Análise CombinatóriaXX
Transcrição
Análise CombinatóriaXX
Análise Combinatória Parte I 1. (Ufmg 2013) Permutando-se os algarismos do número 123456, formam-se números de seis algarismos. Supondo-se que todos os números formados com esses seis algarismos tenham sido colocados numa lista em ordem crescente, a) DETERMINE quantos números possui essa lista. b) DETERMINE a posição do primeiro número que começa com o algarismo 4. c) DETERMINE a posição do primeiro número que termina com o algarismo 2. 2. (Cefet MG 2013) Um grupo de amigos, ao planejar suas férias coletivas, listou 12 cidades brasileiras que pretendem conhecer juntos, sendo que seis ficam no litoral e seis no interior do país. O critério estabelecido foi de alternar as férias, em cada ano, ora em cidades litorâneas, ora, em interioranas, definindo-se que, nos próximos 12 anos, será visitada uma cidade diferente por ano. Desse modo, a quantidade de maneiras possíveis para atender a esse critério é a) 2.3.11. 2 b) 2 .3.11. 2 c) 2.3 .11. 8 4 2 d) 2 .3 .5 . 9 4 2 e) 2 .3 .5 . Com base nas informações acima, o número de maneiras possíveis de Eddie se deslocar de A até B, sem passar pelo ponto C, é igual a a) 192 b) 60 c) 15 d) 252 4. (Ufu 2011) Uma fábrica de tintas necessita contratar uma equipe para desenvolver e produzir um novo tipo de produto. A equipe deve ser formada por 4 químicos, 1 engenheiro ambiental e 2 engenheiros de produção. Se no processo final de seleção compareceram 6 químicos, 3 engenheiros ambientais e 4 engenheiros de produção, o número de maneiras que a equipe poderá ser formada é igual a (nos itens abaixo, x denota multiplicação numérica): a) 6! ⋅ 3 b) 6! ⋅ 18 3 8 3 d) 6! ⋅ 4 c) 6! ⋅ 5. (Ufla 2008) Um problema clássico em combinatória é calcular o número de maneiras de se colocar bolas iguais em caixas diferentes. Calcule o número de maneiras de se colocar 7 bolas iguais em 3 caixas diferentes, sem que nenhuma caixa fique vazia. Sugestão: 3. (Ufu 2012) Um projeto piloto desenvolvido em um curso de Engenharia Mecânica prevê a construção do robô “Eddie”, cujos movimentos estão limitados apenas a andar para frente (F) e para a direita (D). Suponha que Eddie está na posição A e deseja-se que ele se desloque até chegar à posição B, valendo-se dos movimentos que lhe são permitidos. Admita que cada movimento feito por Eddie o leve a uma posição consecutiva, conforme ilustra um esquema a seguir, em que foram realizados 10 movimentos (as posições possíveis estão marcadas por pontos e o percurso executado de A até B, é representado pela sequência ordenada de movimentos D F D D F F D F F D). Cada possibilidade das duas barras na figura determina uma distribuição das bolas nas caixas. No desenho, caixa 1 com duas bolas, caixa 2 com três bolas e caixa 3 com duas bolas. 6. (Pucmg 2007) A figura representa os possíveis percursos realizados por um robô, programado para andar em frente seguindo os lados de hexágonos. Assim, partindo de A, o robô tem três opções distintas de caminho; e, na sequência, como não pode voltar, só pode escolher dois caminhos. Supondo que esse robô parta de A, assinale a probabilidade de o mesmo se encontrar em B, depois de percorrer exatamente três lados de hexágonos. www.soexatas.com Página 1 e) rega as plantas do jardim de sua casa. Cansado, porém, de fazer essas atividades sempre na mesma ordem, ele resolveu que, a cada dia, vai realizá-las em uma ordem diferente. Nesse caso, o número de maneiras possíveis de ele realizar essas cinco atividades, EM ORDEM DIFERENTE, é a) 24 b) 60 c) 72 d) 120 1 6 1 b) 4 1 c) 3 1 d) 2 a) 10. (Ufmg 1998) Observe o diagrama. 