pro Powerstep
Transcrição
pro Powerstep
Ano 11 Revista nº 41 ABR/MAI/JUN - 2009 Por que não o equilíbrio? Balance: why not? Conexão de PCHs com mais luz ACF Maria Carneiro SHP connection with more light Comitê Diretor do CERPCH Director Committee Geraldo Lúcio Tiago Filho Secretário Executivo [email protected] Gilberto Moura Valle Filho CEMIG [email protected] Patrícia Cristina P. Silva FAPEPE [email protected] Célio Bermann IEE/USP [email protected] Cláudio G. Branco da Motta FURNAS [email protected] José Carlos César Amorim Editorial Editorial IME [email protected] Antonio Marcos Rennó Azevedo [email protected] Eletrobrás Jamil Abid ANEEL [email protected] Hamiltom Mossh Legislação MME [email protected] Legislation Comitê Editorial Editorial Committee Presidente - President Geraldo Lúcio Tiago Filho - CERPCH UNIFEI Editores Associados - Associated Publishers Adair Matins - UNCOMA - Argentina Alexander Gajic – University of Serbia Alexandre Kepler Soares - UFMT Ângelo Rezek - ISEE UNIFEI Antônio Brasil Jr. - UNB Artur de Souza Moret - UNIR Augusto Nelson Carvalho Viana - IRN UNIFEI Bernhard Pelikan - Bodenkultur Wien – Áustria Carlos Barreira Martines - UFMG Célio Bermann - IEE USP Edmar Luiz Fagundes de Almeira - UFRJ Fernando Monteiro Figueiredo - UNB Frederico Mauad – USP Helder Queiroz Pinto Jr. - UFRJ Jaime Espinoza - USM - Chile José Carlos César Amorim - IME Marcelo Marques - IPH UFRGS Marcos Aurélio V. de Freitas - COPPE UFRJ Maria Inês Nogueira Alvarenga - IRN UNIFEI Orlando Aníbal Audisio - UNCOMA - Argentina Osvaldo Livio Soliano Pereira - UNIFACS Zulcy de Souza - LHPCH UNIFEI Projeto Gráfico Diagramação e Arte Tradução Equipe Técnica Conexão de PCHs com mais luz SHP connection with more light Artigos Técnicos Technical Articles Agenda Schedule 13 37 Opinion Geraldo Lúcio Tiago Filho Camila Rocha Galhardo Adriana Barbosa MTb-MG 05984 Adriana Barbosa Camila Rocha Galhardo Fabiana Gama Viana e Fábio Couto Orange Design Adriano Silva Bastos Adriana Candal Cidy Sampaio da Silva 04 Por que não o equilíbrio? Balance: why not? Opinião Expediente Editorial Editor Coord. Redação Jornalista Resp. Redação 03 38 Interligação e conexão de PCHs SHP Connection and Interconnection Curtas News 40 PCH Notícias & SHP News é uma publicação trimestral do CERPCH The PCH Notícias & SHP News is a three-month period publication made by CERPCH Tiragem/Edition: 5.500 exemplares/issues contato comercial: [email protected] Av. BPS, 1303 - Bairro Pinheirinho Itajubá - MG - Brasil - cep: 37500-903 e-mail: [email protected] [email protected] Fax/Tel: (+55 35) 3629 1443 ISSN 1676-0220 00041 9 771676 022092 02 ICOLD E CBDB realizam o 23º Congresso Internacional de Grandes Barragens ICOLD and CBDB hold 23th International Meeting of Large Dams Delegação do Brasil participa de evento internacional de PCH Brazilian delegation participates in international event on SHPs Limpador de Grades gera eficiência em PCH First SAUR trash rake cleaning increases SHP efficiency Prezados Leitores. Dear readers, A revista PCH Notícias & SHP News aborda, nesta edição, o deslocamento ambiental causado pelas construções de barragens de hidrelétricas. A construção de grandes hidrelétricas e, consequentemente, suas barragens ocasionam uma série de impactos sociais e ambientais negativos. No Brasil, por conta de sua opção energética por grandes empreendimentos hidrelétricos, essa questão torna-se ainda mais presente. This edition of the magazine PCH Notícias & SHP News talks about population displacement caused by the construction of the dams of hydropower plants. The construction of large hydropower plants and, consequently, their dams cause a series of negative social and environmental impacts. In Brazil, because of the option for large hydropower enterprises, this issue becomes is even more significant. Nessa matéria procuramos abordar toda a problemática envolvendo o deslocamento de comunidades causadas pelas barragens. In that article we try to focus on the whole problem involving comunity displacement caused by the dams. Outro tema abordado nesta edição é o que diz respeito aos Procedimentos de Distribuição (Prodist), que foram aprovados pela Agência Nacional de Energia Elétrica (Aneel) em dezembro de 2008, por meio da resolução 345/2008. This magazine also approaches another topic that regards the Distribution Procedures (Prodist), which were approved by Aneel (Resolution 345/2008) in December, 2008. Nosso leitor pode acompanhar, nesta edição, a cobertura do 23º Congresso da Internacional de Grandes Barragens promovido pela Comissão Internacional de Grandes Barragens (ICOLDCIBG), e organizado pelo Comitê Brasileiro de Grandes Barragens (CBDB), entre os dias 24 e 29 de maio, em Brasília. Aproveito a oportunidade para salientar que temas como o papel das PCHs e demais fontes renováveis no desenvolvimento da matriz energética brasileira, Mercado e Meio Ambiente serão apresentados e debatidos em nossa 5ª Conferência que será realizada nos dias 5 e 6 de agosto, em São Paulo. Reitero aqui o convite a todos nossos leitores para que participem conosco desse encontro. Mais informações podem ser obtidas no site: www.conferenciadepch.com.br. Por fim, gostaria de informar que para melhor disseminar a pesquisa acadêmica nacional e internacional a partir da edição nº 41 estaremos ampliando nossa sessão técnica para artigos das áreas de Recursos Hídricos, Meio Ambiente e Energias renováveis e não renováveis. Our reader can follow the covering of the 23rd International Meeting of Large Dams promoted by the International Commission of Large Dams (ICOLD-CIBG), and organized by the Brazilian Committee of Large Dams (CBDB) in Brasilia between May 24th and 29th. I also want to use this opportunity to highlight that topics such as the role of SHPs and of other renewables in the development of the Brazilian energy matrix, market and environment will also be presented and debated during our 5th Conference that will be held in São Paulo on August 5th and 6th. Again, I would like to invite all the readers to participate in the event. For more information: www.conferenciadepch.com.br. Finally, I would like to inform that we will increase the technical segment of our magazine from issue 41 and on in order to disseminate more national and international researches covering the areas of Water resources, Environment, Renewable and NonRenewable Energy. Geraldo Lúcio Tiago Filho Geraldo Lúcio Tiago Filho 03 LEGISLAÇÃO Por que não o equilíbrio? Por Fabiana Gama Viana Quando se fala na construção de uma grande hidrelétrica, logo se pensa nos impactos sociais e ambientais inerentes a esse tipo de empreendimento e no embate entre as entidades representativas das populações atingidas e os empreendedores. Não se pode considerar a geração de energia elétrica como algo negativo dentro de uma nação, pois ela certamente representa desenvolvimento e melhores condições de vida para as populações atendidas. E obviamente quem defende as populações atingidas por esse tipo de empreendimento não é contra a energia elétrica e, muito menos, o desenvolvimento. Via de regra, a construção de grandes hidrelétricas e, consequentemente, suas barragens ocasionam uma série de impactos sociais e ambientais negativos. No Brasil, por conta de sua opção energética por grandes empreendimentos hidrelétricos, essa problemática torna-se ainda mais presente. Mesmo com todos os estudos ambientais prévios feitos, as ações de mitigação desses impactos podem não ser totalmente eficazes, não compensando todos os efeitos negativos. O grande impacto causado por esses empreendimentos é o alagamento de grandes áreas, ocasionando sérios e irreversíveis problemas ambientais e o deslocamento compulsório das populações que viviam na área do alagamento. Em relação a este último, as populações são atingidas direta e indiretamente com perdas e danos individuais e coletivos, materiais e imateriais, os quais mesmo depois de anos após a conclusão das obras ainda são sentidos. Impactos Sociais O impacto mais evidente é a perda de terras, casas e espaços comuns, como igrejas, escolas e comércios. Entretanto, há vários outros danos menos evidentes, como a destruição de laços e redes sociais. No caso de grupos indígenas e minorias étnicas, esse tipo de impacto pode ser ainda maior devido à forte ligação espiritual e cultural com o território. Vale ressaltar também uma maior incidência de casos de stress, depressão e suicídios nessas comunidades, além das doenças sexualmente transmissíveis e parasitárias (esquistossomose e malária, por exemplo), já que as barragens propiciam ambiente favorável à proliferação de mosquitos, caramujos e outros animais transmissores dessas doenças. Merece destaque ainda o tempo de viabilização (projeto e construção) de uma grande hidrelétrica. Nesse sentido, a partir do momento em que a construção de uma barragem é anunciada, a população a ser atingida começa a sofrer com a interrupção de investimentos públicos e privados. Dessa forma, os bancos deixam de emprestar dinheiro, escolas e hospitais não são construídos, serviços são interrompidos e mesmo as famílias deixam de investir na melhoria de suas terras e casas. Associado a isso, há a incerteza da população que desconhece quando e se de fato a barragem será construída, quantas casas e propriedades serão inundadas, quem será atingido e qual o valor da compensação. Deslocamento Populacional Compulsório Não se sabe ao certo quantas pessoas foram deslocadas até hoje por conta das barragens. A Comissão Mundial de Barragens, a partir de dados de 2003, estima que esse número seja de 40 a 80 milhões. O Movimento dos Atingidos por Barragens (MAB), hoje o principal movimento popular nacional de resistência à construção de barragens, estima em 1 milhão de pessoas deslocadas em 130 anos de construção de barragens no Brasil e mais de 34 mil km2 de hectares de terras encobertos pelos reservatórios. Segundo Decio Michellis Jr., vice-presidente de engenharia e meio ambiente da Rede Energia, esta estimativa é razoável, considerando que o MAB contempla inclusive a modificação e/ou perda de laços familiares e o rearranjo ou a desagregação de famílias decorrentes da dinâmica de deslocamento populacional das famílias realocadas. De acordo com a pesquisadora Raquel de Matos Viana, autora do trabalho Grandes Barragens, Impactos e Reparações: um estudo de caso sobre a barragem de Itá (2003), a imprecisão na definição do número de atingidos está diretamente relacionada a um problema maior: a definição do conceito de atingido. Segundo Via- 04 na, a maior parte das contagens feitas por governos e empresas determina como atingidos pelos empreendimentos apenas as famílias deslocadas devido ao enchimento do reservatório e que possuem o título de propriedade. Dessa forma, acabam ficando de fora desses levantamentos as populações à montante e à jusante da barragem, os posseiros e aqueles que não possuem o título de propriedade, além das populações deslocadas por conta de outras partes do empreendimento, como linhas de transmissão, por exemplo. Também não entram na contagem, aponta a pesquisadora, as famílias que perdem suas terras ou parte delas, mas que permanecem com suas casas, as pessoas que vivem nas ilhas formadas pelo reservatório e aquelas que fazem uso das terras comuns para cultivo de frutos, vegetais, madeira e criação de gado e que têm o acesso obstruído por conta da destruição e alagamento de estradas e acesso a escolas, hospitais, comércio e outros. Ricardo Pigatto, presidente da Associação Brasileira dos Pequenos e Médios Produtores de Energia Elétrica (APMPE), explica que, na fase de inventário, faz-se a primeira análise desse quesito, com o levantamento fundiário. Dessa forma, em função dos resultados obtidos e das consequências que a formação dos reservatórios pode trazer às comunidades e patrimônio histórico, definem-se as partições e potências das usinas. “Por questões 'oportunísticas' e, às vezes, levados por movimentos sociais assistencialistas, a população ao saber que haverá um aproveitamento hidrelétrico em um determinado local busca criar formas de alcançar benefícios não previstos originalmente”, lamenta Pigatto. O vice-presidente de engenharia e meio ambiente da Rede Energia, Decio Michellis, completa dizendo, nas últimas décadas, o processo de licenciamento ambiental é meticuloso e detalhado na definição de critérios para enquadramento como impactado pelos empreendimentos. Segundo Michellis, os últimos empreendimentos têm instalado comissões tripartites – impactados, empreendedores e poder público, com o acompanhamento do Ministério Público – para tratar dos casos omissos, não previstos nos critérios de tratamento das populações impactadas pelos empreendimentos. Michellis ainda destaca que as políticas operacionais dos agentes financiadores aplicáveis aos reassentamentos involuntários também contribuíram para reduzir as distorções regionais. “Os Princípios do Equador [criados pelo International Finance Corporation (IFC), instituição vinculada ao Banco Mundial] têm aglomerado um número crescente de bancos internacionais de primeira linha que passaram a incluir critérios de avaliação socioambiental nas atividades de project finance e concessão de crédito”, explica. E as pequenas centrais hidrelétricas? LEGISLATION Balance: why not? Translation Adriana Candal When the talk is about building a large hydropower plant, the first thought that come to our minds regard the social and environmental impacts that are inherent in this type of enterprise and in the arguments between the entities that represent the families and the entrepreneurs. Energy generation cannot be considered as something negative in the nation, given that it certainly represents development and better life conditions for the population. Obviously, the entities that defend the population in regards to this type of enterprise are not against electric power, let alone, development. Generally, the construction of large hydropower plants and, consequently, their dams cause a series of negative social and environmental impacts. As Brazil has chosen for this type of energy generation, carried out by large hydropower enterprises, this problem becomes even more present. Even with all of the previous environmental studies that are carried out, the mitigation actions may not be completely efficacious and they may not compensate all the negative effects. The greatest impact caused by this type of enterprise is the flooding of large areas, causing serious and irreversible environmental problems and the mandatory displacement of the families who used to live in those areas. In relation to the latter, the population is hit directly and indirectly with individual and collective and material and non-material losses, which are felt even many years after the works have been concluded. Social Impacts The most evident impact regards the loss of lands, houses and public spaces such as churches, schools and shops. However, there are other more subtle damages such as the destruction of social bonds and networks. In case of native Indian and ethical minority groups, this type of impact may be even worse due to the strong spiritual and cultural bond with their territory. It is also important to highlight the existence of a higher number of cases of stress, depression and suicides within these communities, as well as more cases of sexually transmitted diseases and parasitic diseases such as schistosomiasis and malaria, for example, given that the dams provide a favorable environment for the proliferation of mosquitoes, snails and other animals that transmit these diseases. The feasibility time (project and construction) of a large hydropower plant also deserves attention. In this case, as soon as the construction of a dam is announced, the population of the area starts to suffer with the interruption of public and private investments. This way, banks stop lending money, schools and hospitals are not built, services are interrupted and even the families stop investing in the improvement of the properties. In addition, there is the uncertainty; the population does not know when or whether the dam will really be constructed, whose and how many properties will be flooded and the compensation value. Mandatory Population Displacement It is not certain how many people have been displaced so far because of the construction of dams. Based on data from 2003, the World Commission on Dams estimate this number to range between 40 and 80 million people. The people that were affected by dams created a movement and it is the most important popular movement of the country against the construction of dams, estimate that 1 million people have been displaced over 130 years in Brazil and more than 34 thousand square kilometers of land have been flooded by the reservoirs. According to Mr. Decio Michellis Jr., vice-president of engineering and environment of Rede Energia, this figure is reasonable, considering that the MAB takes into account the modification and/or losses of family ties and the rearrangement or disaggregation of families caused by the population displacement dynamics of the resettled families. According to researcher Raquel de Matos Viana, author of “Large Dams, Impacts and Repairs: a case study about the Itá (2003), the lack of accuracy in order to define the number of people that were affected is directly related to a bigger problem: the definition of the concept of “affected”. According to Viana most of the calculations carried out by governments and companies determine as “affected” by the enterprise only the families that were displaced because of the reservoir and that have the ownership document. This way, the populations downstream and upstream of the dam, those who live on the land but do not own it and those who do not have an ownership certificate, in addition to the population that was displaced because of other parts of the enterprise such as power lines, for example, are not taken into account. Also, the researcher did not take into account the families that lost their lands or part of them, but kept their houses, people that live in the islands created by the reservoir and those, who use common land for growing fruit, vegetables, wood and for livestock, whose access is blocked because of the destruction and flooding of roads and paths that lead to schools, hospitals, shops, etc. Mr. Ricardo Pigatto, president of the APMPE (Brazilian association of small and medium electric power producers) explains that the first part of the inventory stage is the asset analysis. This way, based on the results and on the consequences that the formation of reservoirs may bring to the communities and historical heritage, the partitions and power of the plant are defined. “Due to 'opportunistic' issues, which are sometimes led by social movements, the population, knowing that there will be a hydropower at a certain place, looks for ways to reach benefits that were not originally forecast”, regrets Mr. Pigatto. The vice-president of engineering and environment of Rede Energia, Mr. Decio Michellis, states that within the past decades the environmental licensing process has been meticulous and detailed regarding the definition of the criteria for the classification of the impacts the enterprises will cause. According to Mr. Michellis the last enterprises have installed tripartites commissions– the impacted population, the entrepreneurs and the public power; everything followed by the Public Ministry to deal with the cases that are not forecast in the criteria regarding the way to treat the population that will suffer the impacts caused by the enterprises. Mr. Michellis highlights that the operational policies of the funding agents that are applied to the involuntary resettlements also contributed to the reduction of regional distortions. “Equator principals [created by the International Finance Corporation (IFC), an institution associated to the World Bank] have gathered an increasing number of international banks that started to include socioenvironmental assessment criteria in their project finance activities and credit concessions”, he explains. 