6 1 2 " 2 / . - ' + * ) ( ' 0 , & $ " ! Qm,n 7−→ Qm,n . % Qm,n 7−→ −Qm,n . $ ϕ 7−→ −ϕ P CT : 1 Λ 7−→ −Λ # PT : f0 (t) f1 (t) PT P CT f0 (1 − t) = −f1 (t) f0 (0) = −f1 (1) = −1 f0 (1) = f1 (0) = 0 4 5 3 1 1 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " % # ! f0 (1/2) = f1 (1/2) = 1/2 Z Z X1 + X0 = Σ0 Σ1 Xτ = Στ Z Z Σ Z 1 dt 0 Z Σ ∂t (f1 X1 − f0 X0 ) τ ∈ [0, 1] (f1 (τ )X1 − f0 (τ )X0 ) 4 5 3 / 1 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " % # ! ∂t (f0 ρ0 + f1 ρ1 ) = f0 ∂z j z̄ − f1 ∂z̄ j z f (t) f0 (t) = −1/2 + f (t − 1/2) 1/2 − f (3/2 − t) , f1 (t) = −f (2 − t) , t ∈ [1/2, 1] 1/2 1−e k − 16π e k t − 16π k z Y j = 8π 4 5 3 6 1 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " z̄ ! k z̄ Y j = 8π z t ∈ [0, 1/2[ % 1−e k − 16π , t ∈ [1/2, 1] # f (t) = 1/2 + 1+ , t ∈ [0, 1/2[ Zorb = Ψ1/2 , Ψ0 orb = Z † orb [DAz DAz̄ ]eiST M GT .orb Ψorb 1/2 Ψ0 1 2 " 2 $ 1 / 4 5 3 . - ' + * ) ( ' 0 , & $ " % ! 8π z̄ 8π z Y Az − ∂z ϕ − Y Az̄ ∂z̄ ϕ − k k Σorb I k k k A × exp Y − 8π ∂Σorb # Ψorb 1/2 [A, Y ] = Z Z [Dϕ] exp [DAz DAz̄ ]eiST M GT Ψ†1 Ψ0 6 Z = hΨ1 , Ψ0 i = Z ϕ az 7−→ −az 6 1 " 2 $ 1 2 4 5 ) . 3 % ( ' 0 , & YN 7−→ YN $ YN 7−→ −YN " ξ 7−→ ξ ! ξ 7−→ −ξ / YD 7−→ −YD - P CT : ' YD 7−→ YD (∂ i YD + ij ∂j YN ) + az 7−→ az k 4π # PT : Yi = * Āi = ai + ij ∂j ξ A Ψ†1/2 = Z Z k [Dϕ] exp − ξ∇2 (ϕ − 2YD ) Ψ†∂Σorb 8π Σorb I ik † P T : Ψ∂Σorb ,D = [Dϕ] exp − ak (ϕ − YD ) × VD 4π ∂Σorb I Z ik † P CT : Ψ∂Σorb ,N = [Dϕ] exp + ξ ∂ ⊥ ϕ × VN 4π ∂Σorb Z PT (Dirichlet bc) : δΣ (∇2 (ϕ − 2YD )) × δ∂Σ (ϕb − YD ) 4 5 3 6 1 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " % # ! P CT (Neumann bc) : δΣ (∇2 (ϕ − 2YD )) × δ∂Σ (∂ ⊥ ϕb ) YD YN I k P T : VD = exp − YD ∂ ⊥ ϕb 4π ∂Σ I ik P CT : VN = exp − YN ∂ k ϕb 4π ∂Σ k n P T : Q0,n = 4π P CT : Qm,0 = m 4 5 3 6 1 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " % # ! k = 2R2 /α0 5 # 3 % 4 . - ' + * ) ( ' 0 6 1 2 " 2 $ 1 / , & $ " ! 5 3 % 4 . - ' + * ) ( ' 0 6 1 2 " 2 $ 1 / , & $ " ! Σ0 # 2p k= q Σ1 Σ =m + n = λl q = ml − k4 nl k 4 Ξ[A, Qi (zi )] = Ψ × l l = 1, . . . , g ei Qi (ϕ(zi )+hi (zi )) i=1 4 5 3 . - ' + * ) ( 6 / 2 " 2 $ 1 / 0 , & $ = Φ[A, Qi (zi ), Q̄i (z̄i )] ' i=1 WQi (z,z̄) + s Y pq m , n = 0, . . . , −1 2 l " * s Y l ! l % Q̄lλ = λl q # Qlλ g * s Y WQi (z,z̄) i=1 ei/k Qi Qj (θij (1)−θij (0)) WM (∆Qλ )Ξ[A, Qi (zi )]⊗Ξ† [A, Q̄i (z̄i )] 4 5 3 1 / 2 " 2 $ (ω + ω̄ ) 1 xi (0) l0 xj (0) / x0 l0 (ω + ω̄ )+ 0 ω l xi (t) l0 , xj (0) Z x0 l0 . Z ω xj (t) - θij (t) = θi (xi (t), xj (t))+2(Γ ) Im l Z ' −1 xi (0) + ll0 Z * βl & l=1 A ) exp i∆Qlλ Z ( $ C(z→z̄) ' WM (∆Q) = g Y A " WQi (z,z̄) = exp iQi Z ! % i,j=1 = Φ[A, Qi (zi ), Q̄i (z̄i )] = # s Y + (pq)g −1 4 5 3 / / 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " ! λ=0 Ψλ (Γ) ⊗ Ψ†λ̄ (Γ̄) % X # Z(Γ, Γ̄) = k g/2 4 5 3 . - ' + * 6 / 2 " 2 $ 1 / 0 , & |λ, li ⊗ UP |λ, li ) l=0 |λ, li λ̄ = −λ, l l ( |λ = kn/4i = P∞ = P $ D PλD ' P CT : (Q = −Q̄ = k n/4) |λ, li ⊗ UP |λ, li " l=0 ! |λ = mi = P∞ l=0 |λ, li λ̄ = λ, l % N = P∞ # P T : (Q = Q̄ = m) PλN D Z √ √ 2 −gκD R(ω)+8 −gκ∂µ D∂ µ D 4 5 3 6 / 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " % # ! S[A, ω, D] = M √ k µνλ −g µν − Fµν F + Aµ ∂ν Aλ 2 4D 8π I 0 k µνλ 2 abc a b c a a + −8κ D∂⊥ D ωµ ∂ν ωλ + ωµ ων ωλ 8π 3 ∂M Z 1 # 4 Sb [ϕ, φ, D] = − ln D + φ R(2d) − 2κD∂⊥ D + 4π Σ 1 k −φ ∂z φ∂z̄ φ + ΛΣ e − ∂z ϕ∂z̄ ϕ 16π 8π D4 1 exp − 4π Z Σ # ln D 4 R(2d) 4 −χ(Σ) = D ⇒ gs = hD4 i 4 5 3 . - ' + * ) ( 6 / 2 " 2 $ 1 / 0 , & $ ' ! " % Σ R(2d) = 2 − 2g − b − c # 1 χ(Σ) = 4π Z d+D ST M GT [A, D] = 4 5 3 6 / 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " % # ! Z √ −g I µν GIJ + iBIJ µνλ I J − F ∂ A F A − ν λ µ 2 µν I 0 4D 8πα M Zo = (gs ) −χ(Σ) d+D YZ I=1 [Dϕ] d Y a=1 δ∂Σo (ϕab ) d+D Y m=d+1 # m −Sb [ϕ] δ∂Σo ∂⊥ ϕb e 4 5 3 6 / 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " % # ! Z h√ i 1 I J ij ij ∂ ϕ ∂ ϕ + B̃ G̃ + i hh Sb [ϕ] = i j IJ IJ 0 8πα Σ I 1 k m ⊥ a YD,a ∂ ϕb + iYN,m ∂ ϕb 4π x⊥ =0 1 1 0 0 K̃IJ = 0 2 GII 0 (K −1 )I J GJ 0 J ≡ 0 G̃IJ + iB̃IJ (α ) α SDBI = Z o = (gs )−χ(Σ)/2 Z dD ϕ |det (Kmn + Fmn )|νg /2 J I ∂ϕ ∂ϕ Kmn (ϕm ) = KIJ m n ∂ϕ ∂ϕ I I ∂Y ∂Y N,n N,m − Fmn (ϕm ) = ∂ϕn ∂ϕm ϕI = (ϕm , YDa ) ν0 = 0 ν1 = 1 4 5 3 6 / 2 " 2 $ 1 / . - ' + * ) ( ' 0 , & $ " % # ! νg≥2,even = 1 νg>2,odd = 0 5 # 3 % 4 . - ' + * ) ( ' 0 6 / 2 " 2 $ 1 / , & $ " !
Documentos relacionados
$$ MNOJPN=%ONE= QFN=R %F SPTUEV=
ÿ̀YZYa^WYÿ0bcYÿdÿaXdÿdÿXWe#ÿ66fgÿ ÿ1ÿh6ÿi1ÿ6ÿ125f#ÿ59jÿ1 6j9ÿ9ÿ 64k9ÿ[l#ÿ56h1#ÿÿ[#ÿYYÿÿYYYÿ 6ÿ9414789ÿ 63mÿ6ÿl#ÿYÿ 6ÿ4ÿ9jh3j...
Leia mais01/09/2016
Omÿ 6ÿ9414789ÿ 63 NSMPKLNPÿÿ1789ÿ44154963ÿ 9ÿQ44^49ÿ0d23459ÿa9[9Xÿ9ÿ4]1^49ÿ54X43ÿÿ6ÿ6789ÿ54X43ÿad23456#ÿa66ÿ6ÿ a9789ÿ 9ÿa64[p49ÿad23459ÿÿ95463#ÿ 9ÿ[49ÿ...
Leia maisRotas do Vento
Auckland Bungy Bridge Climb Swimming with Dolphins Skydive 16,000ft Sea Kayaking Swimming with Dolphins Dolphin watching Coach - Criuse - Coach Coach - Criuse - Fly Fly - Cruise - Fly Underground R...
Leia mais