7. (Ufu 2006) Para gerar sua senha de acesso, o usuário de uma biblioteca deve selecionar cinco algarismos de 0 a 9, permitindo-se repetições e importando a ordem, em que eles foram escolhidos. Por questões de segurança, senhas que não tenham nenhum algarismo repetido são consideradas inválidas. Por exemplo, as senhas 09391 e 90391 são válidas e diferentes, enquanto que a senha 90381 é inválida. O número total de senhas válidas que podem ser geradas é igual a a) 69.760. b) 30.240. c) 50.000. d) 19.760. O número de ligações distintas entre X e Z é a) 39 b) 41 c) 35 d) 45 8. (Ufmg 2004) Num grupo constituído de 15 pessoas, cinco vestem camisas amarelas, cinco vestem camisas vermelhas e cinco vestem camisas verdes. Deseja-se formar uma fila com essas pessoas de forma que as três primeiras vistam camisas de cores diferentes e que as seguintes mantenham a sequência de cores dada pelas três primeiras. Nessa situação, de quantas maneiras distintas se pode fazer tal fila? 3 a) 3(5!) 3 b) (5!) 3 c) (5!) (3!) d) 15!/(3!5!) 9. (Ufmg 2001) Um aposentado realiza diariamente, de segunda a sexta-feira, estas cinco atividades: a) leva seu neto Pedrinho, às 13 horas, para a escola; b) pedala 20 minutos na bicicleta ergométrica; c) passeia com o cachorro da família; d) pega seu neto Pedrinho, às 17 horas, na escola; www.soexatas.com 11. (Ufmg 1997) O número de múltiplos de 10, compreendidos entre 100 e 9999 e com todos os algarismos distintos, é: a) 250 b) 321 c) 504 d) 576 Parte II 1. (Epcar (Afa) 2013) Num acampamento militar, serão instaladas três barracas: I, II e III. Nelas, serão alojados 10 soldados, dentre eles o soldado A e o soldado B, de tal maneira que fiquem 4 soldados na barraca I, 3 na barraca II e 3 na barraca III. Se o soldado A deve ficar na barraca I e o soldado B NÃO deve ficar na barraca III, então o número de maneiras distintas de distribuí-los é igual a a) 560 b) 1120 c) 1680 d) 2240 Página 2 2. (Ita 2013) Quantos tetraedros regulares de mesma dimensão podemos distinguir usando 4 cores distintas para pintar todas as suas faces? Cada face só pode ser pintada com uma única cor. 3. (Fuvest 2013) Sócrates e Xantipa enfrentam-se em um popular jogo de tabuleiro, que envolve a conquista e ocupação de territórios em um mapa. Sócrates ataca jogando três dados e Xantipa se defende com dois. Depois de lançados os dados, que são honestos, Sócrates terá conquistado um território se e somente se as duas condições seguintes forem satisfeitas: 1) o maior valor obtido em seus dados for maior que o maior valor obtido por Xantipa; 2) algum outro dado de Sócrates cair com um valor maior que o menor valor obtido por Xantipa. a) No caso em que Xantipa tira 5 e 5, qual é a probabilidade de Sócrates conquistar o território em jogo? b) No caso em que Xantipa tira 5 e 4, qual é a probabilidade de Sócrates conquistar o território em jogo? 4. (Fgv 2012) O compositor A é réu em um processo de plágio. Ele criou uma melodia para um jingle de TV que consiste em uma sequência de 4 notas em ordem idêntica a uma melodia registrada anteriormente pelo compositor B. O compositor A declara que não conhecia o trabalho do compositor B e que as semelhanças entre as músicas foram fruto do acaso. Para decidir sobre a plausibilidade desta explicação, um juiz solicitou o cálculo da probabilidade de que a melodia do compositor A tenha a mesma sequência de notas da melodia do compositor B por acaso, considerando que existem sete notas musicais e que cada nota é decidida aleatoriamente e de forma independente pelo compositor. Se a probabilidade for menor que 0,1%, o juiz considerará não ser plausível que tenha ocorrido por acaso, condenando o réu; em caso contrário, o compositor A será considerado inocente. a) Qual é a probabilidade de que o compositor A tenha criado por acaso a melodia