05 LEGISLAÇÃO Por definição da Resolução nº 394/1998 da Agência Nacional de Energia Elétrica (ANEEL), as pequenas centrais hidrelétricas são empreendimentos de pequeno porte cuja capacidade instalada seja superior a 1 MW e inferior a 30 MW, com área do reservató2 2 rio inferior a 3 km , podendo chegar a 13 km em casos específicos, de acordo com Resolução nº 652/2003. Uma PCH típica opera normalmente a fio d'água, ou seja, o reservatório não permite a regularização do fluxo de água. As pequenas centrais estão localizadas em rios de pequeno e médio portes com grandes desníveis em todo o seu percurso, gerando potência hidráulica suficiente para movimentar as turbinas. Os pequenos empreendimentos hidroenergéticos estão entre as opções defendidas por grande parte dos ambientalistas, sendo colocados no mesmo patamar que outras formas de geração de energia elétrica, como eólica, biomassa e solar. As vantagens das PCHs são inúmeras frente às grandes hidrelétricas. Vantagens das PCHs Como as PCHs são centrais do tipo fio d'água, ou seja, sem armazenamento de água, não há necessidade de formação de grandes reservatórios. Dessa forma, o impacto ocasionado por uma PCH é diminuto em comparação às UHEs (usinas hidrelétricas), pois não há grande interferência no regime do rio e uma menor quantidade de área é desmatada e menos terras desapropriadas. Da mesma forma, há menores perdas na transmissão de energia elétrica por conta da energia gerada pelas PCHs, o que não exige a construção de extensas linhas de transmissão, muitas vezes se conectando direto com a distribuição. Aliado a isso, segundo a publicação da Revista Página 22 – Pequenas, porém invocadas (29/04/09) – de Carolina Derivi, grande parte do potencial para a construção de grandes hidrelétricas está nos rios da Região Amazônica, havendo a necessidade de instalação de longas linhas de transmissão. Já no caso das PCHs, os rios mais apropriados para a implantação destas estão nas regiões Sudeste e Centro-Oeste, próximas aos grandes centros consumidores de energia. Soma-se a todas essas vantagens uma série de incentivos aos empreendedores de PCHs. Resoluções elaboradas pela Agência Nacional de Energia Elétrica (ANEEL) permitem que a energia gerada pelas pequenas centrais hidrelétricas entre no sistema elétrico nacional com o empreendedor tendo descontos nas taxas pelo uso da rede de transmissão e distribuição. Além disso, as PCHs estão dispensadas do pagamento de royalties aos municípios pela exploração dos recursos hídricos, podendo fornecer energia para o Sistema Interligado, consumidores livres e sistemas isolados. Quando construídas no sistema isolado da Região Norte em substituição às geradoras térmicas a óleo Diesel, podem também receber incentivo do fundo formado com recursos da Conta Consumo de Combustíveis Fósseis (CCC) para seu financiamento. Isso para não falar de programas governamentais de incentivo como o PCHCOM, de 10 anos atrás e que não trouxe muitos resultados, e o Programa de Incentivo às Fontes Alternativas de Energia(Proinfa). Sistema em Cascata Contudo, o que era para ser incentivo à construção de mais PCHs e, com isso, atenuar os impactos sociais e ambientais causados pelas grandes hidrelétricas acaba servindo como ponto de partida para os principais críticos dos pequenos empreendimentos hidroenergéticos. Como apresentado no trabalho de Matos Viana, de acordo com 06 o relatório da Comissão Mundial de Barragens (2000), grande parte dos principais rios e bacias hidrográficas mundiais comportam grande número de barragens, o que acaba ocasionando a fragmentação do ecossistema fluvial. Nesses casos, os impactos são intensificados, resultando em um aumento cumulativo das perdas de recursos naturais e da integridade do ecossistema. E é exatamente essa a principal crítica em relação aos impactos sociais e ambientais advindos da construção de PCHs, ou seja, quando há o sistema em cascata. Neste, várias pequenas usinas são instaladas em um único rio, e os obstáculos (barragens) instalados nele podem impossibilitar a migração de peixes, necessária à reprodução das espécies. Mesmo com os mecanismos de transposição de peixes, ainda são necessárias pesquisas a fim de solucionar essa problemática. De acordo com Ricardo Pigatto, presidente da Associação Brasileira dos Pequenos e Médios Produtores de Energia Elétrica (APMPE), o 'sistema' em cascata vale para qualquer 'categoria' de usina hidrelétrica, grandes ou pequenas. “Muitas vezes um misto disso tudo”. O que existe, completa Pigatto, é um dispositivo legal que determina o aproveitamento ótimo do rio pelo qual a ANEEL deve zelar, isto é, o máximo de geração elétrica combinado com os menores impactos ambientais. PCHs X UHEs A publicação Energia Positiva para o Brasil de 2004 da organização não-governamental Greenpeace aponta que os impactos combinados da construção de várias pequenas usinas em um mesmo rio podem ser comparados aos provocados por grandes hidrelétricas, mesmo as PCHs sendo uma alternativa às UHEs na geração de energia. Nesse sentido, a coordenadora socioambiental da Associação Brasileira dos Investidores em Autoprodução de Energia Elétrica (ABIAPE), Adriana Coli Pedreira, afirma que não há uma resposta positiva ou negativa para essa questão. “Depende das características tanto do rio, das PCHs que serão construídas em cascata quanto da UHE na qual será feita a comparação dos impactos sociais e ambientais”, explica. O que vem sendo feito, aponta Pedreira, é um estudo integrado dos empreendimentos em cascata no mesmo rio, hoje conhecido como Estudo Integrado de Bacia Hidrográfica ou uma Avaliação Ambiental Integrada, que identifica os efeitos sinérgicos e cumulativos resultantes dos impactos ambientais ocasionados pelo conjunto de aproveitamentos hidrelétricos na bacia hidrográfica. Através desses estudos, são apresentados indicadores de sustentabilidade, áreas de fragilidade ambiental e de conflitos são delimitadas e há a identificação das potencialidades socioeconômicas relacionadas aos aproveitamentos e diretrizes ambientais para a concepção de novos projetos de geração de energia elétrica. Pigatto explica que, quando demonstrado e evidenciado que a implantação de uma ou mais UHEs causarão maiores impactos socioambientais que o somatório de algumas PCHs, cabe ao desenvolvedor demonstrar e buscar a melhor partição de quedas com o maior aproveitamento energético e menor impacto. “Só existirão rios com PCHs em cascata se demonstrado que este é o melhor resultado da combinação energia-ambiente”, destaca. Tirar vantagem da vantagem Pigatto ainda ressalta que a ANEEL é bastante diligente no controle dos inventários e respectivas partições de quedas. Assim, sendo constatado que no local deveriam ser implantadas UHEs em vez de PCHs, a agência toma as providências para a devolução do LEGISLATION What about the Small Hydropower Plants? According to a definition established by Resolution 394/1998 from ANEEL (National Agency for Electric Energy) the Small Hydropower Plants (SHPs) are small enterprises whose installed 2 capacity lies between 1 MW and 30 MW, with a reservoir of 3 km at 2 most, which can reach 13 km in specific cases, according to Resolution 652/2003. A typical SHP normally operates at run-of-river scheme, i.e., the reservoir does not allow the regulation of the water flow. SHPs are located on small and medium sized rivers with significant difference of levels along their course, generating enough hydraulic power to move the turbines. As well as wind, solar and biomass energy, small hydropower enterprises are among the electric power generating options defended by a considerable part of the environmentalists. SHPs have countless advantages when compared to large Hydropower plants. great number of dams, which causes the fragmentation of the fluvial ecosystem. In these cases, the impacts are intensified, resulting in the increase in the losses of natural resources and in the integrity of the ecosystem. And this is exactly the principal criticism in relation to the social and environmental impacts that come with the construction of SHPs, i.e., when there is a cascade system. In this case, several SHPs are installed in the same river and the obstacles (the dams) may make the migration of fish impossible. Even with the fish diversion mechanisms, a lot of research is still necessary to solve this problem. According to Mr. Pigatto, the cascade system may cause problems for any type of hydropower plants, small or big ones or both of them together. Mr. Pigatto goes on saying that there is a legal device that determines the optimum use of a river, and Aneel must see to it – the maximum generation combined with the lowest environmental impacts. Advantages of SHPs As SHPs are run-of river schemes plants, i.e., they do not have water storage, so there is no need for large reservoirs. This way, the impacts caused by SHPs are considerable smaller than the ones caused by Large Hydropower Plants (LHP), given that there is not a significant interference in the river's natural regime, a smaller area is deforested and less land is expropriated. In the same way, the losses in the transmission of energy generated by SHPs are also lower because there is no need to build long power lines, and the SHPs are, many times, connected directly to the distribution. Also, according to the magazine Página 22 – “Small, but with an attitude” (29/04/09) by Carolina Derivi, most part of the potential for the construction of large power plants is on the rivers of the Amazon region, so the installation of long power lines is necessary. On the other hand, the SHPs can be implemented on rivers that are located in the southeast and center-west regions, closer to the large energy consuming centers. In addition to all of these advantages, there is a number of incentives that are given to those who want to invest in SHPs. Resolutions elaborated by ANEEL Allow the energy that is generated by SHPs to enter in the national electric system granting discounts to the entrepreneurs for the use of the transmission and distribution grids. Besides, SHPs are exempt from paying royalties to the cities for the use of the water resources, being able to supply energy to the National Interconnected System (SIN), free consumers and isolated systems. Instead of diesel thermal power plants, when SHPs are build in the north region, they can also receive incentives from the fund created with resources of the Fossil Fuels Consumption Account (CCC) for their funding. This not to mention government programs such as PCH-COM, created ten years ago but without good results, and the program to encourage alternatives sources of energy (PROINFA). Cascade Hydropower Plants However, what was supposed to be an encouragement to build more SHPs and, consequently mitigate the social and environmental impacts caused by the large hydropower plants, ended up serving as a starting point for the most important critics against SHPs. As it was shown in the study carried out by Matos Viana, according to a report from the World Commission on Dams (2000) most part of the main rivers and hydrographic basins accept a SHPs X LHPs The publication Energia Positiva for Brazil 2004 carried out by the NGO Greenpeace shows that the impacts of the construction of several SHPs on the same river can be compared with the impacts caused by large hydropower plants, even if the SHPs are an alternative to the LHPs for the generation of energy. In this sense, the socio-environmental coordinator of the Brazilian Association of Investors in Electric Energy Self-production (ABIAPE), Ms. Adriana Coli Pedreira, says that there are no positive or negative answers to this question. “It depends on the characteristics of the rivers, on the SHPs that will be constructed in a cascade way and on the LHP that will be used for comparing the socio-environmental impacts”, she explains. She said that what is being carried out is an integrated study of the cascade enterprises on the same river, which is known today as Integrated Study of a Hydrographic Basin or an Integrated Environmental Assessment, which identifies the sinergetic and cumulative effects resulting from the environmental impacts caused by the set of hydropower plants in the basin. These studies present sustainability indicators, outline areas of conflict and environmental fragility and identify the socio-economic potentialities related to the SHPs and the environmental guidelines for the conception of new electric energy generating projects. Mr. Pigatto explains that when it is evident and proved that the implementation of one or more LHPs will cause more socioenvironmental impacts than the sum of some SHPs, the developer is in charge of searching the best partition of the heads, i.e., with a better energy use and lower impacts. “There will only be rivers with cascade SHPs if it is demonstrated that this is the best result of the relation energy/environment”, he says. Taking advantage from the advantage Mr. Pigatto also highlights that ANEEL is very detailed when it comes to the control of the inventories and respective head partition. This way, if it is evident that LHPs should be installed instead of SHPs, the agency will be in charge of returning the inventory studies so that the necessary adjustments can be carried out. Ms. Pedreira, on the other hand, says that ANEEL must assess whether the entrepreneur only wants the incentives granted to SHPs and ends up proposing projects of cascade plants instead of proposing a LHP, where the potential would be much better used. Mr. Michellis says that the possibility of dividing some LHPs into 07 LEGISLAÇÃO estudo de inventário para os ajustes necessários. Já Pedreira afirma que a ANEEL deve avaliar se o empreendedor visa apenas aos incentivos concedidos às PCHs e acaba propondo projetos de usinas em cascata em detrimento de uma UHE onde seria melhor aproveitado o potencial. Michellis completa dizendo que a possibilidade de fracionar algumas UHEs em várias PCHs é pouco provável e viável. “As características intrínsecas do rio a ser inventariado e sua vocação natural para UHEs e PCHs acabam sendo determinantes na escolha da divisão de quedas a ser analisada e aprovada pela ANEEL”. Por que não o equilíbrio? O desenvolvimento e o progresso de um país não precisam ser excludentes. É preciso sim um melhor planejamento de ações para que a melhoria das condições de vida em uma região não ocasione a piora e deterioração de outra. É fato que a energia elétrica é algo fundamental dentro de um país, e qualquer ação do homem sobre o meio vai causar algum tipo de impacto, seja ele ambiental ou social, considerando-se todas as formas de geração de energia elétrica. Nesse caso, o planejamento torna-se essencial, pois diferenças culturais e de valores e tradições, da mesma forma que as relações sociais e a interação com os recursos naturais, tornam os impactos sociais e ambientais singulares em cada projeto, região e comunidade. Assim, incluir os projetos hidrelétricos em um rol específico de regras sistematizadas e metodologias pré-definidas vai de encontro às diversidades sociais, culturais e ambientais. Reduzir o desperdício ocasionado por equipamentos obsoletos e manutenção inadequada das linhas de transmissão, repotenciar, modernizar e reativar antigas usinas hidrelétricas são opções viáveis para a geração de energia elétrica sem causar grandes danos ou perdas à comunidade e ao meio ambiente; da mesma forma, os pequenos empreendimentos hidroenergéticos não devem ser descartados. LEGISLATION several SHPs is unlikely and unfeasible. “In the end, the natural characteristics of the river will determine the choice of head partition that will be analyzed and approved by ANEEL”. Why not balance? The development and progress of a country do not need to be excluding. Of course, it is necessary a better planning of actions so that the improvement of life conditions in one region does not cause the worsening and the deterioration of the conditions in another. It is a fact that electric energy is of utmost importance for a country, and any actions made by man towards this goal will cause some kind of impact, social or environmental, considering all of the ways to generate electric energy. In this case, planning be- comes essential, given that cultural, principles and tradition differences, as well as social relations and interaction with natural resources, will made the social and environmental impacts unique in each project, community and region. This way, including hydropower projects in a specific list of systematized rules and pre-defined methodologies meets the needs of social, cultural and environmental diversities. Reducing energy waste caused by obsolete equipment and inappropriate maintenance of the power lines, repowering, refurbishing and commissioning old hydropower plants are feasible options for electric energy generation without causing serious damages or losses to the community and the environment; and the Small hydropower plants must not be discarded. LEGISLAÇÃO Conexão de PCHs com mais luz Por Fábio Couto A entrada em vigor de novas regras para o setor de distribuição também refletirá no setor de Pequenas Centrais Hidrelétricas. Os Procedimentos de Distribuição (Prodist), foram aprovados pela Agência Nacional de Energia Elétrica em dezembro do ano passado - Resolução 345/2008. Elas são normas que disciplinam o relacionamento entre consumidores e usinas de geração distribuída que estejam conectados em sistemas em tensão abaixo de 230 kV e as respectivas distribuidoras -total de 64–, entre outros aspectos. mentação prévia, entre a qual a que estabelece o acesso à rede de distribuição ou transmissão. Essas regras começaram a ser elaboradas em 1999, por conta do Projeto Reseb - Reestruturação do Setor Elétrico Brasileiro, e levou nove anos para receber uma regulação específica. Entre os principais objetivos do Prodist estão o de propiciar o acesso aos sistemas de distribuição, assegurando tratamento não discriminatório entre agentes. Para o caso das Pequenas Centrais Hidrelétricas - entre outros empreendimentos que podem ser conectados em linhas de distribuidoras, existem regras específicas. Para Said, a saída poderia estar na concessão de um parecer prévio, com base na consulta do empreendedor, para a participação nos leilões. A questão é importante, observa, pois a maioria das PCHs conecta-se em redes de distribuição, por conta dos descontos que essa fonte pode obter nas Tarifas de Uso dos Sistemas de Distribuição – por ser classificada como fonte incentivada. Uma delas estabelece que as usinas deverão realizar Contrato de Uso do Sistema de Distribuição (Cusd) como unidade consumidora ao Cusd que foi celebrado como gerador. Esse contrato será verificado pela Aneel e, se necessário, receberá propostas para ser adequado às características do empreendimento. Para o sócio da Excelência Energética, José Said de Brito, as novas regras vieram dar uma luz ao setor, definindo com clareza ações e prazos a serem cumpridos pelos agentes. "Até então o tempo para a definição de acesso era longo", disse Said. Ele lembra que o módulo que trata da relação entre centrais geradoras e distribuidoras estabelece que a consulta de usinas para a conexão à rede deve ser respondida em até 60 dias. Além disso, a resposta deve deixar claro as condições do acesso e o papel de cada um na realização de investimentos, participação financeira e responsabilidades prévias. Como exemplo, o Prodist determina que conexão de unidades consumidoras com carga instalada superior a 50 kW, incluindo eventuais aumentos de carga, deve ocorrer com participação financeira da unidade consumidora – como as PCHs, conforme regras específicas da Aneel. Outro ponto presente nas novas regras é a fixação de quatro etapas para obtenção de acesso – consulta, informação, solicitação e parecer, sendo algumas delas opcionais ou obrigatórias dependendo da condição da central geradora – se concessão, autorização ou registro. Entre a solicitação e o parecer de acesso, o prazo varia de 30 dias, para conexão sem necessidade de realização de obras, a 120 dias, para empreendimentos que demandarão obras para a conexão. Essa exigência é obrigatória para PCHs que solicitam registro na Aneel. Com o parecer, os contratos devem ser celebrados em até três meses. Para PCHs que pleiteiam autorização, os prazos são mais longos, mas definidos. A partir da consulta de acesso, o prazo é de 60 dias para a resposta sobre a informação. De posse da informação do acesso, o empreendedor tem 60 dias para solicitar a autorização. Quando ela é publicada no Diário Oficial, inicia-se novo prazo, agora, de 60 dias, para o gerador fazer a solicitação de acesso. E a partir dessa data, conta-se 30 dias para liberação do parecer, caso não seja necessária realização de obras. O prazo passa para 120 dias em caso de obras. Com o parecer em mãos, o prazo de assinatura dos contratos é de 90 dias. Said destaca que as regras abriram necessidade de ajuste em pontos que são considerados como obscuros. Um deles tem referência aos leilões de energia nova. O consultor comenta que uma das regras dos leilões exige a apresentação de uma série de docu- 10 No entanto, a obtenção de acesso à rede requer a autorização do empreendimento, o que só acontece após a negociação de energia no leilão. Uma das regras para a participação de PCHs em leilões de energia nova, de acordo com a legislação setorial, determina que empresas só podem participar desses certames se não tiverem sido autorizados pela Agência Nacional de Energia Elétrica. Tanto é que as PCHs não entraram com força no cadastro para as Instalações Compartilhadas de Geração, as ICGs. A razão, comenta Said, é que naquela ocasião, os empreendedores de biomassa estavam dispostos à expandir participação na matriz energética. No entanto, eventual insucesso em leilões de energia nova não inviabilizariam plantas de álcool do empreendedor, já que esses projetos seriam instalados de qualquer maneira. Já as PCHs dependeriam do sucesso nos leilões para definir se entrariam em ICGs, que são instalações de rede básica. “No caso da rede de distribuição, as PCHs ficam dentro do conceito de geração distribuída” LEGISLATION SHP connection with more light Translation Adriana Candal Once the new regulations regarding the power distribution sector are in force, there will be consequences within the sector of Small Hydropower Plants (SHPs). The Distribution Procedures (Prodist) were approved by ANEEL (National Agency for Electric Power) in December 2008 – Resolution 345/2008. These rules regulate the relation between consumers and distributed generation plants that are connected to systems whose voltage is below 230 kV and the respective distributors – 64 altogether – among other aspects. ing plants and distributors establishes that the enquiries of plants regarding the connection to the grid must be answered in 60 days at the most. These norms started to be elaborated in 1999 due to the Reseb Project – Restructuring of the Brazilian Electric Sector and took nine years to receive a specific regulation. Among the main objectives of the Prodist we can mention the possibility of access to the distribution systems, assuring a non-discriminatory system among the agents. As far as SHPs are concerned and other enterprises that can be connected to power lines, there are specific rules. Another aspect that was present in the new rules is the establishment of four stages for the access attainment – consult, information, request and assessment. Some of them are optional and others are mandatory, depending on the condition of the generating plant, whether it is concession, authorization or registry. The access request and assessment must take place within a period of 30 days for the connection without any type of work, the period is 120 or the enterprises that will demand some sort of work for the connection. This requirement is mandatory for SHPs that request the registry with Aneel. With the assessment, the contracts must be signed within three months at most. One of these rules establishes that the generating plants must sign a Contract for the Use of the Distribution System (Cusd) as they use the distribution system. This contract will be verified by Aneel and, if it is necessary, it will receive proposals so that it will be adjusted to the features of the enterprise. According to Mr. José Said Brito, Excelência Energética, the new rules came to shed light on the sector, defining the actions and deadlines that must be fulfilled by the agents. "The time for the definition of the access used to be very long", said Mr. Brito. He goes on saying that the part that deals with the relation between generat- Besides, the answer must be clear about the access conditions and the role of each party regarding the investments, financial participation and previous responsibilities. For example, Prodist determines that consuming units with an installed power above 50 kV, including eventual power variations, must pay the financial participation of the consuming unit, which is the case of SHPs. For SHPs that request authorization, the periods are longer, but they are also defined. After the access consult, the answer must come within a period of 60 days. After having the access information, the entrepreneurs have 60 days to request the authorization. When this authorization is officially published, the generator has 60 days to request the access. And after this date, there are 30 days to liberate the assessment, in case no works are necessary. In case some works must be carried out, this period is extended to 120 days. Once the assessment is ready, the contracts must be signed in 90 days at most. Mr. Brito highlights that the rules demand the adjustment f some issues that are considered blurred.Um of them regards the actions of new energy. He says that one of the rules of the auctions demand the presentation of a series of previous documents, among them one that establishes the access to the distribution or transmission grid. However, the attainment of the access to the grid demands the authorization of the enterprise, which only happens after the negotiation of the energy in the auction. One of the rules for the participation of SHPs in actions of new energy, according to the legislation of the sector, determines that companies can only participate in these auctions if they had not been authorized by the National Agency for Electric Power. According to Mr. Brito the solution could be on the concession of a previous assessment, based on the consult of the entrepreneurs, in order to participate in the auctions. The issue is important because most of the SHPs are connected to distribution grids because of the discounts that this source of energy can receive in the Tariffs for the Use of the Distribution Systems, as it is classified as clean energy (it receives an incentive). That is the reason why the SHPs did not put a lot of strength in the registration for Generating Shared Installations, the ICGs. It is because at that time, the biomass entrepreneurs were willing to increase their participation in the energy matrix. However, the eventual lack of success in the auction of new energy did not make the alcohol plants unfeasible, for these projects would be installed any way. On the other hand, the SHPs would depend on the success of the auctions to define whether they would be part of the ICGs, which are basic grid installations. “In the case of the distribution grid, the SHPs fall in the concept of distributed generation”. 11 Technical Articles Seccion ÍNDICE IMPORTANCE OF DRAFT TUBE IN REHABILITATION PROJECTS 14 Fabrice Loiseau, Vincent De Henau, Michel Sabourin NUMERICAL STUDY OF FLUID FLOW IN A FRANCIS TURBINE 18 Marcelo Kruger, Regis Ataídes, Martin Kessler, Paulo de Tarso R. A. Cordeiro ESTUDO DE EMISSÕES DE GASES DO EFEITO ESTUFA DE RESERVATÓRIOS BRASILEIROS 21 Rafael Balbino Cardoso, Luiz Augusto Horta Nogueira 26 SENSITIVITY OF DRAFT TUBE FLOW PREDICTIONS TO BOUNDARY CONDITIONS F.A. Payette, V. De Henau, G. Dumas, M. Sabourin 30 UNSTEADY FLOW WITH CAVITATION IN VISCOELASTIC PIPES Alexandre K. Soares, Dídia I. C. Covas, Helena M. Ramos, Luisa Fernanda R. Reis Áreas de: Recursos Hídricos Meio Ambiente Energias Renováveis e não Renováveis Classificação Qualis/Capes B5 ENGENHARIAS III B5 INTERDISCIPLINAR B5 ENGENHARIAS I 13 ARTIGOS TÉCNICOS IMPORTANCE OF DRAFT TUBE IN REHABILITATION PROJECTS 1 Fabrice Loiseau 2 Vincent De Henau 3 Michel Sabourin ABSTRACT Some recent rehabilitation projects of low head turbines performed by Alstom present a drop off in efficiency due to the draft tube design, this hydraulic accident is located near the best efficiency operating condition. For the St-Lawrence project, even if the drop off was still over the envelop of efficiency guarantees, the customers were concerned about the stability and the interaction with the governor. A solution based on a draft tube modification was developed on model but was not required on the prototype. This modification fills the notch in the efficiency curve increasing locally the efficiency. However, it has been observed the drop off does not produce any unstable operation of the unit. For low head rehabilitation projects, the draft tube has an important impact on performance and it is not only the new runner that contributes to the efficiency. The runner blade profile can reduce or push outside the operation range this effect but sometimes modification of the draft tube is a necessity and can be justified economically and permits to reach a level of performance such as the turbine can perform as a new one. Different phenomena due to the draft tube behaviour are presented, from model to prototype, describing different types of hydraulic problems as well as investigations. Comparisons of field test and model test scaled up to the prototype conditions are also presented. Key words: Low head turbines, Draft tube behaviour and Field test INTRODUCTION Rehabilitation projects present the largest challenge for the engineer. The existing water passages are usually issued from design criteria not as optimal as one would expect today. The main difficulties reside in the knowledge of the behaviour of the existing turbine and in the relation between the geometry of the water passages and the actual performances. We can imagine that replacing the runner makes the turbine as new. However, the other components of the turbine can influence greatly the performance. Often, the existing water passages are not so far from the optimal frame. The resulting performances of the rehabilitation are very close to ones of a new turbine, but sometimes, it is not the case. Particularly, for low head turbines, the draft tube behaviour has a direct effect on the shape of the hill chart. Flow behaviour is extremely complex and can be unstable in the draft tube. In this paper, we first present different case studies observed during developments performed on model test, describing phenomena and observations. This will be followed by the description of a recent prototype feed back and comparison with model tests. MODEL TEST DEVELOPMENT AND INVESTIGATION Alstom is a world leader in design and fabrication of propeller turbines. In North America, its experience is mainly on major refurbishment projects. Alstom has been selected to provide more than 50 propellers at LG1, KIPLING, BEAUHARNOIS, CHATS FALLS GS, ST-LAWRENCE and KELSEY, as well as LITTLE LONG and HARMON more recently. All these contracts have taken advantage of the latest improvements in propeller design and fabrication process (see papers ref. 1, 2 and 3). It includes also the experience acquired with regards to the analysis and investigation performed on various casings. For low head machines, the draft tube is the main geometrical component that defines the turbine global performance level. Flow behaviour is extremely complex and can be unstable in the draft tube. In some cases, the flow pattern changes suddenly due to a non-perceptible perturbation. We can observe two distinct behav- iours for the same hydraulic point of operation or more commonly a range of operation, observing a drop off in performance accompanying the different flow patterns like flow separation at the pier nose area and a change in the ratio of discharge rate at the outlets of the draft tube. We observe that the efficiency drop off occurs when the velocity field at the runner outlet shows a very low rotational component. The flow condition is unstable in the sense that a very small perturbation can make the machine to drop from one condition to the other condition. But this is not reversible at the same point, there is hysteresis. During the bid phase for the rehabilitation of a low head machine, the risk of being faced with the draft tube flow phenomenon described above has to be evaluated. One approach is analysing the draft tube performance with the help of Computational Fluid Dynamics (CFD). Although CFD simulations do provide some assistance and guidance, to date the prediction of the drop off in efficiency in draft tubes with CFD simulations has proven to be unreliable. The predicted flow patterns in draft tubes are strongly related to boundary conditions as well as the choice of turbulence models (see paper ref. 4). Even with today's state of the art of CFD tools, the most reliable approach to investigate a draft tube behaviour in the context of a rehabilitation project remains the model test conducted during the contract phase. The example used below is a typical example, describing the project management at the model development phase and concerning a recent development for which all guaranties (power, efficiency, cavitation, etc) were met with the first runner design. From the beginning of the development, the model test showed a drop in efficiency of about 0.8% in the area of best efficiency at the rated head. The client was concerned with the drop-off, mainly with regards to operation stability and capacity to operate the turbine with its governor, and of course, a loss of productivity compared to the potential performance of the new runner design. When such problem is detected, one test consists to validate the turbine runner simply by changing the existing draft tube with a modern design. These experimental investigations on model are typically easy to implement. Even if it does not correspond to real- 1,2,3 - ALSTOM Hydro, 1350 Chemin Saint-Roch, Sorel-Tracy, Québec, Canada +1-450-746-6500 ext 5127 1 - [email protected] 2 - [email protected] 3 - [email protected] 14 TECHNICAL ARTICLES ity for the prototype, it allows to validate the turbine layout and to confirm that the objectives in terms of power, performance and cavitation can be reached and to define ways of future investigation. Nevertheless, this does not indicate that the turbine runner is developed to fit perfectly with the existing draft tube, the existing draft tube may be sensitive to the inflow and its velocity profile, it only confirms the designer in his initial choices and provides ways of investigation to solve the problem. draft tube, progressively disappeared. It is true that the prototype Reynolds value could not be tested (see Figure4 ) and it is tempting to think that the Reynolds number is the answer to the problem. Nevertheless, other factors can affect these results. For example, the very small deformation of the model blade profile due to the load increase during model test can modify slightly the inflow conditions at the entrance of the elbow. The figure below (see Figure 1) describes such comparison, showing a curve without accident obtained with a modern draft tube design and allowing a full analysis of the upgraded runner with regards to different topics. Figure3. Draft tube behaviour depending on how the load variation is described. Figure1. Performance and validation of the runner design using a modern draft tube design - Model efficiency versus model power - Complementary to the performance measurements, pressure fluctuations have been measured on the existing frame using dynamic strain gauges located downstream to the runner: in the draft tube cone and in the elbow. Results show that the pressure fluctuations level is not significant and is really low in the main operating range (see Figure 2). Figure4. Variation of the Reynolds number versus Prototype value. To solve or to reduce the influence of such accidents on performance, one solution consists to modify the hydraulic blade profile. It is possible to decrease/avoid the hydraulic phenomena that is responsible of the separated flow in the draft tube (see Figure 5), but blade modifications are usually limited. Figure2. Pressure fluctuation measurement from the existing draft tube Model efficiency and global RMS fluctuation versus model flow - With regards to such hydraulic behaviour, turbulence phenomena are unfortunately difficult to capture and to approach with current turbulence models and computer capacity. Nevertheless, numerical tools coupled with experimental analysis performed on model test-rig (probes downstream to the turbine runner, and visual observations performed inside the draft tube, etc.) provide significant assistance and help consolidating or guiding future developments. Another aspect concerns information acquired with the results of some scale effects performed on test rig. Such tests allow understanding the draft tube hydraulic behaviour by varying the model test head value (and consequently the Reynolds number). In the example described below (see Figure3 ), similar tests showed the draft tube behaviour changed with an increase in the model test head; the flow separation phenomena, located in the Figure5. typical modification of a model runner allowing to reduce the impact of a separated flow on performance curve Sometimes, draft tube modifications are the only solution. When such modifications appear to be necessary, the hydraulic designer has to consider the manufacturing and implementation on the prototype, in other words: delay and cost. The section law of the draft tube can appear to be not optimal, not enough flow acceleration at the elbow outlet for example. We know that this acceleration is needed to increase the quality of the flow upstream of the draft tube extension. Without this acceleration, we usually observe a flow recirculation downstream of the draft tube elbow, which results in a non-homogenous repartition of the velocity at the draft tube outlet, increasing the total kinetic 15 ARTIGOS TÉCNICOS energy and consequently the head losses. Typical draft tube modifications are tested below (see Figure 6) taking into account previous observations during model test development as well as numerical investigations even if turbulence phenomena are very complex in a draft tube. Figure6. Draft tube modifications and performance increasing. These model developments performed on test rig provide different solutions to reduce the impact of a “bad” draft tube. Depending on the situation, some observations performed during this model development can reduce the necessity to implement such solution on prototype (scale effect). It is a real challenge to reduce the cost as well as the delay. PROTOTYPE FEED BACK We will describe below recent experiences on prototype for which constraints concerning draft tube behaviour were detected at the model step. For them, an important part of the time was spent to manage these constraints. Figure7. Output variation measured by data acquisition system at 2 openings on both side of the drop off. ·KELSEY CASE One of our main challenge happened with the upgraded runner developed for the Kelsey power Dam owned by Manitoba Hydro. The new upgraded runner is a propeller turbine of 5.816 m in diameter operating under a nominal head of 15.5 m and capable of producing 45 Mw each at 102.9 rpm. During the model test development, an efficiency drop was observed and occurred at an output that exceeds the original output guarantee. However, the customer was interested by the additional power and a solution based on a draft tube modification was developed on model. According to previous model test results showing sensitivities to Reynolds number, it was decided not to implement the draft tube modification on the first prototype and wait for the prototype field test to validate the necessity of draft tube modification on prototype (see paper ref. 5). Figure8. Field test results, comparison with model test results transposed to prototype conditions - Prototype efficiency versus power - Hydraulic performance testing of the unit was performed using current meters located in the intake and supplemented by index tests. Hydraulic conditions during the field test were exactly the conditions initially defined for the model test, design net head and tailrace level. During the load variation, we observed an efficiency drop-off as well as a local flow reduction at a wicket gate opening corresponding of about 92% of the servo-motor stoke; for higher opening, performance level appears to be constant, the measurement acquired during the run is stable as well as its repeatability. In fact, this operating range was fully transparent for the control room, the operating conditions were smooth and only the field test allowed demonstrating the presence of this phenomenon. To complete this example, two data acquisitions are provided below, one just before the 16 Figure9. Field test results, comparison with model test results transposed to prototype conditions -Wicket gate opening versus power- TECHNICAL ARTICLES accident (point A) and the second one (point B) in the drop-off area (see Figures 7, 8 and 9). Field performance was compared to the expected one using model test data (IEC 995 step-up) obtained with exactly the same geometrical configuration. For different reasons, we were obliged to adjust the prototype measured flow; this adjustment was based by comparison on low load performance obtained from the model step. For practical reasons on site, it was difficult to describe exactly the shape of the curve where the drop-off occurs; nevertheless this comparison showed a good coincidence with model test and most of all, the efficiency level in the area where the flow separation occurs is similar. do not explain what is happening. On model test, we cannot forget that we reproduce the geometrical environment of the prototype turbine, from the inlet of the intake to the outlet of the draft tube. This last point is particularly important for low head machines, where the downstream part of the power plant can influence the draft tube behaviour. These results confirm the ones observed during the model test development as well as the solution developed to solve the problem. Consequently, it has been logically decided to implement the modification on the next units. ·CHATS FALLS CASE A different problem was observed during the upgrade of the Chats