com a mesma sequência de 4 notas da melodia do compositor B? Com base no critério apresentado acima, o juiz considerará o compositor A inocente ou culpado? b) Cada uma das sete notas musicais (Dó, Ré, Mi, Fá, Sol, Lá, Si) pode ter ou não uma alteração cromática (sustenido ou bemol). Assim, cada nota pode aparecer em três diferentes formas, por exemplo, Dó, Dó sustenido ou Dó bemol. Qual é o número mínimo de notas (com alteração cromática) que uma melodia deve ter para que se possa configurar plágio, de acordo com o critério do juiz (probabilidade de coincidência por acaso menor que 0,1%, considerando que cada nota e alteração cromática é escolhida aleatoriamente e independentemente pelo compositor)? c) Considere que o juiz estabeleceu um novo critério – condenará o réu, se a probabilidade de que as melodias tenham os trechos observados em comum por acaso for menor que a probabilidade de ganhar em um jogo de www.soexatas.com loteria em que o apostador escolhe 7 números entre 20 possíveis, e se torna ganhador se estes números incluírem os 3 números sorteados. Qual é a probabilidade de que o apostador ganhe na loteria nessas condições? 5. (Mackenzie 2012) No restaurante italiano Ingiusto, os garçons colocam os pedidos dos clientes à cozinha uns sobre os outros de modo que eles formam uma pilha de pedidos. Cada novo pedido que chega é colocado no topo da pilha. O pessoal da cozinha, quando se vê livre para pegar um novo pedido, pega sempre o pedido que está no topo da pilha. Em determinado dia, durante a primeira hora de funcionamento do restaurante, foram feitos e atendidos quatro pedidos de clientes. Suponha que eles tenham sido numerados e que foram colocados na pilha, na ordem 1, 2, 3, 4. Das sequências a seguir, aquela que pode representar a ordem em que esses pedidos foram pegos pelo pessoal da cozinha é a) 1, 3, 2, 4 b) 2, 4, 1, 3 c) 4, 2, 1, 3 d) 3, 4, 1, 2 e) 4, 1, 2, 3 6. (Fuvest 2011) Para a prova de um concurso vestibular, foram elaboradas 14 questões, sendo 7 de Português, 4 de Geografia e 3 de Matemática. Diferentes versões da prova poderão ser produzidas, permutando-se livremente essas 14 questões. a) Quantas versões distintas da prova poderão ser produzidas? b) A instituição responsável pelo vestibular definiu as versões classe A da prova como sendo aquelas que seguem o seguinte padrão: as 7 primeiras questões são de Português, a última deve ser uma questão de Matemática e, ainda mais: duas questões de Matemática não podem aparecer em posições consecutivas. Quantas versões classe A distintas da prova poderão ser produzidas? c) Dado que um candidato vai receber uma prova que começa com 7 questões de Português, qual é a probabilidade de que ele receba uma versão classe A? 7. (Fuvest 2010) Seja n um numero inteiro, n ≥ 0. a) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Luís e Antônio. b) Calcule de quantas maneiras distintas n bolas idênticas podem ser distribuídas entre Pedro, Luís e Antônio. c) Considere, agora, um número natural k tal que 0 ≤ k ≤ n. Supondo que cada uma das distribuições do item b) tenha a mesma chance de ocorrer, determine a probabilidade de que, após uma dada distribuição, Pedro receba uma quantidade de bolas maior ou igual a k. Página 3 Observação: Nos itens a) e b), consideram-se válidas as distribuições nas quais uma ou mais pessoas não recebam bola alguma. 