Falls Generating Station. The upgraded runner is a propeller turbine of 4.978 m in diameter operating under a nominal head of 15.2 m and capable of producing 25 Mw each at 120 rpm. For this project, a homologous model test was also performed. During the development phase, some difficulties concerning the draft tube behaviour had been met, showing separated flows and instability associated to a Reynolds Number influence (see references). A fine-tuning of the runner design allowing to obtain an adapted velocity profile at the runner outlet solved the problem. The first prototype runner was tested using Intake Current Meters System selected by Ontario Power Generation (OPG) as the most accurate method. The field test was performed by OPG. The new runner showed that expected performances were achieved. The generator outputs at best gate and full load were exceeded. At best gate, the measured power is approximately 25.4 Mw and at full gate opening, the maximum output reached is about 27 Mw without power saturation. Independently of these contractual considerations, the difference between model and prototype was clear; the operating range was strongly increased compared to the expected one. The relative gain in efficiency is about 2.5% (peak to peak), and most of all the performance curve doesn't indicate separated flow at full load as it was observed with the existing runner. Different scale-up methods were studied and were compared with model to prototype observed step-up. The shows the Chats Falls model performances transposed to the prototype using the IEC60193 step-up formula (including power step-up) and the prototype field performance test result. However, when comparing the ICM test for the new runner with model test results (with IEC stepup on efficiency and power), we obtain a less significant correlation. As illustrated in , the upgraded runner reacts with greater impact than expected with IEC step-up. A margin of error is drawn over the prototype test to demonstrate that the error alone could not be responsible of that difference since repeating of measurements shows better behaviour than the expected total uncertainty of 1.82%. Moreover, the power reached with the new runner is even better than the optimistic IEC power step-up and no saturation seems to occur. Figure10. Performance comparison between the existing and upgraded runners. ·ST. LAWRENCE CASE Our last example concerns the upgraded runner of the St. LAWRENCE power Dam concerning the Allis Chalmers units and owned by New York Power Authority. The new upgraded runner is a propeller turbine of 6.096 m in diameter operating under a nominal head of 24.7 m and capable of producing 75 Mw each at 84.9 rpm. Up to now and with regard to actual operation of the first upgraded AC unit, no problems have been reported by the site, they operate the unit in the 60 to 64 MW range, where some draft tube sensitivity effects would be expected based on the model tests. NYPA had concluded that the governors would probably not have any problems since when the efficiency falls off suddenly, the governor would simply open the gates a bit farther to compensate and deliver the requested power. Prototype field test is planned next fall with particular intention to the area of best efficiency. CONCLUSION The on-going market of refurbishment is mainly guided by a unit capacity improvement and an enhancement of the efficiency level. The risks at each step of the project, from the bidding to the prototype exploitation, have to be managed, the goal being to minimize the customer's risk as well as for the supplier. The experience acquired on low head turbines and draft tubes is important. The test rig for model test development appears to be a tool guiding towards an optimized solution and validated at the model scale. In this sense, it is always a challenge for the engineer to optimize the frame and to improve the turbine. We should keep in mind that the feedback from field test and prototype operating conditions is a key point to improve our knowledge and to deliver a better product to our customers. BIBLIOGRAPHICAL REFERENCES [1] LOISEAU F., VINH P. AND SABOURIN M., September 2001. Rehabilitations of propeller turbines, Hydro Power & Dams, Riva del Garda, Italy. Actually, it appears that the draft tube react differently than that was expected during model test development. One explanation can be the sensitivity of the inflow with regards to Reynolds number that can not be fully reproduces on a test rig. [2] ST-HILAIRE A., SABOURIN M., KIREJCZYK J., LOISEAU F., August 2002. Fixed-blade Turbines: a Natural Solution for Rehabilitation of Large Low Head Power Plants, HydroVision 2002, Portland, Oregon, U.S.A. With this example, typical recommendations and scale effects [3] ST-HILAIRE A., LUDEWIG P., LOISEAU F., TADEL J., 17 ARTIGOS TÉCNICOS NUMERICAL STUDY OF FLUID FLOW IN A FRANCIS TURBINE 1 Marcelo Kruger 1 Regis Ataídes 1 Martin Kessler 2 Paulo de Tarso R. A. Cordeiro ABSTRACT Francis turbines are the most common water turbine in use today. It is an inward flow reaction turbine that combines radial and axial concepts. They operate in a head of ten to several hundred meters and are primarily used for electrical power production. Cavitation is a typical problem found in this kind of turbine and most of times it is the responsible for turbine unbalancing due to blade erosion. Thus, understanding and knowing the regions and causes of the problem are very important to predict and prevent great damages. In order to evaluate this issue, a computational model of fluid flow in a Francis Turbine of CEMIG has been developed. The methodology employed consisted in solving numerically the flow equations inside the turbine using the computational package ANSYS CFX®, which uses finite volume methodology. A first model was built as steady-state, turbulent and single phase flow and the cavitation regions were identified through the vapor pressure value. Then, to verify the methodology a new model considering cavitation and multi phase flow, has been developed. Both cases were compared between them and with visual data from CEMIG. With the methodology of single phase validated, based on visual information from CEMIG, some geometry modifications on blade aiming to reduce the regions of cavitation have been implemented. Key words: Francis turbine, cavitation, computational model, numerical methods. INTRODUCTION Used for a wide head range from 10 to 700 meters, the Francis Turbine, shown in Figure 1, has been the most widely used turbine in the world. They are designed for each site and can operate with efficiency over 90%. On the other hand, the project and design need to be done carefully to avoid problems frequently found in this kind of turbine. One of them is cavitation phenomena, which consists in a process where a void or bubble in a liquid rapidly collapses, producing a shock wave. The highly localized collapses can erode metals, such as steel, over time. After a surface is initially affected by cavitation, it tends to erode at an accelerating time. The process of erosion can cause a turbine unbalancing, which is very prejudicial and dangerous for the turbine operation. tion, the possible cavitation regions have been identified by the water saturation pressure value. The numerical results were compared to visual data from CEMIG and the agreement between them was very good, even with the simplifications in the computational model. In a second step, a new computational model, considering phase changing with cavitation, has been developed to compare with the first one and extract the real values of pressure on blade surfaces, since the first one did not consider the phase changing due to cavitation phenomena. Finally, some modifications on blades have been implemented in order to reduce the cavitation regions. In this context, the computational model has shown to be a very important tool for understanding and knowing the behavior of flow inside the turbine. It permits to identify low pressure regions, recirculation areas, and implement geometric modifications aiming to reduce the cavitation regions. In order to evaluate this, a computational model of flow in a Francis Turbine of CEMIG has been developed. In a first step, a computational model considering the flow to be steady-state, turbulent and single-phased has been developed. Due to the single phase simplifica- Figure 1 – Francis Turbine rotor – courtesy of CEMIG. METHODOLOGY Mathematical formulation The numerical model for fluid dynamics simulations must describe the most relevant aspects of the real physical problem. For the modeling of the flow inside the turbine domain, Navier-Stokes equations have been used. Navier-Stokes equations are used in order to get the solution of the fluid flow, but the complexity of this coupled and strongly non-linear system of equations does not allow an analytical solution, even for simple cases. Based on that, the numerical solution of Navier- Stokes is largely used in industrial applications and it can provide results with very good agreement when compared to experimental data. A Reynolds average is used in order to simulate the average behavior of the turbulent flow. The result set of equations of this process is known as Reynolds Average Navier-Stokes (RANS) equations which were employed in this work. Taking the time average of the Navier-Stokes equations and after some algebraic manipulation, a new term, known as Reynolds tensor, appears. This new term carries the turbulent characteristics of the flow. One of the most usual ways to modeling this tensor is through the Boussinesq's Approach which gives to the Reynolds tensor a similar formulation from Stokes tensor, but based on the turbulent viscosity. This turbulent viscosity is modeled using the k (turbulent (1)ESSS – Engineering Simulation and Scientific Software – Rodovia SC 401, km 01, n°600, Parquetec Alfa.88030-000–Florianópolis–SC (48)3953-0053 (2)CEMIG – Companhia Energética de Minas Gerais - Av. Barbacena, 1200 - Bairro Santo Agostinho. 30190-131 - Belo Horizonte - MG (31) 3506-4521 [email protected]; [email protected]; [email protected]; [email protected] 18 TECHNICAL ARTICLES kinetic energy) and ε (turbulent eddy dissipation). The mass conservation equation, considering a steady state and incompressible flow is given by: ∇.V = 0 where V is the time averaged velocity vector. The momentum equation (Newton’s second Law), for an incompressible and steady state flow, is given by: ∇.(ρV ⊗V) = ∇(μeff (∇V + (∇) ))-∇p + SQM T where ρ is the density,p is the pressure and SQM={SQMx,SQMy,SQMz} is the momentum source term.The effective viscosity μeff is given by: μeef = μ0 + μt μ 0 is the molecular viscosity and μ t is evaluated from the turbulent quantities for the k −ε 2 mt =Cmr k e model: The transport equations for the k −ε model are [2]: Figure 3 – Geometric modifications. On the three cases simulated the following assumptions have been considered: Steady-state flow; Turbulent flow - k − ε model; where Φ is defined as: Incompressible; Stationary domain for spiral and draft tube; Rotating domain for the rotor. Computational Mesh The geometric domain has been divided in three regions: spiral, rotor and draft tube.To apply the equations on the model, the geometry has been discretized in a hybrid computational mesh, containing about 1.3 million of elements, between tetrahedrons, prisms and hexahedrons. In order to reduce the number of elements on the global mesh, a simplification of periodicity on the rotor has been considered, and only one section containing one blade has been discretized, as shown in Figure 4. The full superficial mesh of the model can be visualized in Figure 2. Boundary Conditions A rotational velocity of 300 rev/min and periodic condition has been employed to the rotor domain. Periodicity assumption allows working only with one section (one blade) of the rotor. This simplification is often used in rotational domains in order to reduce the number of elements in the computational mesh. The Figure 4 shows the simplification. Figure 4 – Rotor simplification. In all cases, the surfaces of the spiral, rotor and draft tube have been modeled as wall with no-slip condition ( V = 0 ). A boundary condition of total pressure considering a wide head of 31 m has been applied as inlet condition. For the draft tube outlet mass flow of 15000 kg/s has been specified. Figure 2 – Computational mesh. Numerical Model As mentioned before, two geometric configurations have been developed. For the first configuration, two different numerical methodologies have been evaluated. One of them was simulated considering a single phase model, while the other one a multiphase flow with cavitation model was evaluated. The second geometric configuration includes some differences on blade shape and the single phase model has been performed. The geometry configurations can be seen in the Figure 3. On the single phase simulations water has been used as work fluid and for the multiphase simulation, water and water vapor have been used. The properties of each fluid are in the Table 1. Table1: Fluid properties Property 3 Density (kg/m ) Viscosity (kg/m.s) Saturation Pressure (kPa) Water Water Vapor 997 0.02308 0.0008899 9.8626e-06 3.1 19 ARTIGOS TÉCNICOS A homogeneous model has been used to solve the multiphase flow in the multiphase simulation. In this model all fluids share a common flow field. Most simulations can use the homogeneous multiphase model since the vapor velocity field is often assumed to be the same as that of the liquid. RESULTS To evaluate cavitation regions and get a better understanding of the fluid flow inside the turbine, the predicted saturation pressure profile has been analyzed. As previously mentioned, in this work, phase change has not been considered for the first and third simulations. Then, to identify regions where cavitation phenomena could potentially occur, the regions of pressure below saturation value for the given temperature has been analyzed. First of all, the results compared the first case with second to evaluate the accuracy of simplification from multiphase to single phase approach. A cut plane on the draft tube with pressure contours are shown in Figure 5. The profiles are very similar on both configurations, with low pressures in the center of the outlet rotor. Figure 7 – a) CEMIG turbine; b) CFD single phase model. Once numerical model presented good agreement with the visual data, some geometric modifications in the rotor blade shape, as shown in Figure 3, have been performed in order to reduce the regions of cavitation. In Figure 8 streamlines of velocity on the draft tubes are shown for both cases. On the first model it is possible to identify a central vortex where the greatest velocities are concentrated. On the third model on other hand, the geometric modifications caused reduction on the velocities values on the center and augmentation of them near the wall draft tube. b a Figure 5 – Cut plane of pressure distribution a) single phase flow; b) multiphase flow (cavitation model) On the Figure 6(a) the isosurfaces of pressure below saturation value, for the first simulation are shown. The isosurfaces of water vapor considering volume fraction of 0.5 in the multiphase case is illustraded on Figure 6(b). a Third Case Figure 8 – Streamlines on the draft tube. This can be evidenced in Figure 9, where the isosurfaces of pressure below the saturation value were plotted with zoom in a rotor blade for both cases. The increasing of pressure, improved by the new flow pattern, decreased significantly the regions of cavitation. b Figure 6 – a) isosurface of pressure below saturation value; b) isosurface of water vapor considering volume fraction of 0.5. It is possible to verify that the results with the single phase model are very close to the multiphase simulation. It shows that the single phase model can be used for this simulation. The usage of this simplified approach allows having a decrease of computational time, compared to multiphase model. In order to check and validate the computational methodology, the results between single phase simulation and visual data from CEMIG have been compared. The agreement between them was very good, even with the simplifications. Those results can be seen on Figure 7, which a circle on the blade presents the regions where cavitation occurs. 20 First Case Figure 9 – Isosurface of pressure below the saturation value. FINAL CONSIDERATIONS The development of the numerical model allowed to better understand the flow behavior inside the turbine. The reliability of the results has given CEMIG engineers increasing of confidence in the computational model for implementing new configurations. Flow pattern, pressure, velocity distribution and possible regions of cavitations are difficult to be seen in laboratory facilities and the simulation has shown to be a very useful tool on this situation. Once numerical model is validated it could give useful insights to CEMIG engineers to make important decisions concerning the improvement of turbine efficiency. TECHNICAL ARTICLES Estudo de Emissões de Gases do Efeito Estufa de Reservatórios Brasileiros 1 Rafael Balbino Cardoso 2 Luiz Augusto Horta Nogueira RESUMO Responsável por apenas 3% das emissões globais de Gases do Efeito Estufa – GEE, o Brasil é um dos países com maior potencial para reduzir competitivamente as emissões desses gases. O reduzido nível de emissões no setor energético brasileiro se justifica pelo fato da energia primária utilizada ser de origem renovável, como energia hidráulica, que respondeu por 85,6% da geração observada em 2007. Embora renovável, essa energia não é nula em emissões, pois a decomposição da matéria orgânica nos reservatórios produz gás carbônico e metano, estimando-se que as usinas hidrelétricas brasileiras emitem aproximadamente 0,10 tCe/MWh. Considerando ainda que as termoelétricas no Brasil emitem cerca de 0,52 tCe/MWh, com base na participação das diversas fontes primárias pode-se concluir que a geração de energia elétrica no Brasil emite em média 0,12 tCe/MWh. Procurando explorar as relações entre tais emissões de GEE e a geração hidrelétrica, no presente trabalho foram utilizados os dados do Inventário Brasileiro de Emissões Antrópicas de GEE e informações de reservatórios representativos de usinas hidrelétricas brasileiras. Foi possível concluir preliminarmente pela inexistência de uma relação direta entre as emissões de GEE e a área alagada dos reservatórios, bem como a potência instalada. Do mesmo modo, na base de dados estudada, não se detectou uma relação entre a participação do metano no total das emissões e o tempo de residência da água nos reservatórios, embora existam indícios de uma relação entre as emissões totais e o tempo de residência. Palavras chave: Emissões de Gases de Efeito Estufa, Reservatórios, CH4 e Co2. ABSTRACT Responsible for only 3% of the global emissions of Greenhouse Gases - GHG, Brazil is a country with a great potential to reduce competitively the emissions of such gases. The lower level of emissions in the Brazilian energy sector is justified by the intense use of renewable sources of energy, as hydraulic energy, which corresponds to 85.6% of the electric energy produced in 2007. Although renewable, the hydro power stations present some GHG emissions, associated to the decomposition of the organic substance in the reservoirs which produces gas carbonic and methane. It is evaluated that Brazilian hydroelectric plants emit approximately 0.10 tCe/MWh. Considering that Brazilian thermoelectric plants emit about 0.52 tCe/MWh and taking into account the contribution of each primary energy source, it is estimated that power plants in Brazil emit annually on average 0.12 tCe/MWh. To explore the relations between GHG emissions and hydroelectric plant parameters, this work uses data from the Brazilian GHG Emissions Inventory and information of reservoirs of representative actual Brazilian hydroelectric plants. It was possible to conclude preliminarily for the inexistence of clear association among GHG emissions and flooded area of reservoirs, as well as the installed capacity neither the methane share in the total GHG emissions and the residence time of the water in the reservoirs. Even so it seems that a correlation between the total emissions and such residence time exists. Key Words: Greenhouse Gases Emission, Reservoirs, CH4 e CO2. 1. INTRODUÇÃO A matriz de fontes primárias na geração de energia elétrica em escala mundial é predominantemente fóssil, sendo ainda pouco intenso o uso de fontes renováveis de energia. Depois das fontes fósseis, a hidrelétrica ocupa o segundo lugar, seguida das centrais nucleares e, com participação marginal têm-se as centrais geotérmicas, solares e eólicas, como mostra a Figura 1. 12% Norte e Europa, são responsáveis por 91% das emissões de GEE do mundo. Nesses continentes a base da matriz energética é composta por carvão mineral e derivados do petróleo. 3% 2% 2% 1% 38% 27% 1% 22% 65% 27% Ásia Termoelétrica Hidroelétrica Nuclear Outros Europa América do Norte América do Sul Africa América Central Oceania Figura 2: Emissões de GEE por continente (World Resources Institute, 1996) Figura 1: Tecnologias adotadas na geração global de eletricidade (ANEEL,2006) Segundo IPCC (2005) as ações antrópicas, principalmente associadas à intensificação do uso de combustíveis fósseis no mundo, são as principais responsáveis pela elevação da concentração dos Gases do Efeito Estufa – GEE, o que vem provocando mudanças climáticas no planeta. Como mostra a Figura 2, a Ásia, América do Apesar da maior parte das emissões globais serem provenientes da Ásia, o continente apresenta uma das menores valores de emissões per capita do mundo, enquanto a América do Norte possui os maiores índices, com cada pessoa emitindo cerca de 4 tCO2/ano, como mostra a Figura 3. 1 - e-mail: [email protected] 2 - e-mail: [email protected] Universidade Federal de Itajubá – UNIFEI - Av. BPS 1303, 55-35-36291000, Itajubá-Mg - Centro de Excelência em Eficiência Energética - EXCEN 21 ARTIGOS TÉCNICOS são de GEE para os diferentes combustíveis (IPCC, 2005), ponderados de acordo a sua participação na geração termelétrica no Brasil, a emissão média na usinas termelétricas brasileiras seria de 0,52 tCe/MWh, dez vezes mais que a emissão estimada para as hidrelétricas, por unidade de energia elétrica gerada. 4,0 3,5 3,0 ton/ano 2,5 2,0 1,5 1,0 0,5 0,0 Ásia Europa América do América do Norte Sul África América Central Oceania Figura 3: Emissões per capita de GEE por continente (Beil, 1999) No Brasil, responsável por apenas 3% das emissões globais de GEE, a situação é bastante diferente quando comparada aos países europeus, Estados Unidos e China. Com efeito, a maior parte da geração de energia elétrica nas centrais brasileiras provém das fontes primárias de origem hídrica, onde as usinas hidrelétricas – UHE´s que respondem por 78% da capacidade instalada em dezembro de 2007 (incluindo a importação) e 85,6% da geração observada nesse ano (EPE, 2008). Esse amplo uso da hidroeletricidade, associada ao intenso uso de biocombustíveis, são os principais fatores que explicam os baixos índices de emissões do setor energético no Brasil, pelo menos até o presente. No Brasil, a geração das usinas termoelétricas – UTE´s corresponde a uma participação de cerca de 10% na oferta de energia elétrica e são usualmente despachadas no horário de ponta ou nos períodos de baixa hidraulicidade, quando a demanda por energia elétrica é maior que a oferta das UHE´s. Por esse motivo que, em geral, o fator de capacidade das UTE´s no Brasil é baixo e, como conseqüência, são menores seus índices de emissões de GEE (Sugai e Santos Jr., 2006). Nesse contexto, o presente trabalho procura explorar novas relações e avançar na compreensão da geração de GEE nas hidrelétricas brasileiras, inicialmente apresentando estimativas das emissões de GEE para um grupo representativo com nove UHE´s do sistema elétrico brasileiro, seguindo-se da análise comparativa da média desses valores com as emissões totais do setor elétrico e o estudo das correlações dessas emissões com parâmetros como a área alagada, potência e tempo de residência da água. 2. EMISSÕES DE GASES DO EFEITO ESTUFA – GEE DOS RESERVATÓRIOS DE UHE´S BRASILEIRAS No Quadro 1 são apresentados os resultados médios de duas campanhas de medições de emissões de GEE em reservatórios de algumas UHE´s brasileiras, estimados com base na metodologia de cálculos de emissões anuais do IPCC (1996) e disponibilizados no Inventário Brasileiro de Emissões Antrópicas de Gases do Efeito Estufa (Rosa et.al., 2006). 0,2% 1,3% 1,9% Há uma razoável dispersão nos valores de emissões de GEE em UHE´s. Embora as hidrelétricas sejam em geral consideradas uma alternativa para mitigar as emissões de GEE no setor energético, estudos recentes realizados em UHE´s da Amazônia constataram que todas elas estavam emitindo mais GEE que termelétricas de mesma potência (FAPESP, 2007) e levantamentos no reservatório da UHE de Balbina mostraram que as emissões desse reservatório podem ser dez vezes maiores que as emissões de uma UTE a carvão mineral com a mesma capacidade de geração de energia (Kemenes et. al, 2007). Com efeito, de acordo com Fearnside (1997) é de extrema relevância que se calculem as emissões dos reservatórios brasileiros de modo a avaliar o grau de contribuição das emissões de gás carbônico e metano para o aquecimento global e comparar com as emissões de termoelétricas de capacidade equivalente. Além disso, segundo Reis (2002), para efeitos de comparação de emissões de GEE na geração de energia elétrica na matriz energética brasileira, é interessante que se estabeleçam critérios para a determinação de linhas de base que representam cenários de referência quanto às emissões desses gases. 6,8% 3,8% 4,2% 10,6% Quadro1–Emissões médias de GEE dos reservatórios brasileiros (Rosa et al.,2006) kg Ch4/ km²/dia kg Co2/ km²/dia Miranda 154,2 4.388 38.332 Três Marias 196,3 1.117 540.335 20,9 3.985 137.341 8,8 2.695 23.497 Reservatório 71,2% Hidrelétrica Nuclear Gás Carvão Mineral Petróleo Eólica Biomassa Importação Figura 4: Fontes primárias para geração elétrica no Brasil (EPE, 2008) Barra Bonita Segredo Xingo De um modo geral, as UHE´s apresentam vantagens interessantes sobre as UTE´s, como menores custos na implantação, maior simplicidade na operação e uma menor emissão de GEE (devido à decomposição anaeróbia da matéria orgânica nos reservatórios das usinas hidrelétricas). Segundo o Inventário Brasileiro de Emissões Antrópicas de GEE (Eletrobrás, 2007), as emissões médias de GEE para as centrais elétricas da Eletrobrás são da ordem de 0,05 tCe/MWh, onde 90% da geração é feita por hidroelétricas, estimativa baseada no Greenhouse Gás Protocol Initiative – CHG Protocol (Eletrobrás, 2007). Por sua vez, com base nos fatores de emis- 22 tCe/ano 40,1 6.138 41.668 Samuel 104,0 7.448 535.407 Tucuruí 109,4 8.475 2.602.945 Itaipu 20,08 171 93.269 No Quadro 2 são apresentados os valores estimados de emissões e outros dados sobre essas UHE´s (Rosa et al., 2006) incorporando também os estudos referentes à hidrelétrica de Balbina (Kemenes et.al., 2007). É notável como a área inundada, avaliada em (MW/km²), varia entre as centrais estudadas, afetando diretamente as emissões. TECHNICAL ARTICLES Quadro 2 – Emissões médias de GEE e densidade de potência dos reservatórios brasileiros Reservatório Emissões anuais (tCe/ano) 38.332 Miranda Potência instalada (MW) Área do reservatório (km²) 390,0 Densidade de Potência (MW/km²) 50,6 7,7 Três Marias 540.335 396 1.040 0,4 Barra Bonita 137.341 140,8 312 0,5 Segredo 23.497 1.260 82 15,4 Xingo 41.668 3.000 60 50,0 Samuel 535.407 216 559 0,4 Tucuruí 2.602.945 4.240 2.430 1,7 93269 12600 1.549 8,1 6.700.000 250 2.600 0,1 Itaipu Balbina onde: W – Energia gerada pela UTE (MWh/ano) C – Coeficiente de emissão (tCe/MWh) h - Eficiência da UTE (varia entre 30% e 45%) Segundo Sugai e Santos Jr. (2006), utilizando os coeficientes de emissões para combustíveis fósseis fornecidos pelo Natural Resources Canadá (2000) e adotando uma eficiência média das UTE´s brasileiras de 35%, a linha de base das emissões das UTE´s brasileiras é cerca de 0,52 tCe/MWh. As centrais ligadas ao sistema interligado nacional geraram 437.060 GWh em 2007, sendo 93% com UHE´s e 5% com UTE´s (ONS, 2008). Adotando as emissões médias de GEE para as UHE´s e UTE´s calculadas anteriormente, é possível estimar em 0,12 tCe/MWh as emissões associadas à geração de energia elétrica no Brasil nesse ano. Na Figura 6 são apresentadas as emissões para as diferentes tecnologias e o valor médio obtido. Adotando um Fator de Capacidade igual a 0,6, representativo para as UHE´s brasileiras (ONS, 2008), foi possível estabelecer uma relação entre as emissões de GEE e a energia gerada, como mostra a Figura 5. A linha destacada na Figura 5 corresponde à média ponderada pela potência das UHE´s estudadas, conforme a Equação (1). EUHE = å E .P åP i i i onde: EUHE - Emissões médias de GEE para as UHE´s estudadas (tCe/MWh) Ei – Emissões médias da UHE “i” (tCe/MWh) Pi – Potência instalada da UHE “i” (MW) Figura 6: Emissões de GEE das Usinas Hidrelétricas brasileiras 3,5 Como mostrado na Figura 6, em média, as UHE´s brasileiras emitem cerca de cinco vezes menos GEE que as UTE´s do país. Como uma clara exceção, os elevados índices emissões da UHE de Balbina diferem dos níveis observados nas UHE´s estudadas, em função da grande área do reservatório dessa central, tema que será abordado a seguir. 3 tCe/MWh 2,5 2 1,5 1 4. AVALIAÇÃO DA CORRELAÇÃO ENTRE AS EMISSÕES DE GEE E PARÂMETROS DAS UHE´S Emissões médias das UHE´s estudadas (0,10 tCe/MWh) 0,5 0 Miranda Três Marias Barra Bonita Segredo Xingó Samuel Tucuruí Balbina Reservatório Figura 5: Emissões de GEE por unidade de energia elétrica gerada das UHE´s brasileiras As centrais apresentadas na Figura 5 abrangem cerca de 30% da capacidade instalada nas UHE´s brasileiras, cobrindo as diferentes tecnologias e regiões e assim a média de suas emissões, 0,10 tCe/MWh, podendo ser considerada uma amostra representativa para as UHE´s no Brasil. 3EMISSÕES DE GEE DO SISTEMA ELÉTRICO BRASILEIRO As emissões anuais de GEE associadas à geração de energia elétrica no Brasil devem incluir as centrais hidrelétricas, como estimado no tópico anterior, e as emissões das centrais termelétricas, cujas emissões anuais de carbono podem ser calculadas pela seguinte equação (modificada de Rosa e Santos, 2000): EUTE = W.C η Procurando identificar eventuais relações causais no processo de emissões de GEE em reservatórios, a seguir essas emissões são comparadas com parâmetros como área alagada, potência instalada e tempo de residência da água dos reservatórios (relação entre o volume do reservatório e a vazão média afluente). Em termos de emissões de GEE por unidade de área alagada do reservatório, como mostrado na Figura 7, as UHE´s de Balbina, Tucuruí e Samuel apresentam maiores índices, enquanto a UHE de Itaipu apresenta os menores índices. A emissões da UHE de Balbina não são notáveis apenas em termos absolutos, devido a sua grande área alagada, mas também em termos específicos, como visto. Acredita-se que essas elevadas emissões se justifiquem especialmente pelo fato da área alagada do reservatório não ter sido desmatada previamente ao seu enchimento, como também ocorreu em grande parte do reservatório da UHE de Tucuruí. Além disso, as medições de emissões de GEE foram feitas a partir de amostras coletadas na profundidade média do reservatório (30 metros), local de maior concentração de CH4, que poderia incrementar os valores estimados para as emissões (Kemenes et al., 2007). 23 ARTIGOS TÉCNICOS 3000 zada é limitada e como mostrado na Figura 10, não se constatou uma relação forte entre as emissões de metano (Rosa et al., 2006) e o tempo de residência da água dos reservatórios. 2500 Quadro 3 – Tempo de residência da água dos reservatórios estudados tCe/km² 2000 Reservatório 1500 1000 500 0 Itaipu Segredo Barra Bonita Três Marias Xingó Miranda Samuel Tucuruí Balbina Figura 7: Emissões anuais de GEE por unidade de área alagada dos reservatórios das UHE´s brasileiras 10.900 50,2 1.279 São Francisco 2.700 21,0 2.160 Iguaçu 1.413 3,0 589 Tucuruí Tocantins Três Marias Segredo Xingó São Francisco Itaipu Samuel Tempo de Capacidade residência (km³) (horas) Vazão média (m³/s) Rio 2.700 0,7 72 Paraná 120.000 29,0 67 Jamari 396 3,2 2.244 14% 10 Balbina 1 100 1000 10000 100000 Itaipu Participação do CH4 nas emissões Não foi observada uma relação forte das emissões de GEE e a potência instalada e área alagada, como pode ser observado pelas Figuras 8 e 9. Uma possível justificativa é o fato de que cada UHE brasileira tem suas particularidades de construção e operação, como por exemplo, desmatando ou não a área alagada, o que interfere diretamente nas emissões de GEE. 12% Três Marias 10% 8% 6% 4% Tucuruí Samuel 2% Xingó Samuel Segredo tCe/MWh 0% Barra Bonita 0,1 Miranda 10 100 Quadro 4 – Emissões de GEE e tempo de residência da água dos reservatórios estudados 0,01 Segredo Tucuruí Itaipu 0,001 Reservatório MW Figura 8: Relação das emissões de GEE com a potência instalada das UHE´s brasileiras 10 Balbina 1 100 1000 10000 tCe/MWh Samuel Barra Bonita 0,1 10000 Figura 10: Relação entre as emissões de CH4 com o tempo de residência da água dos reservatórios Três Marias 10 1000 Tempo de Residência - TR (horas) Xingó Três Marias Rio Emissões (tCe/ano) Tempo de residência (horas) Itaipu Paraná 93.269 Xingó São Francisco 41.668 72 Segredo Iguaçu 23.497 589 Tucuruí Tocantins 2.602.945 1.279 Três Marias São Francisco 540.335 2.160 Samuel Jamari 535.407 2.244 67 Tucuruí 10.000.000 Miranda Tucuruí 0,01 Segredo 1.000.000 Itaipu 0,001 km² Figura 9: Relação das emissões de GEE com a área alagada das UHE´s brasileiras Do ponto de vista do efeito estufa, o metano apresenta um impacto bem superior ao dióxido de carbono, sendo tipicamente gerado em condições anaeróbias que por sua vez dependem do tempo de residência da água no reservatório, para o material orgânico em suspensão. O Quadro 3 apresenta as informações de vazões médias e capacidade dos reservatórios para as UHE´s estudadas (Santos, 2006), que permitiram o cálculo do tempo de residência médio da água nestes reservatórios. Infelizmente, a base de dados utili- 24 t Ce /a no Xingó Três Marias Samuel Itaipu 100.000 Xingó Segredo 10.000 10 100 1000 10000 Tempo de Residência (horas) Figura 11: Relação entre emissões de GHG e o tempo de residência da água dos reservatórios TECHNICAL ARTICLES Finalmente, ao se comparar as emissões anuais de GEE dos reservatórios estudados com os tempos de residência da água, observou-se, preliminarmente, uma razoável correlação entre essas duas variáveis (R²=0,76) como indicado no Quadro 4 e Figura 11. A relação apresentada é preliminar, pois, um estudo com maior número de reservatórios e mais detalhado sobre a variação do tempo de residência da água em função do período do ano, influenciado pelo regime de vazão dos rios dos reservatórios, poderiam permitir a melhor verificação dessa relação. Outro efeito a estudar seria a temperatura média do reservatório, que também depende de levantamentos mais detalhados. 3. Eletrobrás, Inventário de Emissões de Gases do Efeito Estufa - Ano base 2005, SCMA/GT3, 2007. 4. EPE, Empresa de Pesquisas Energéticas, Plano Decenal de Expansão de Energia 2008/2017, Oferta de Energia Elétrica, 2008. 5. FAPESP, Fundação de Amparo a Pesquisa do Estado de São Paulo, www.fapesp.com.br, acessado em 08/10/2007. 6. Fearnside, P.M., “Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: the example of Brazil's Tucuruí Dam as compared to fossil fuel alternatives”, National Institute for Research in the Amazon (INPA), Manaus, Brazil, 1997. 7. IPCC, International Panel on Climate Change, 2005, www.geovivencia.com.br/ativ.asp?atividades=9,2005, acessado em 15/08/2006. 5. CONCLUSÕES A partir de estimativas das emissões de GEE dos reservatórios das UHE´s e das emissões das UTE´s foram estimadas as emissões associadas à geração de energia elétrica no Brasil. Em síntese, conclui-se que os reservatórios das UHE´s brasileiras emitem anualmente 0,10 tCe/MWh e as UTE´s 0,52 tCe/MWh, levando à uma emissão média anual de 0,12 tCe/MWh, ponderando a contribuição de cada fonte primária. 8. Kemenes, A., B. R. Forsberg, and J. M. Melack, “Methane release below a tropical hydroelectric dam”, Geophys. Res. Lett., 34, L12809, doi:10.1029/2007GL029479, 2007. 9. Natural Resources Canadá, Retscreen International Renewable Energy Project Analysis Software, version, 2000 – Release 2, Minister of Natural Resources 1997-2000, 2000. 10. ONS, Operador Nacional de Sistemas, 2007, www.ons.org.br, acessado em 26/04/2008. O estudo não identificou relação entre capacidade de geração ou área alagada dos reservatórios das UHE´s com as emissões de GEE, no entanto, verificou-se que existe alguma relação entre as emissões de GEE e os tempos de residência da água dos reservatórios brasileiros. Estudos com mais detalhes sobre a operação dessas plantas, bem como com maior número de reservatórios e dados sobre a variação do tempo de residência da água em função do período do ano, influenciado pelo regime de vazão dos rios dos reservatórios, poderiam permitir uma melhor verificação dessa relação. 11. Reis, T.V.M., “Emissões de Gases do Efeito Estufa no Sistema Interligado Nacional Metodologia para a definição de Linha de Base e Avaliação do Potencial de Redução das Emissões do PROINFA”, dissertação de mestrado apresentada a Universidade Salvador – UNIFACS, Salvador, 2002. 12. Rosa, L.P., et al, “Primeiro Inventário Brasileiro de Emissões Antrópicas de Gases do Efeito Estufa”, Ministério da Ciência e Tecnologia, 2006. 13. Rosa, L.P., Santos, M.A., “Certainty and Uncertainty in the Science of Greenhouse Gas Emissions from Hydroelectric Reservoirs”, WCD, Environmental Issues, 2000. Vale ainda observar que os valores de emissões estimados nesse estudo representam médias anuais para as tecnologias estudadas, não podendo ser considerados para efeito de redução de emissões quando da introdução de tecnologias mitigadoras das emissões, que impõe uma análise detida da fonte de energia deslocada a cada caso 14. Santos, E.O., “Contabilização das emissões líquidas de GEE de hidrelétricas: Uma análise comparativa entre ambientes naturais e reservatórios hidrelétricos”, Tese de doutorado apresentada à COPPE/UFRJ, 178 p., Rio de Janeiro, 2006. 1. ANEEL, Agência Nacional de Energia Elétrica, 2006, www.aneel.gov.br, acessado em 25/09/2006. 15. Sugai, H.M. e Santos Jr., M.F., “As Pequenas Centrais Hidrelétricas e os Créditos de Carbono”, PCh Notícias, edição 29, ano 8, p. 10-15, 2006. 2. Beil, S., “Evolution and design of an emissions trading market of greenhouse gases”, 2° Annual Emissions Trading Forum, 1999. 16. World Resources Institute, 1996, “Forest and land use change carbon sequestration projects”, www.wri.org, acessado em 15/05/2007. 6. REFERÊNCIAS Procurando PCHs para investir ou suprir sua demanada? entre em contato conosco [email protected] 25 ARTIGOS TÉCNICOS SENSITIVITY OF DRAFT TUBE FLOW PREDICTIONS TO BOUNDARY CONDITIONS 1 F.A. Payette 2 V. De Henau 3 G. Dumas 4 M. Sabourin ABSTRACT This numerical study aims to assess the influence of boundary conditions and mesh refinement on the flow topology in draft tubes, using the commercial code ANSYS CFX and two equations turbulence models, especially Menter's SST. The final objective of this investigation is to improve the RANS predictions of draft tubes and more specifically the flow characteristics associated with a significant turbine efficiency drop occasionally observed near the best efficiency point in rehabilitation projects. The first step of the study is to reproduce a well-documented test case, the swirling flow inside a conical diffuser available on the ERCOFTAC's database. Among the most important parameters, it is found that the inlet radial velocity must be specified with great care for this test case since it is directly related to wall separation or core flow recirculations. Further, we observe that the outlet treatment used to simulate a discharge to ambient air mainly impacts the outlet pressure distribution. Actual draft tube geometry from the Chute-à-la- Savane project is then used to confirm and extend the results validity. One of the most important results obtained in this geometry comes from the inlet turbulence. It is found that this parameter alone is sufficient to modify the flow topology and radically change the draft tube's efficiency. The apparent sensitivity of the physics associated with the efficiency loss near the design point of some rehabilitated turbines thus requires for a very careful and advised, complete specification of the boundary conditions. Key words: Draft tube, RANS modelling, boundary conditions sensitivity. INTRODUCTION In assessing turbine global efficiency, the importance of the draft tube simulation is widely recognized among the scientific and industrial communities, especially when dealing with low-head power plants. In the past years, many research projects focussed on draft tubes simulations and proposed some guidelines on the calculations parameters to use. Among them, the FLINDT [1] and Turbine-99 [2] projects as well as related doctoral thesis such as Mauri's [3] or Cervantes' [4] are a good source of information on this subject. The main objective of Turbine-99 was to assess the potential of CFD to accurately predict draft tubes flows while FLINDT focused specifically on the particular efficiency drop phenomenon described below. There is also an ongoing measurement campaign taking place at Laval University's Laboratory for Hydraulic Machines aiming to characterize the flow within the turbine and to help fine-tuning computer simulations. These references, however, do not provide sufficient details on the specific impact of some key simulation parameters and modelling approaches involved. The present paper addresses these issues and summarizes the work done as part of a Master Degree [5]. Since draft tube calculation confronts the CFD analyst to an inlet plane located inside the region of interest and to an outlet boundary also very close to it, a good understanding of their individual effect is essential. Such knowledge helps understand the sources of the errors induced when the entire geometry cannot be modelled or, in other cases, it may also allow minimising the use of unnecessary buffer zones or computing domain extensions while being conscious of the resulting effect on the investigated result. In some rehabilitation projects, the behaviour of the existing draft tube is difficult to anticipate in relation with the newly designed runner. The interaction between those components has sometimes been observed to cause a sudden drop in the efficiency curve near the best efficiency point [1,6]. This phenomenon unfortunately seems to be highly sensitive and approximate numerical simulations have most often failed to predict it properly. In the present paper, the impact of various calculation parameters reconsidered keeping mind the volatility of this particular phenomenon. 