8. (Enem 2009) A população brasileira sabe, pelo menos intuitivamente, que a probabilidade de acertar as seis dezenas da mega sena não é zero, mas é quase. Mesmo assim, milhões de pessoas são atraídas por essa loteria, especialmente quando o prêmio se acumula em valores altos. Até junho de 2009, cada aposta de seis dezenas, pertencentes ao conjunto {01, 02, 03, ..., 59, 60}, custava R$ 1,50. Disponível em: www.caixa.gov.br. Acesso em: 7 jul. 2009. Considere que uma pessoa decida apostar exatamente R$ 126,00 e que esteja mais interessada em acertar apenas cinco das seis dezenas da mega sena, justamente pela dificuldade desta última. Nesse caso, é melhor que essa pessoa faça 84 apostas de seis dezenas diferentes, que não tenham cinco números em comum, do que uma única aposta com nove dezenas, porque a probabilidade de acertar a quina no segundo caso em relação ao primeiro é, aproximadamente, 1 vez menor. 2 1 b) 2 vezes menor. 2 a) 1 c) 4 vezes menor. d) 9 vezes menor. e) 14 vezes menor. Parte III 1. (Ufjf 2012) Uma empresa escolherá um chefe para cada uma de suas repartições A e B. Cada chefe deve ser escolhido entre os funcionários das respectivas repartições e não devem ser ambos do mesmo sexo. Abaixo é apresentado o quadro de funcionários das repartições A e B. FUNCIONÁRIOS Mulheres Homens REPARTIÇÕES A B 4 7 6 3 De quantas maneiras é possível ocupar esses dois cargos? a) 12. b) 24. c) 42. d) 54. e) 72. 2. (Ufjf 2011) Para uma viagem, seis amigos alugaram três motocicletas distintas, com capacidade para duas pessoas cada. Sabe-se que apenas quatro desses amigos são www.soexatas.com habilitados para pilotar motocicletas e que não haverá troca de posições ao longo do percurso. De quantas maneiras distintas esses amigos podem se dispor nas motocicletas para realizar a viagem? a) 24 b) 72 c) 120 d) 144 e) 720 3. (Ufjf 2007) Uma empresa fornece a seus funcionários um cartão de acesso ao seu escritório e uma senha, que é um número com 4 algarismos, escolhidos dentre os elementos do conjunto {1, 2, 3, 4}. Não são admitidas senhas em que um mesmo algarismo apareça 3 vezes ou mais. Qual é o número máximo de senhas desse tipo que poderão ser oferecidas pela empresa? a) 204. b) 208. c) 240. d) 252. e) 256. 4. (Ufjf 2006) Um jornalista foi designado para cobrir uma reunião de ministros de estado. Ao chegar ao local da reunião, descobriu que havia terminado. Ao perguntar ao porteiro o número de ministros presentes, ele disse: "Ao saírem, todos os ministros se cumprimentaram mutuamente, num total de 15 apertos de mão". Com base nessa informação, qual foi o número de ministros presentes ao encontro? 5. (Ufjf 2006) Um cientista recebeu 5 cobaias para usar em seu estudo sobre uma nova vacina. Seus cálculos indicaram que o número de maneiras possíveis de escolher pelo menos 3 cobaias é: a) 10. b) 16. c) 50. d) 120. e) 60. 6. (Ufjf 2003) Um programa de TV organizou um concurso e, na sua fase final, promoveu o confronto entre os finalistas, de modo que cada um deles se confrontava com cada um dos outros uma única vez. Se foram gravados 28 confrontos, é correto afirmar que o número de finalistas foi: a) 2. b) 4. c) 7. d) 8. e) 14. 7. (Ufjf 2002) Uma liga esportiva elaborou um campeonato de futebol que será disputado em dois turnos. Em cada turno, cada clube jogará exatamente uma partida contra Página 4 cada um dos outros participantes. Sabendo que o total de partidas será de 306, o número de clubes que participarão par do campeonato é igual a: a) 34. b) 18. c) 17. d) 12. e) 9. Parte IV 1. (Uerj 2013) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes − vermelha, amarela e verde. Observe a figura: Considere as seguintes informações: — cada módulo pode acender apenas uma lâmpada por vez; — qualquer mensagem é configurada pelo acendimento simultâneo de três lâmpadas vermelhas, duas verdes e uma amarela, permanecendo dois módulos com as três lâmpadas apagadas; o diferentes quando pelo menos uma — duas mensagens são das posições dessas cores acesas é diferente. Calcule o número de mensagens distintas que esse sistema pode emitir. 