1 ALSTOM Hydro - [email protected] 2 ALSTOM Hydro - [email protected] 26 METHODOLOGY The first test case chosen to evaluate those parameters is the ERCOFTAC's [7] swirling flow in a conical diffuser. It is particularly well suited for this task due to the availability of the detailed experimental data of Clausen et al. [8] and to its similarities with actual draft tube flows. The paper then addresses the Chute-à-la-Savane draft tube case since this particular geometry is known to cause the efficiency drop mentioned previously. The results help to confirm the conclusions of the first test case and to extend the study to new parameters as well. The numerical investigation was conducted using ANSYS CFX 11.0 which solves three- dimensional Reynolds-averaged NavierStokes (RANS) equations. Turbulence is modelled using the implemented SST model of Menter [9] and results are in some cases compared with a standard k-є turbulence model with wall functions. PART 1 : CONICAL DIFFUSER TEST CASE The ERCOFTAC's test case features a swirling flow of air entering a 10o half-angle diffuser that discharges to ambient atmosphere. The area ratio of the geometry is 2.84 and the level of rotation imposed to the inlet flow was carefully adjusted during the experiment to avoid wall separation as well as the appearance of recirculation bubble in the core flow. The inlet swirl number, Sw = ò R0 r 2 U q U Z dr ò 0R rU Z2 dr often used to quantify the level of rotation in the flow in relation to the axial component of velocity is in this case considered representative of many draft tube flows. The geometry is schematically reproduced in Figure 1 along with the two sets of coordinate axes used. The velocity components Ur, Uθ and Uz are associated with the standard cylindrical coordinates (r, θ, z) whereas Us is the wall parallel velocity component in the xs direction. The numerical results presented in the following sections were all obtained on a one-cell thick pseudo-2D mesh with 115 × 165 elements in the radial and axial directions, respectively. The slice is 2o wide and the wall resolution assures 0.52 < y+ < 1.38 everywhere 3 Université Laval - [email protected] 4 ALSTOM Hydro - [email protected] TECHNICAL ARTICLES along the diffuser wall whenever the SST turbulence model is used. This mesh has proved to be fine enough to lead to mesh independent results for velocity profiles as well as turbulence profiles. ments in the radial and axial directions, respectively. The slice is 2o wide and the wall resolution assures 0.52 < y+ < 1.38 everywhere along the diffuser wall whenever the SST turbulence model is used. This mesh has proved to be fine enough to lead to mesh independent results for velocity profiles as well as turbulence profiles. radial gradient of Ur is much greater for the approximated curve than for the computed one, which leads to an increased velocity peak on the corresponding Us profile as shown in Figure 2b. Also note that the grey zone in Figure 2a defines a region where the flow should be accelerating according to the computed profile but is instead decelerating, causing the axial velocity peak to be closer to the diffuser wall. Since the mass flow must be the same in all three cases, a higher near-wall velocity leads to a lower level of kinetic energy around the axis. Accordingly, a recirculation bubble is shown by the solid curve. Opposite from this behaviour, imposing no radial velocity in the inlet plane implies that no kinetic energy is transferred toward the boundary layer, and its weakness eventually leads to the separation of the flow from the wall, as visible at location S7 presented. The fluid is thus forced to flow in the middle of the diffuser yielding higher speeds in this area and very poor comparison with experimental data. From these evidences, we conclude that the inlet radial velocity component is of high importance in correctly reproducing this swirling flow. Fig 1: Sketch of the diffuser with experimental measurement stations and reference systems used. Dimensions are in mm. INLET RADIAL VELOCITY AND TURBULENCE The first simulations of the conical diffuser were made using a zero radial velocity on the inlet boundary condition which was thought to be a reasonable choice since the inlet plane is located in a cylindrical duct, 25 mm upstream from the diverging section. However, the unsatisfying results obtained quickly showed the importance of the radial component of velocity in the development of the whole flow field. A rotating cylinder was then added upstream of the domain to simulate the swirl generator used in the experimental study. This addition revealed the disregarded presence of a small, but essential, radial velocity component at the inlet plane. Adding this numerically computed velocity component dramatically improves the agreement with the experimental data even though Ur peaks at less that 3% of the average inlet axial velocity. Next, the common approximation U r = Uz tan θ where θ is a function of the diffuser half-angle defined by θ = θ wall (r/R) is compared with the other two cases. Figure 2 illustrates the velocity profiles near the exit of the diffuser for the three radial velocity profiles specified at the inlet. Clearly, the effect of Ur must not be neglected. The results presented in Figure 2 can be examined using the continuity equation expressed in cylindrical coordinates. Under the hypothesis of axisymmetry, the equation simplifies to ∂ /θ∂ term drops and the equation simplifies to ¶U Z 1¶rUr + =0 ¶Z r¶r Interestingly, additional verifications proved that the inlet radial velocity affects the flow predicted by the k-ε turbulence model in a different manner, most probably due to the use of wall functions. Using equation (2) in a k-ε model yields the same conclusion than with the SST, but imposing Ur = 0 leads to a k-ε solution that is much better than for the SST case. This is thought to explain the acceptable agreement between the k-ε solution with no inlet radial velocity and the experimental data reported in the past by some authors (e.g. Mauri [3] and Page et al. [10]). However, other authors using the SST turbulence model have faced difficulties in matching the experimental results with this test case [11,12]. It thus appears that the inlet radial velocity is needed to re-energize the boundary layer in a SST simulation, and that it is the wall function approximation in k-ε model with no inlet radial velocity that compensates with its intrinsic, increased boundary layer robustness. However, relying on log-layer wall functions to compensate for the lack of precision of the inlet boundary should not be viewed as reliable in our opinion. Since in most cases no information is available on the inlet turbulence parameters, qualified guesses also have to be made to estimate them as accurately as possible. To assess the role played by these assumptions, five different approaches, divided in two categories are compared and summarized in Table 1. The first category uses the available measured profile of turbulent kinetic energy k while it estimates the turbulence dissipation rate ε using two different equations. The first of them is proposed by Armfield et al [13] in his numerical study of this test case, and the second is taken from a one-equation model reported in Cousteix & Aupoix [14]. The other approach considered is to make approximations on both k and ε using constant turbulence intensity and a length scale being a fraction of the inlet diameter, Di. Results presented in Figure3 confirm that the imposed turbulent parameters do have an influence on the solution's accuracy. For the present test case, best results are obtained using the meaTable 1: Turbulence parameters imposed at the inlet boundary. Fig 2: Radial velocities imposed at the diffuser inlet and resulting velocity profiles at station S7. We deduce from this expression that the presence of a nonzero radial velocity thus imposes the spatial rate of change of the one is decelerating. It can be noted on Figure 2a that the near-wall 27 ARTIGOS TÉCNICOS sured k profile and Armfield's equation for ε or, alternatively, using the combination I=0.05 with Le=10%Di. However, a fundamental difference exists between these two modelling approaches. The effective viscosity is the sum of the fluid viscosity and the eddy viscosity, the latter being related to both k and ε in the following way: ut µ K e 2 Fig 4: Outlet extensions geometry. Fig 3: Effect of the inlet turbulence on axial velocity profiles and eddy viscosity. The effective viscosity is therefore modified by the turbulent quantities imposed at the diffuser inlet. As can be seen in Figure 3b, it is considerably larger in the case using Le = 10%Di, despite the similarity in the predicted Us profiles. As expected, a higher viscosity tends to damp the fluctuations in the flow as visible in region A of Figure 3a. The opposite behaviour is also seen in region B where the fluidity of the flow in the case Le = 0.1%Di allows the boundary layer to briefly separate at station S4, as showed by the local negative velocity, but to reattach before station S7. Despite the good results noted here, using the approximation Le = 10%Di appears to be a risky operation due to the resulting damping that tends to makes the flow artificially robust, and because of the difficulty to determine the correct turbulence length scale to privilege in other applications. Moreover, the problematic approximation does not seem to lie in the eddy length scale itself but rather in the constant turbulence intensity imposed. Looking back at Armfield's equations presented in Table 1, it can be noted that this model also needs a fraction of the inlet diameter to characterize the turbulence. It thus seems that the error may mostly be attributed to the use of a uniform intensity I, which gives a turbulence kinetic energy, profile very different from the measurements. In this case, imposing Le = 10%Di only hides the induced error and should not in any case be associated with a reliable modelling procedure. TREATMENT OF THE OUTLET CONDITION The impact of the outlet geometry is determined by comparing five extensions downstream of the diffuser. The size and geometry of the discharge tanks added (with solid and/or permeable walls) are shown on Figure 4, the simplest being no extension at all. As a first step, boundaries 1 & 2 are specified to be standard noslip walls as to represent a physical tank. The effect of varying the geometry is in most cases negligible for the axial and tangential velocity profiles, but the pressure distribution in the outlet plane is indeed changed. On the left hand side of Figure 5, it is seen that the Pwall - Patm wall pressure normalized as, Cp = 1 / 2r U i begins to be affected by the extension geometry at 70% of the diffuser wall length, L. In the outlet plane, the pressure distribution along r varies considerably between all simulations as shown by the right hand side of the figure. The geometry of the extension thus affects the pressure results near the diffuser's exit. However, the shape of the extension do- 28 Fig 5: Pressure evolution along the diffuser wall and profile in the outlet plane. main is not the only parameter be considered to model the test case properly. The boundary conditions imposed on the extension also have to be as accurate as possible and this is why two additional simulations using the medium tank are presented on Figure 5. In both cases, the standard no-slip walls are removed on boundary 1 and 2. In the first case, a zero total pressure is imposed on the extension's back and top (boundary 1 & 2) to make the best representation possible of a large volume of fluid at rest. In the other case, only the back of the tank (boundary 1) uses this condition while boundary 2 is a free slip-wall. Both pressure curves are superposed but differ from the one using standard no-slip walls. This leads to the conclusion that the treatment of the extension's boundaries is significant, but in this particular case, the results remain unaffected as long as fluid entrainment by the free jet is free to occur. It is to be noted that the flow topology within the extension box is considerably altered between the two cases, but this has no effect on the results inside the diffuser itself since the velocities are small (see flow fields presented in [5]). The radial variation of the pressure in the outlet plane is not to be neglected since it is directly related to the machine's efficiency. One way to quantify the quality of a diffuser is to look at the amount of kinetic energy converted into pressure via the recovery coeffiP2 - P1 cient, defined as X= 2 1 æç Q ö÷ rç 2 è Aref ÷ø The static pressures P1 and P2 can be determined from an integration of the values in the entire plane or from an average of the wall pressure values. These two options were evaluated for the diffuser with extensions using no slip walls and results are presented in Table 2. The variables χwall(1) and χwall(2) use the parietal pressure at positions defined in Figure 4. The first of these two coefficients includes the last portion of the geometry, thus being more affected by the extension than the same measure taken farther inside the diffuser. Although the velocity profiles inside the diffuser are not significantly affected by the extension's shape, it is important to keep in mind that it is likely to influence the pressure recovery coefficient, especially when calculated from wall pressure and close to the outlet. TECHNICAL ARTICLES Table2:Diffuser's recovery coefficients for various extension boxes(no slip walls). PART 2 : CHUTE-A-LA-SAVANE DRAFT TUBE STUDY The Chute-à-la-Savane draft tube has been selected for a comparative study aiming to confirm and refine the investigation on the sensitivity of numerical results to calculation parameters. This particular draft tube was chosen despite the absence of experimental results since it is known to clearly present the efficiency loss described in Loiseau et al. [6]. MESH SIZE The first step conducted was to evaluate mesh independency to confirm the validity of the results and to give an idea of the refinement needed to properly evaluate draft tube performances. Three meshes containing 1.15, 2.02 and 3.60 millions of structures hexahedral elements were used. Quite surprisingly, all three meshes led to similar results in terms of performances as well as flow topology. Obviously, the most refined case gave a little more details in the flow field but the main flow characteristics were present in the three cases, confirming that an acceptable mesh independency had been reached. The relative error made on the IEC losses, eval2 æ 1 æ Q ö ö÷ uated as P - ç P + rç ÷ tot , in IEC _ losses = ç è 2 çè Aout ÷ø ÷ ø rgH n out is of the order of 2.5%, the absolute values ranging from 1.93% to 1.89% and 1.88% as the mesh is refined. We thus infer that refining the mesh to a very high number of elements is not the parameter that has the most influence on the flow topology. In cases where only a good approximation is sought and computing time is a critical factor, it seems reasonable to use a moderate-size mesh. For the following investigations, the intermediate 2.02M elements mesh is used. AXISYMMETRY OF THE INLET BOUNDARY CONDITION When experimental data is available at the inlet boundary, it is often measured on a single axis. Although this is well suited for axisymmetric geometries such as that of the ERCOFTAC's conical diffuser, it is found that making a 1D approximation only has a moderate impact on the computed CEI losses. The error induced by such an approximation in the case of the Chute-à-la-Savane draft tube is just a little more that 0.1%. INLET TURBULENCE LEVEL The conical diffuser test case showed that two different methods of specifying the inlet turbulence led to similar results. It was then said that using a turbulence intensity of 5% and an eddy length scale equal to 10% of the runner diameter is risky since it tends to artificially smooth the flow characteristics. Results obtained in the Chute-à-la-Savane geometry are very convincing on this point. Figure 6 shows contours of the axial velocity in the draft tube channels. In the first case, the turbulence was taken from a simulation including the distributor and runner. In the second case, imposing the combination I & Le leads to a much more uniform distribution of the flow where the recirculation bubble blocking the right channel disappears. As a consequence, the calculated losses considerably decrease from 1.89% to 1.42%. Fig. 6 : Axial velocity contours in the draft tube channels with turbulence calculated from a) upstream components and b) the approximation I=5% and Le=10%Di. It is clearly seen from this example that modifying the inlet turbulence level can, by itself, modify the whole flow field even if the imposed velocity profiles are unchanged. In the present case, using 10% of the inlet diameter as the eddy length scale leads to an obviously too viscous flow and the calculated losses are underestimated of 0.5% (absolute), which could lead to costly penalties in a contractual context. FINAL CONSIDERATIONS Simulating diffusers using computational fluid dynamics has always been a difficult task due to the unstable nature of the flows under adverse pressure gradients. It has been showed by studying two test cases — the ERCOFTAC's swirling flow in a conical diffuser and the Chute-à-la-Savane draft tube — that the imposed boundary conditions have an important impact on the calculated flow topology. Among these parameters, the inlet radial velocity was shown to have the greatest impact on the conical diffuser's flow since it is directly related to the appearance of wall separation or core flow recirculation. The second most important parameter is probably the inlet turbulence and its role is best seen in the draft tube geometry. Overestimating the incoming turbulent mixing artificially rises the viscosity and leads to a much more uniform flow which tends to underestimate the draft tube losses. The third aspect to recall is the outlet treatment. The addition of an outlet discharge extension did not influence much the velocity profiles inside the conical diffuser, but it did modify the outlet static pressure distribution and consequently altered the calculated recovery coefficient. It is not excluded that, in some cases, it might even have an impact on velocity profiles within the diffuser, especially in the last part of the geometry. On the other hand, refining the mesh and imposing an axisymmetric boundary condition did not appear to have a first order influence on the computed results. These two parameters should however be taken into account as precisely as possible when suspecting the presence of very sensitive phenomena such as the efficiency drop near the best efficiency point. ACKNOWLEDGEMENT The first author would like to thank the Natural Sciences and Engineering Research Council of Canada for its financial support to this research project. BIBLIOGRAPHICAL REFERENCES [1] AVELLAN, F., 2000, Flow Investigation in a Francis Draft Tube : The FLINDT Project, Proceedings of the Hydraulic Machinery and Systems, 20th IAHR Symposium, Charlotte, USA. [2] Turbine-99 website : www.turbine99.org [3] MAURI, S., 2002, Numerical Simulation and Flow Analysis of an Elbow Diffuser, Doctoral Thesis, École Polytechnique de Lausanne, Switzerland. 29 ARTIGOS TÉCNICOS UNSTEADY FLOW WITH CAVITATION IN VISCOELASTIC PIPES 1 Alexandre K. Soares 1 Dídia I. C. Covas 1 Helena M. Ramos 2 Luisa Fernanda R. Reis ABSTRACT The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior Técnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed. Key words: cavitating flow; fluid transients; viscoelasticity; pipelines; experimental data. INTRODUCTION Typically, hydraulic transient analysis is carried out in the design of pressurised pipe systems in order to guarantee their security, reliability and good performance for various normal operating conditions [2, 6, 18]. This analysis is equally important in the operation stage for the diagnosis of existing problems and the calculation of different operational scenarios. Prediction of maximum transient pressures is used for the verification if pipe materials, pressure classes and wall-thicknesses are sufficient to withstand predicted pressure loads to avoid pipe rupture or system damage. Verification of minimum allowable pressures is important to prevent air release, cavitation and water column separation, and, consequently, avoid pipe collapse or pathogenic intrusion into the system. When severe transients cannot be avoided, either pipe layout and system parameters are changed (e.g., operating conditions), or surge protection devices are specified (e.g., pressurised vessels or air-relief valves), so as to sustain extreme transient pressures within acceptable limits. Usually, the decision is the most economical and reliable solution that yields an acceptable transient pressure response. Classic water hammer theory is generally used, as it reasonably well describes extreme transient pressures. Most software packages available are based on this theory. The classic approach assumes that the pipe-wall has a linear-elastic rheological behaviour, friction losses are described by quasi-steady formulae, flow is one-phase and the pipe is completely constrained axially [18]. These assumptions are not always valid, as there are natural phenomena that rapidly attenuate or increase transient pressures such as fluid friction during fast-transients [19], leaks [7], the mechanical behaviour of plastic pipes [8, 9, 13], dissolved or entrapped air [10-12] and multi-pipe systems. The aim of the current paper is to present the results of the com bination of different dynamic effects (i.e., pipe-wall viscoelasticity and cavitation) in hydraulic transient calculations as well as to discuss the importance of these phenomena in the analysis of each particular situation. For this purpose, physical data were collected from an experimental polyethylene (PE) pipeline, assembled in the Hydraulic Laboratory of Civil Engineering Department of Instituto Superior Técnico (Lisbon, Portugal). A series of transient tests were carried out collecting pressure at four different locations. A hydraulic transient solver incorporating the description of different phenomena (e.g., unsteady friction, pipe-wall viscoelasticity, distributed cavitation) has been developed and used to analyse these case studies. An inverse transient solver has been used to calibrate several parameters. Collected data are compared with the results of numerical simulations. Conclusions are drawn concerning the importance of considering these effects in design and during the system operation. MATHEMATICAL MODELS Viscoelastic model Equations that describe the one-dimensional transient-state flows in viscoelastic closed conduits are the momentum and continuity equations (Eq. 1 and 2, respectively). Since the flow velocity and pressure (dependent variables) in transient flows are functions of time and space (independent variables), these equations are a set of two hyperbolic partial differential equations [2, 6, 9, 18]: 1dQ ¶H +g + gh f = 0 Adt ¶x dH a 2 ¶Q 2 a 2 de r + + =0 dt gA¶x gdt where x = coordinate along the pipe axis; t = time; H = piezometric head; Q = flow rate; a = celerity or elastic wave speed 1 Technical University of Lisbon - TULisbon - Portugal; [email protected] 1 Technical University of Lisbon - TULisbon - Portugal; [email protected] 1 Technical University of Lisbon - TULisbon - Portugal; [email protected] 2 São Carlos School of Engineering, USP, Brazil; [email protected] 30 TECHNICAL ARTICLES (dependent on the fluid compressibility, and on the physical properties and external constraints of the pipe); g = gravity acceleration; A = pipe cross- sectional area; εr = retarded strain component (in viscoelastic pipes the total strain can be decomposed into an instantaneous-elastic strain and a retarded strain); and hf = head loss per unit length (hf = fQ|Q|/2DA2 in turbulent conditions, in which f = Darcy-Weisbach friction factor and D = pipe inner diameter). These equations assume: pseudo-uniform velocity profile; linear viscoelastic rheological behaviour of the pipe-wall; onephase, homogenous and compressible fluid, though with negligible changes in density and temperature; uniform and completely constrained from axial or lateral movement pipe. piezometric head; Q = flow rate; a = celerity or elastic wave speed (dependent on the fluid compressibility, and on the physical properties and external constraints of the pipe); g = gravity acceleration; A = pipe cross- sectional area; εr = retarded strain component (in viscoelastic pipes the total strain can be decomposed into an instantaneous-elastic strain and a retarded strain); and hf = head loss per unit length (hf = fQ|Q|/2DA2 in turbulent conditions, in which f = Darcy-Weisbach friction factor and D = pipe inner diameter). These equations assume: pseudo-uniform velocity profile; linear viscoelastic rheological behaviour of the pipe-wall; onephase, homogenous and compressible fluid, though with negligible changes in density and temperature; uniform and completely constrained from axial or lateral movement pipe. The set of differential equations (Eqs. 1 and 2) can be solved by the Method of Characteristics. The stability of this method requires the verification of a numerical restriction for the time and space steps, given by the Courant-Friedrich-Lewy stability condition, dx/dt = V±a. This condition allows the transformation of these equations into a set of total differential equations valid along the characteristic lines dx/dt = ±a: The set of differential Equations 1 and 2 together with the strain-stress equation (Eq. 4) can be solved by the Method of Characteristics. The total strain generated by a continuous application of a stress σ(t) is: in which J0 is the instantaneous creep compliance and J(t') the creep function at t' time. In these equations, the retarded strain time-derivative term cannot be directly calculated and requires further numerical discretization. In order to numerically describe the rheological mechanical behaviour of the pipe-walls (creep function), the generalized Kelvin-Voigt mechanical model of a viscoelastic solid is incorporated in the hydraulic transient equations [1]: where J0 = creep compliance of the first spring defined by J0 = 1/E0; E0 = Young's modulus of elasticity of the pipe; Jk = creep compliance of the spring of the Kelvin-Voigt k-element defined by Jk = 1/Ek; Ek = modulus of elasticity of the spring of k-element; tk = retardation time of the dashpot of k-element, tk = μk/Ek; μk = viscosity of the dashpot of k-element; and NKV = number of KelvinVoigt elements. Parameters Jk and tk are determined by inverse calculation from experimental data. According to this mathematical model, the terms ∂ εr/∂ t and εr are calculated as the sum of these factors for each Kelvin-Voigt element k: where the function F(i,t) is defined by: where g = fluid volumetric weight; e = pipe-wall thickness; and α=dimensionless parameter (function of pipe cross-section dimensions and constraints). At any interior grid intersection point, the two compatibility equations (Eq. 3) and Eqs. 6 and 7 are solved simultaneously for the unknowns εr(i,t), Qi,t and Hi,t. In this research work, a general, simplified linear form for the linear-elastic conduit or the linear-viscoelastic pipe useful for complex, multi-pipe systems has been used [16]. To complete the solution at any time instant, appropriate boundary conditions have been introduced specifying additional equations at the ends of each pipe [2, 6, 18]. Discrete vapour cavity model (DVCM) The discrete vapour cavity model (DVCM) is widely used in standard water hammer software packages for column separation and distributed cavitation analyses [3]. This model is based on the column separation hypothesis that the flow of liquid in the tube is instantaneously and completely separated by its vapour phase when the cavity is formed. Cavities are allowed to form at any of the computational sections if the pressure is computed to be below the vapour pressure. Pure liquid with a constant wave speed is assumed to occupy the reach in between two computational sections. The absolute pressure in a cavity is set equal to the vapour pressure (p*=pv*). The upstream and downstream discharges QPu and QP at a cavity are computed from the compatibility relations (Eq.3), and, ignoring mass transfer during cavitation, its volume follows then from: which is numerically approximated in the Method of Characteristics with a staggered grid by: in which ∀ tp and∀ pt−2Δt are the volumes at the current time and at 2Δt earlier, and ψ is a P numerical weighting factor. The cavity collapses when its calculated volume becomes less than zero. The liquid phase is re-established and the standard water hammer procedure is valid again. Although the vapour column separation model is easily implemented, it has some serious deficiencies as stated by Shu [14]: (i) to avoid the prediction of negative cavity sizes (or the prediction of negative absolute pressures), artificial restrictions are imposed, which result in unrealistically large pressure spikes that discredit the overall value of the numerical results; (ii) the internal boundary condition permits vapour cavities to be formed only at computing nodes, and the simulation results are biased according to where the computing nodes are located; (iii) because the size of the cavity and its mass transfer are ignored, the model is clearly limited in its ability to model cavitation correctly; (iv) at each computing node, a flow rate discontinuity is assumed and there will be two predicted values of flow rate, which is clearly 31 ARTIGOS TÉCNICOS inconsistent with the observed behaviour at each point. In addition, the difference between the two predicted values increases when there is a high degree of cavitation and also when the number of computing nodes is small. On the other hand, when a large number of computing nodes is used, there are a corresponding number of discontinuities leading to a mathematical model that is ill defined. Simpson and Bergant [15] recommended that the maximum volume of discrete cavities at sections is less than 10% of the reach volume. Discrete gas cavity model (DGCM) Transient flow of a homogeneous gas-liquid mixture can be described by the classical water hammer equations in which the liquid wave speed a is replaced by the wave speed am [17]: time, respectively; CT = a parameter which affects the wave speed time variation. The wave speed variation was carried out at the same time by a time step variation Δt, in order to avoid Courant modification. For the description of fluid and pipe material non-elastic behaviour, two reduction coefficients (KH and KQ) were included in the MOC equations: where I = the head loss term; ΔH and ΔQ = head and discharge variation, respectively. Parameter KH gives a reduction in the head variation when induced by a discharge variation by non-elastic fluid (due to the presence of free gas) and pipe (plastics) deformation. KQ is a reduction coefficient in the discharge value caused by a head variation, due to a non- elastic response in the recuperation phase of the deformation. CASE STUDY where αg = gas void fraction; and ρ = liquid mass density. An alternative to modelling free gas distributed throughout the liquid in a homogeneous mix can be achieved by lumping the mass of free gas at computing sections leading to the discrete gas cavity model (DGCM). Each isolated small volume of gas expands and contracts isothermally as the pressure varies, in accordance with the perfect gas law [18]: An isothermal volume versus head relationship is assumed at a gas cavity: in which the constant C3 can be computed from: where p0*=a reference absolute pressure; a0 = void fraction at p0 (ratio of volume of free gas to the mixture volume); z = elevation of the pipe; and Hv=gauge vapour pressure head of the liquid. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior Técnico of Lisbon, Portugal (Figure 1). The experimental facility is composed of a single transmission pipeline with a total length of 203 m and inner diameter of 44 mm. This pipeline is connected to an air vessel at the upstream end and to a free discharge outlet into a constant water level at the downstream end. A ball valve is installed immediately downstream the air vessel and it is used to interrupt the flow in order to perform a fast closing manoeuvre. The air vessel was used to keep the upstream pressure constant as an elevated reservoir. Transient pressure data have been collected using pressure transducers located at four pipe sections with a frequency of 500 Hz (at the air vessel; downstream the ball valve at upstream end of the pipeline - Section 1; at the middle of the pipeline - Section 5; and at downstream end of the pipeline – Section 6). As in the DVCM, between each computing section, or concentrated gas volume, pure liquid with a constant wave speed is assumed without free gas. The DGCM is also able to simulate vaporous cavitation by utilizing a low initial gas void fraction (a0 ≤ 10-7) at all computational sections [15, 17]. Borga et al.'s model Borga et al. [4] presented numerical results, which were obtained based on the traditional vapour-liquid model, introducing several modifications in order to better simulate observed dissipation and dispersion of transient pressures due to mechanical, frictional and inertial dynamic effects. The following changes have been incorporated: (i) modification of Courant number; (ii) modification of friction loss coefficient (or head loss); (iii) modification of wave speed by an exponential law in time but uniform along the pipe axis; and (iv) modification of coefficients of the characteristic equations which affect the transformation of kinetic energy into elastic one and vice-versa. The modification of the head loss coefficient is obtained by using a multiplicative coefficient, KR, and a coefficient of second order term in the integration of head loss, KT. In the simulation of the variable celerity, it is considered an exponential variation along time, uniform along the entire pipe, according to the following equation: where a0 and a0.af = the wave speed values at initial and final 32 Figure 1. Experimental set-up with high-density polyethylene pipes MODEL CALIBRATION In order to analyze the pressure transients in the system, two different tests have been carried out: (i) fast closure of downstream end ball valve (without cavitating flow) for creep function analysis; and (ii) fast closure of the upstream end ball valve for cavitating flow analyses utilizing DVCM, DGCM and Borga et al.'s [4] model. Pipe-wall viscoelasticity analysis In order to determine the mechanical behaviour of the HDPE pipe system, transient tests were carried out by closing the downstream end ball valve (without cavitation). The viscoelastic transient solver developed in this study was used neglecting unsteady friction and the HDPE creep function was numerically determined by means of inverse calculations. The creep compliance function J(t) is numerically described by the generalized Kelvin- Voigt mechanical model. This model is represented by the instantaneous elastic creep J0 and the retarded coefficients, Jk and τk for each Kelvin-Voigt element. Usually this TECHNICAL ARTICLES creep compliance function is unknown and it has to be experimentally estimated, either by using an inverse procedure (calibration) or by carrying out mechanical tensile tests of pipe specimens. downstream the ball valve - Figure 3) and Section 5 (middle pipe section – Figure 4). An inverse model based on Levenberg-Marquardt search method (LM) has been developed and was used to determine the coefficients of the creep compliance function J(t). Elastic wave -1 speed was estimated as 315 m/s (E0 = 1.43 GPa; J0 = 0.70 GPa ; Δt = 0.002 s; and Δx = 0.63 m). Several initial numerical simulations were run to find the best number of Kelvin-Voigt elements. The optimal number of KelvinVoigt elements was obtained by using three elements (T1 = 0.018 s;J1 = 0.256 GPa-1;T2 = 0.50 s;J2 = 0.238 GPa-1; and T3 = 3.0 s; J3 -1 = 0.290 GPa ). A complete calibration analysis of the HDPE pipe rig can be found in Carriço [5]. Numerical results obtained by using the linear viscoelastic transient solver are presented in Figure 2 (Q0 = 2.72 L/s; Re ≈ 80,000) for the Section 6 of the pipe rig (downstream end of the pipeline and immediately upstream the ball valve). Numerical results fitted observed pressure data extremely well. Unsteady friction losses are assumed to be described by the creep function calibrated. Figure 2.Numerical results (without cavitation and taking into account pipe-wall viscoelasticity) versus experimental data at Section 6 (Q0 = 2.72 L/s; Re ≈ 80,000) Figure 3.DVCM numerical results (neglecting and taking into account pipe-wall viscoelasticity) versus experimental data at Section 1 (Q0 = 4.0 L/s; Re ≈ 120,000) Figure 4.DVCM numerical results (neglecting and taking into account pipe-wall viscoelasticity) versus experimental data at Section 5 (Q0 = 4.0 L/s; Re ≈ 120,000) Numerical results during cavitating flow Transient tests were carried out by closing the upstream end ball valve to originate cavitating pipe flow in the system. Initially, the creep function calibrated for non-cavitation tests was used in order to describe the system mechanical behaviour. Actually, when pressure decreases and reaches the vapour pressure, a gas cavity is formed and consequently decreases the wave speed. In this way, a new set of viscoelastic parameters was determined and it has been assumed that unsteady friction losses, pipe-wall viscoelasticity and wave speed variation due to localised gas cavities were described by the creep function. Elastic wave speed was estimated as 250 m/s (Δt = 0.08 s and Δx = 20.0 m) and three Kelvin-Voigt elements were used (T1 = 0.10 -1 -1 s; J1 = 0.60 GPa ; T2 = 0.50 s; J2 = 0.35 GPa ; and T3 = 3.0 s; J3 = -1 0.50 GPa ). The discrete vapour cavity model (DVCM) and the discrete gas cavity model (DGCM) developed in this study were used in order to describe the cavitating flow in the system. In the later, a small void fraction was adopted (α0 ≤ 10-7), since the flow did not exhibit distributed air bubbles at the beginning of the tests. Numerical results obtained by using the DVCM and the linear viscoelastic transient solver are presented for two locations of the pipe rig: Section 1 (upstream end of the pipeline and immediately Figure 5. DGCM numerical results (taking into account pipe-wall viscoelasticity) versus experimental data at Section 1 (Q0 = 4.0 L/s; Re ≈ 120,000) The use of DVCM taking into account pipe-wall viscoelasticity has shown that the attenuation and dispersion in the transient pressures were not described. In addition to the deficiencies pointed out by Shu [14], this is due to the assumption of the absolute pressure in the gas cavities being set equal to the vapour pressure and the energy dissipation during the expansion and contraction of the gas cavities being neglected. 