2. (Uerj 2013) Na ilustração abaixo, as 52 cartas de um baralho estão agrupadas em linhas com 13 cartas ca de mesmo naipe e colunas com 4 cartas de mesmo valor. Denomina-se se quadra a reunião de quatro cartas de mesmo valor. Observe, em um conjunto de cinco cartas, um exemplo de quadra: O número total de conjuntos distintos de cinco cartas desse baralho lho que contêm uma quadra é igual a: a) 624 b) 676 c) 715 d) 720 3. (Uerj 2012) Todas as n capitais de um país estão interligadas por estradas pavimentadas, de acordo com o seguinte critério: uma única estrada liga cada duas capitais. Com a criação de duas novas capitais, foi necessária a construção de mais 21 estradas pavimentadas para que todas as capitais continuassem ligadas de acordo com o mesmo critério. Determine o número n de capitais, que existiam inicialmente nesse país. 4. (Uerj 2012) A tabela abaixo apresenta os critérios adotados por dois países para a formação de placas de automóveis. Em ambos os casos, podem ser utilizados quaisquer dos 10 algarismos de 0 a 9 e das 26 letras do alfabeto romano. País Descrição X 3 letras e 3 algarismos, em qualquer ordem Y um bloco de 3 letras, em qualquer ordem, à esquerda de outro bloco de 4 algarismos, também em qualquer ordem Exemplo de placa Considere o número máximo de placas distintas que podem ser confeccionadas no país X n igual a n e no país Y igual a p. A razão corresponde a: p a) 1 b) 2 c) 3 d) 6 TEXTO PARA A PRÓXIMA QUESTÃO: QUEST www.soexatas.com Página 5 Na tabela abaixo, estão indicados os preços do rodízio de pizzas de um restaurante. DIAS DA SEMANA segunda-feira, terçafeira, quarta-feira e quintafeira sexta-feira, sábado e domingo VALOR UNITÁRIO DO RODÍZIO (R$) 18,50 22,00 5. (Uerj 2012) Considere um cliente que escolheu aleatoriamente dois dias de uma mesma semana para comer pizzas nesse sistema de rodízio, pagando também um rodízio em cada dia. Calcule a probabilidade de que o valor total gasto pelo cliente nesses dois dias seja o mínimo possível. 6. (Uerj 2011) Uma fábrica produz sucos com os seguintes sabores: uva, pêssego e laranja. Considere uma caixa com 12 garrafas desses sucos, sendo 4 garrafas de cada sabor. Retirando-se, ao acaso, 2 garrafas dessa caixa, a probabilidade de que ambas contenham suco com o mesmo sabor equivale a: a) 9,1% b) 18,2% c) 27,3% d) 36,4% Parte V 1. (Fuvest 2014) Deseja-se formar uma comissão composta por sete membros do Senado Federal brasileiro, atendendo às seguintes condições: (i) nenhuma unidade da Federação terá dois membros na comissão, (ii) cada uma das duas regiões administrativas mais populosas terá dois membros e (iii) cada uma das outras três regiões terá um membro. a) Quantas unidades da Federação tem cada região? b) Chame de N o número de comissões diferentes que podem ser formadas (duas comissões são consideradas iguais quando têm os mesmos membros). Encontre uma expressão para N e simplifique-a de modo a obter sua decomposição em fatores primos. c) Chame de P a probabilidade de se obter uma comissão que satisfaça as condições exigidas, ao se escolher sete senadores ao acaso. Verifique que P < 1/ 50. Segundo a Constituição da República Federativa do Brasil – 1988, cada unidade da Federação é representada por três senadores. www.soexatas.com 2. (Unesp 2013) Quantos são os números naturais que podem ser decompostos em um produto de quatro fatores primos, positivos e distintos, considerando que os quatro sejam menores que 30? 3. (Fuvest 2013) Vinte times de futebol disputam a Série A do Campeonato Brasileiro, sendo seis deles paulistas. Cada time joga duas vezes contra cada um dos seus adversários. A porcentagem de jogos nos quais os dois oponentes são paulistas é a) menor que 7%. b) maior que 7%, mas menor que 10%. c) maior que 10%, mas menor que 13%. d) maior que 13%, mas menor que 16%. e) maior que 16%. 4. (Fuvest 2013) Sócrates e Xantipa enfrentam-se em um popular jogo de tabuleiro, que envolve a conquista e ocupação de territórios em um mapa. Sócrates ataca jogando três dados e Xantipa se defende com dois. Depois de lançados os dados, que são honestos, Sócrates terá conquistado um território se e somente se as duas condições seguintes forem satisfeitas: 1) o maior valor obtido em seus dados for maior que o maior valor obtido por Xantipa; 2) algum outro dado de Sócrates cair com um valor maior que o menor valor obtido por Xantipa. a) No caso em que Xantipa tira 5 e 5, qual é a probabilidade de Sócrates conquistar o território em jogo? b) No caso em que Xantipa tira 5 e 4, qual é a probabilidade de Sócrates conquistar o território em jogo? 5. (Unicamp 2013) Para acomodar a crescente quantidade de veículos, estuda-se mudar as placas, atualmente com três letras e quatro algarismos numéricos, para quatro letras e três algarismos numéricos, como está ilustrado abaixo. ABC 1234 ABCD 123 Considere o alfabeto com 26 letras e os algarismos de 0 a 9. O aumento obtido com essa modificação em relação ao número máximo de placas em vigor seria a) inferior ao dobro. b) superior ao dobro e inferior ao triplo. c) superior ao triplo e inferior ao quádruplo. d) mais que o quádruplo. 6. (Enem 2013) Um artesão de joias tem a sua disposição pedras brasileiras de três cores: vermelhas, azuis e verdes. Ele pretende produzir joias constituídas por uma liga metálica, a partir de um molde no formato de um losango não quadrado com pedras nos seus vértices, de modo que dois vértices consecutivos tenham sempre pedras de cores diferentes. Página 6 A figura ilustra uma joia, produzida por esse artesão, cujos vértices A, B, C e D correspondem às posições ocupadas pelas pedras. 3 5 , calcule a probabilidade de uma menina vencer o torneio. Com base nas informações fornecidas, quantas joias diferentes, nesse formato, o artesão poderá obter? a) 6 b) 12 c) 18 d) 24 e) 36 7. (Unicamp 2012) O grêmio estudantil do Colégio Alvorada é composto por 6 alunos e 8 alunas. Na última reunião do grêmio, decidiu-se formar uma comissão de 3 rapazes e 5 moças para a organização das olimpíadas do colégio. De quantos modos diferentes pode-se formar essa comissão? a) 6720. b) 100800. c) 806400. d) 1120. 8. (Unifesp 2012) Numa classe há x meninas e y meninos, com x, y ≥ 4. Se duas meninas se retirarem da classe, o número de meninos na classe ficará igual ao dobro do número de meninas. a) Dê a expressão do número de meninos na classe em função do número de meninas e, sabendo que não há mais que 14 meninas na classe, determine quantos meninos, no máximo, pode haver na classe. b) A direção do colégio deseja formar duas comissões entre os alunos da classe, uma com exatamente 3 meninas e outra com exatamente 2 meninos. Sabendo-se que, nessa classe, o número de comissões que podem ser formadas com 3 meninas é igual ao número de comissões que podem ser formadas com dois meninos, determine o número de alunos da classe. 9. (Fuvest 2012) a) Dez meninas e seis meninos participarão de um torneio de tênis infantil. De quantas maneiras distintas essas 16 crianças podem ser separadas nos grupos A, B, C e D, cada um deles com 4 jogadores, sabendo que os grupos A e C serão formados apenas por meninas e o grupo B, apenas por meninos? b) Acontecida a fase inicial do torneio, a fase semifinal terá os jogos entre Maria e João e entre Marta e José. Os vencedores de cada um dos jogos farão a final. Dado que a probabilidade de um menino ganhar de uma menina é www.soexatas.com Página 7