33 ARTIGOS TÉCNICOS In this way, the DGCM has been used in order to describe the system behaviour, considering a small initial void fraction (α0 ≤ 107). Numerical results obtained by using the DGCM and the linear viscoelastic transient solver are presented for two locations of the pipe rig: Section 1 (upstream end of the pipeline and immediately downstream the ball valve – Figure 5) and Section 5 (middle pipe section – Figure 6). system behaviour. The wave speed variation is shown in Figure 7, considering the creep function determined. Starting from 250 m/s, the wave speed becomes nearly constant after 8.0 s with a final value of 167 m/s. Numerical results obtained by using Borga et al.'s model are depicted in Figure 8 for transient pressures collected at Section 1, and in Figure 9 for pressure variation at Section 5, considering the following parameters: a0 = 300 m/s; af = 0.8; CT = 5; KR = 1.0; KT = 0.5; KH = 0.4; and KQ = 1.4. A third attempt in order to describe the system behaviour has been done by using Borga et al.'s [4] model. In this model, the authors have incorporated modifications in different characteristic parameters, such as wave celerity, head losses and coefficients of the characteristic equations. The numerical results were obtained by using the discrete vapour cavity model (DVCM). Whilst numerically less complex than the viscoelastic model this simplified model can provide better results than those obtained by using both DVCM and viscoelastic model. Actually, the viscoelastic mechanical behaviour of the pipe-walls is described by Eq. 15 and the energy dissipation during growth and collapsing of gas cavities is reproduced by the multiplicative coefficients of head loss and characteristic equations. Figure 6. DGCM numerical results (taking into account pipe-wall viscoelasticity) versus experimental data at Section 5 (Q0 = 4.0 L/s; Re ≈ 120,000) Figure 8. Borga et al.'s model numerical results versus experimental data at Section 1(Q0 = 4.0 L/s; Re ≈ 120,000) Figure 7. Wave celerity variation The use of DGCM taking into account pipe-wall viscoelasticity has shown that: (i) a better adjustment to the experimental data was obtained by DGCM than those one when utilizing the DVCM; (ii) the assumption of the ideal gas law is more appropriate than the simple adoption of vapour pressure when pressure reaches vapour pressure (DVCM) – this influences the energy dissipation during the expansion and contraction of gas cavities. In DGCM formulation, the exponent of the polytropic gas is assumed to be equal to 1.0 in order to obtain explicit equations and considering that the free gas is assumed to behave isothermally, which is valid for tiny bubbles. In this study, large bubbles were formed on the upper part of the pipe cross-section and growth along the pipe axis. Large bubbles and column separations tend to behave adiabatically. It is recommended further analyses of the exponent of the polytropic gas and of the implicit formulation; (iii) some features of the HDPE pipe rig during the transient tests, such as pipe displacement and a free discharge outlet at the downstream end of the pipeline, lead to more uncertainties on the 34 Figure 9. Borga et al.'s model numerical results versus experimental data at Section 5 (Q0 = 4.0 L/s; Re ≈ 120,000) CONCLUSIONS The current paper presented experimental tests and numerical analyses of water hammer with cavitation in a pressurised single transmission pipeline composed of high-density polyethylene pipes. Pressure data in turbulent conditions were collected during transient events caused by valve closure. A hydraulic transient solver that takes into account pipe-wall viscoelasticity mechanical behaviour has been developed. Such measured data were used to TECHNICAL ARTICLES calibrate and verify three developed mathematical models to the description of cavitating pipe flow: discrete vapour cavity model (DVCM), discrete gas cavity model (DGCM) and a simplified model proposed by Borga et al. [4]. Obtained numerical results showed that DVCM is imprecise for the description of hydraulic system behaviour. Whilst such model is on the safest side for design purposes as it predicts higher overpressures, it is not accurate for calibration purposes due to the neglecting of the energy dissipation during the expansion and contraction of the gas cavities. The assumption of the ideal gas law (DGCM) is more appropriate than the simple adoption of vapour pressure when pressure reaches vapour pressure (DVCM) and induces more attenuation and dispersion of transient pressures. For cavitating flows, a new set of viscoelastic parameters was determined and it was assumed that unsteady friction losses, pipe-wall viscoelasticity and wave speed variation due to the formation of localised gas cavities were described by the creep function. The simplified model proposed by Borga et al. [4] provided better results than those obtained by using DVCM. This model can be an alternative numerically less complex than the viscoelastic model. Considering the analysis carried out in this work, cavitation flows in pressurised systems composed of plastic pipes have to be better analyzed. The study of new numerical methods, such as two-dimensional (2D) methods, can be the solution for the description of pressure transients during cavitation. ACKNOWLEDGMENTS The authors gratefully acknowledge the financial support of: "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior" [(CAPES, Brazil), who provided a post- doctoral scholarship to the first author]; the Portuguese Foundation for Science and Technology [(FCT) for grants reference POCTI/ECM/58375/2004, PTDC/ECM/65731/2006, PTDC/ECM/64821/2006, FP7 HYLOW212423, and for the post-doctoral scholarship provided to the first author (SFRH/BPD/34018/2006)]; CEHIDRO Hydrosystems Research Centre from DECivil/IST; and"Gabinete de Relações Internacionais da Ciência e do Ensino Superior" (GRICES, Portugal). BIBLIOGRAPHICAL REFERENCES [1] Aklonis, J. J. and MacKnight, W. J. (1983). Introduction to Polymer Viscoelasticity, John Wiley & Sons, New York, USA. ter supply systems." Water Science and Technology: Water Supply, 4(5-6), 365-374. [8] Covas, D., Stoianov, I., Mano, J., Ramos, H., Graham, N., and Maksimovic, C. (2004). "The Dynamic Effect of Pipe-Wall Viscoelasticity in Hydraulic Transients. Part I - Experimental Analysis and Creep Characterization." Journal of Hydraulic Research, 42(5), 516-530. [9] Covas, D., Stoianov, I., Mano, J., Ramos, H., Graham, N., and Maksimovic, C. (2005). "The Dynamic Effect of Pipe-Wall Viscoelasticity in Hydraulic Transients. Part II - Model Development, Calibration and Verification." Journal of Hydraulic Research, 43(1), 56-70. [10] Covas, D., Stoianov, I., Ramos, H., Graham, N., and Maksimovic, C. (2003). "The Dissipation of Pressure Surges in Water Pipeline Systems." Pumps, Electromechanical Devices and Systems Applied to Urban Management. Volume 2, The Netherlands, Balkema Publishers, 711-719. [11] Martin, C. S. (1976). "Entrapped Air in Pipelines." Proc. 2nd Int. Conf. on Pressure Surges, BHRA, F2.15-F2.27. [12] Pearsall, I. S. (1965). "The Velocity of the Water Hammer Waves." Proceedings of the Institution of Mechanical Engineers. Symposium on Pressure Surges 1965-66, 12-20. [13] Ramos, H., Borga, A., Covas, D., and Loureiro, D. (2004). "Surge damping analysis in pipe systems: modelling and experiments." Journal of Hydraulic Research, 42(4), 413-425. [14] Shu, J. J. (2003). "Modelling Vaporous Cavitation on Fluid Transients." International Journal of Pressure Vessels and Piping, 80, 187-195. [15] Simpson, A. R. and Bergant, A. (1994). "Numerical comparison of pipe-column- separation models." Journal of Hydraulic Engineering, ASCE, 120(3), 361-377. [16] Soares, A. K., Covas, D. I. C., and Reis, L. F. R. (2008). "Analysis of PVC Pipe-Wall Viscoelasticity during Water Hammer." Journal of Hydraulic Engineering, ASCE, 134(9). [17] Wylie, E. B. (1984). "Simulation of vaporous and gaseous cavitation." Journal of Fluids Engineering, ASME, 106(3), 307-311. [18] Wylie, E. B. and Streeter, V. L. (1993). Fluid Transients in Systems, Prentice Hall, Englewood Cliffs, N.J.. [19] Zielke, W. (1968). "Frequency-dependent friction in transient pipe flow." Journal of Basic Engineering, Trans. ASME, Series D, 90(1), 109-115. [2] Almeida, A. B. and Koelle, E. (1992). Fluid Transients in Pipe Networks, Computational Mechanics Publications, Elsevier Applied Science, Southampton, UK. [3] Bergant, A., Simpson, A. R., and Tijesseling, A. (2006). "Water Hammer with Column Separation: A Historical Review." Journal of Fluids and Structures, 22, 135-171. [4] Borga, A., Ramos, H., Covas, D., Dudlik, A., and Neuhaus, T. (2004). "Dynamic effects of transient flows with cavitation in pipe systems." The Practical Application of Surge Analysis for Design and Operation - 9th International Conference on Pressure Surges (Chester, UK: 24-26 March 2004) - Volume II, BHR Group Ltd., Bedfordshire, UK, 605-617. [5] Carriço, N. G. (2008). "Modelling and Experimental Analysis of Non-Conventional Dynamic Effects during Hydraulic Transients in Pressurised Systems." Master Thesis, Instituto Superior Técnico, Technical Unviersity of Lisbon, Portugal. [6] Chaudhry,M.H.(1987). Applied Hydraulic Transients,Litton EducationalPublishingInc,VanNostrandReinhold Co,New York,USA. [7] Covas, D., Ramos, H., Graham, N., and Maksimovic, C. (2005). "Application of hydraulic transients for leak detection in wa- Acesse todos os nossos artigos em: www http:// CERPCH.ORG.BR 35 INSTRUCTIONS FOR AUTHORS TO PREPARE TO HAVE ARTICLES TO BE SUBMITTED INSTRUÇÕES AOS AUTORES Forma e preparação de manuscrito Form and preparation of manuscripts Primeira Etapa (exigida para submissão do artigo) O texto deverá apresentar as seguintes características: espaço 1,5; papel A4 (210 x 297 mm), com margens superior, inferior, esquerda e direita de 2,5 cm; fonte Times New Roman 12; e conter no máximo 16 laudas, incluindo quadros e figuras. Na primeira página deverá conter o título do trabalho, o resumo e as Palavras-Chaves. Nos artigos em português, os títulos de quadros e figuras deverão ser escritos também em inglês; e artigos em espanhol e em inglês, os títulos de quadros e figuras deverão ser escritos também em português. Os quadros e as figuras deverão ser numerados com algarismos arábicos consecutivos, indicados no texto e anexados no final do artigo. Os títulos das figuras deverão aparecer na sua parte inferior antecedidos da palavra Figura mais o seu número de ordem. Os títulos dos quadros deverão aparecer na parte superior e antecedidos da palavra Quadro seguida do seu número de ordem. Na figura, a fonte (Fonte:) vem sobre a legenda, à direta e sem pontofinal; no quadro, na parte inferior e com ponto-final. O artigo em PORTUGUÊS deverá seguir a seguinte seqüência: TÍTULO em português, RESUMO (seguido de Palavras chave), TÍTULO DO ARTIGO em inglês, ABSTRACT (seguido de key words); 1. INTRODUÇÃO (incluindo revisão de literatura); 2. MATERIAL E MÉTODOS; 3. RESULTADOS E DISCUSSÃO; 4. CONCLUSÃO (se a lista de conclusões for relativamente curta, a ponto de dispensar um capítulo específico, ela poderá finalizar o capítulo anterior); 5. AGRADECIMENTOS (se for o caso); e 6. REFERÊNCIAS, alinhadas à esquerda. O artigo em INGLÊS deverá seguir a seguinte seqüência: TÍTULO em inglês; ABSTRACT (seguido de Key words); TÍTULO DO ARTIGO em português; RESUMO (seguido de Palavras-chave); 1. INTRODUCTION (incluindo revisão de literatura); 2. MATERIALAND METHODS; 3. RESULTS AND DISCUSSION; 4. CONCLUSIONS (se a lista de conclusões for relativamente curta, a ponto de dispensar um capítulo específico, ela poderá finalizar o capítulo anterior); 5. ACKNOWLEDGEMENTS (se for o caso); e 6. REFERENCES. O artigo em ESPANHOL deverá seguir a seguinte seqüência: TÍTULO em espanhol; RESUMEN (seguido de Palabra llave), TÍTULO do artigo em português, RESUMO INTRODUCCTIÓN em português (incluindo (seguido revisão de de palavras-chave); literatura); 2. 1. MATERIALES YMETODOS; 3. RESULTADOS YDISCUSIÓNES; 4. CONCLUSIONES (se a lista de conclusões for relativamente curta, a ponto de dispensar um capítulo específico, ela poderá finalizar o capítulo anterior); 5. RECONOCIMIENTO (se for o caso); e 6. REFERENCIAS BIBLIOGRÁFICAS. Os subtítulos, quando se fizerem necessários, serão escritos com letras iniciais maiúsculas, antecedidos de dois números arábicos colocados em posição de início de parágrafo. No texto, a citação de referências bibliográficas deverá ser feita da seguinte forma: colocar o sobrenome do autor citado com apenas a primeira letra maiúscula, seguido do ano entre parênteses, quando o autor fizer parte do texto. Quando o autor não fizer parte do texto, colocar, entre parênteses, o sobrenome, em maiúsculas, seguido do ano separado por vírgula. O resumo deverá ser do tipo informativo, expondo os pontos relevantes do texto relacionados com os objetivos, a metodologia, os resultados e as conclusões, devendo ser compostos de uma seqüência corrente de frases e conter, no máximo, 250 palavras. Para submeter um artigo para a Revista PCH Noticias & SHP News o(os) autor (es) deverão entrar no site www.cerpch.unifei.edu.br/Submeterartigo. Serão aceitos artigos em português, inglês e espanhol. No caso das línguas estrangeiras, será necessária a declaração de revisão lingüística de um especialista. Segunda Etapa (exigida para publicação) O artigo depois de analisado pelos editores, poderá ser devolvido ao (s) First Step (required for submition) The manuscript should be submitted with following format: should be typed in Times New Roman; 12 font size; 1.5 spaced lines; standard A4 paper (210 x 297 mm), side margins 2.5 cm wide; and not exceed 16 pages, including tables and figures. In the first page should contain the title of paper, Abstract and Keywords. For papers in Portuguese, the table and figure titles should also be written in English; and papers in Spanish and English, the table and figure titles should also be written in Portuguese. The tables and figures should be numbered consecutively in Arabic numerals, which should be indicated in the text and annexed at the end of the paper. Figure legends should be written immediately below each figure preceded by the word Figure and numbered consecutively. The table titles should be written above each table and preceded by the word Table followed by their consecutive number. Figures should present the data source (Source) above the legend, on the right side and no full stop; and tables, below with full stop. The manuscript in PORTUGUESE should be assembled in the following order: TÍTULO in Portuguese, RESUMO (followed by Palavras-chave), TITLE in English; ABSTRACT in English (followed by keywords); 1.INTRODUÇÃO (including references); 2. MATERIAL E METODOS; 3. RESULTADOS E DISCUSSAO; 4. CONCLUSAO (if the list of conclusions is relatively short, to the point of not requiring a specific chapter, it can end the previous chapter); 5. AGRADECIMENTOS (if it is the case); and 6. REFERÊNCIAS, aligned to the left. The article in ENGLISH should be assembled in the following order: TITLE in English; ABSTRACT in English (followed by keywords); TITLE in Portuguese; ABSTRACT in Portuguese (followed by keywords); 1. INTRODUCTION (including references); 2. MATERIAL AND METHODS; 3.RESULTS AND DISCUSSION; 4. CONCLUSIONS (if the list of conclusions is relatively short, to the point of not requiring a specific chapter, it can end the previous chapter); 5. ACKNOWLEDGEMENTS (if it is the case); and 6. REFERENCES. The article in SPANISH should be assembled in the following order: TÍTULO in Spanish; RESUMEN (following by Palabra-llave), TITLE of the article in Portuguese, ABSTRACT in Portuguese (followed by keywords); 1. INTRODUCCTIÓN (including references); 2. MATERIALES Y MÉTODOS; 3. RESULTADOS Y DISCUSIÓNES; 4. CONCLUSIONES (if the list of conclusions is relatively short, to the point of not requiring a specific chapter, it can end the previous chapter); 5.RECONOCIMIENTO (if it is the case); and 6. REFERENCIAS BIBLIOGRÁFICAS. The section headings, when necessary, should be written with the first letter capitalized, preceded of two Arabic numerals placed at the beginning of the paragraph. Abstracts should be concise and informative, presenting the key points of the text related with the objectives, methodology, results and conclusions; it should be written in a sequence of sentences and must not exceed 250 words. References cited in the text should include the author\'s last name, only with the first letter capitalized, and the year in parentheses, when the author is part of the text. When the author is not part of the text, include the last name in capital letters followed by the year separated by comma, all in parentheses For paper submission, the author(s) should access the online submission Web site www.cerpch.unife.edu.br/submeterartigo (submit paper). The Magazine SHP News accepts papers in Portuguese, English and Spanish. Papers in foreign languages will be requested a declaration of a specialist in language revision. Second Step (required for publication) Comitê Editorial da Revista. After the manuscript has been reviewed by the editors, it is either returned to the author(s) for adaptations to the Journal guidelines, or rejected because of the lack of scientific merit and suitability for the journal. If it is judged as acceptable by the editors, the paper will be directed to three reviewers to state their scientific opinion. Author(s) are requested to meet the reviewers\' suggestions and recommendations; if this is not totally possible, they are requested to justify it to the Editorial Board Obs.: Os artigos que não se enquadram nas normas acima descritas, na sua totalidade ou em parte, serão devolvidos e perderão a prioridade da ordem seqüencial de apresentação. Obs.: Papers that fail to meet totally or partially the guidelines above described will be returned and lose the priority of the sequential order of presentation. autor (es) para adequações às normas da Revista ou simplesmente negado por falta de mérito ou perfil. Quando aprovado pelos editores, o artigo será encaminhado para três revisores, que emitirão seu parecer científico. Caberá ao(s) autor (es) atender às sugestões e recomendações dos revisores; caso não possa (m) atender na sua totalidade, deverá (ão) justificar ao 36 AGENDA/SCHEDULE 6º Congresso Brasileiro sobre Eficiência Energética Data: 23 de junho de 2009 Local: Novotel Center Norte - São Paulo - SP Informações: http://www.metodoeventos.com.br/6eficienciaenerget Andean and Central America Energy Congress Data: 10 de julho de 2009 Local: Colômbia - Local: Bogotá - AC Informações: http://www.acaec2008.com 33rd International Association of Hydraulic Engineering & Research (IAHR) Biennial Congress Data: August 10-14, 2009 Local: Vancouver - Canadá Informações: [email protected] Energy Summit 2009 Data: 11 a 13 de agosto de 2009 Local: Rio de Janeiro - RJ Informações: www.energysummit.com.br V Conferência de PCH Mercado & Meio Ambiente Data: 5 e 6 de agosto de 2009. Local: São Paulo – SP Informações: www.conferenciadepch.com.br XX SNPTEE - Seminário Nacional de Produção e Transmissão de Energia Elétrica Data: 22 a 25 de novembro de 2009 Local: Olinda - PE Informações: http://www.xxsnptee.com.br a ri B r as il e 0s 2 ano a ir E n g en h a e i * n a l o ASSOCIADOS * CONSULTORES a I n t e r n c A RDR Consultores Associados foi fundada em dezembro de 1989 por um grupo de técnicos de alto nível com larga experiência na concepção e implantação de empreendimentos na área de energia elétrica, tendo por objetivo prestar serviços em estudos, projetos, consultoria e gerenciamento, tanto para clientes do setor público quanto privado. No gerenciamento de programas, atua nas áreas de meio ambiente, educação e saúde, com financiamento internacional. No campo das hidrelétricas, a RDR atua desde a busca dos locais para os aproveitamentos até o Gerenciamento da implantação das Obras. O quadro da capacitação da RDR é: · · · · · · · Estudo deAvaliação de Potencial Estudo de Inventário Hidrelétrico Projeto Básico Projeto Básico, para contratação de serviço e aquisições de equipamentos ou para contratação de EPC Projeto Executivo Gerenciamento da Implantação das Obras Engenharia do Proprietário C O N S U L T O R E S A S S O C I A D O S RUA MARECHAL DEODORO, 51 - 15º ANDAR - GALERIA RITZ C U R I T I B A 8 0 . 0 2 0 - 9 0 5 P A R A N Á 55 41 3233-1400 r d r @ r d r. s r v. b r w w w. r d r. s r v. b r OPINIÃO Interligação e conexão de PCHs Por Decio Michellis Jr. No projeto e construção da transmissão para interligação e conexão de PCHs nem sempre o caminho mais curto é o melhor caminho. Considere adequadamente a variável socioambiental no processo decisório. As demandas ambientais são cada vez mais complexas e caras. Cada vez mais é transferido ao empreendedor o tratamento de questões que competem ao Poder Público, harmonizando regionalmente os conflitos entre políticas públicas e os interesses de proteção do meio ambiente. No projeto e construção da transmissão para interligação e conexão de PCHs merecem cada vez mais atenção os aspectos físicos, bióticos, sociais e de mudanças climáticas, abrangendo todas as etapas do empreendimento. Na etapa de estudos básicos e viabilidade o ideal é: i) selecionar traçado para a transmissão que evite ao máximo a interferência em áreas de florestas, áreas alagadas, travessias de corpos d´água, áreas com restrições legais ou especialmente protegidas e respectivas zonas de amortecimento (unidades de conservação, áreas prioritárias para criação de unidades de conservação da biodiversidade, terras indígenas e remanescentes de quilombos) mesmo de forma indireta possam se transformar em barreiras intransponíveis na implantação do empreendimento. Indígenas em geral alegam que tem direito à isenção de pagamento da energia elétrica quando suas terras são cortadas por linhas de transmissão, mesmo de PCHs. Acordos verbais são tão relevantes quanto os legais, bem como a próxima geração pode não se sentir compensada com os acordos anteriormente firmados, consistindo num desafio permanente de articulação e gestão socioambiental; ii) verificar a possibilidade de construção da mesma sem a necessidade de criação de estradas de acesso/serviço, utilizando a servidão/proximidade das estradas existentes; iii) manter registros documentais que foram consideradas receitas com créditos de carbono desde as etapas iniciais dos estudos da PCH; iv) iniciar a articulação com os proprietários e as lideranças locais onde será realizado o empreendimento, acompanhada de ações afirmativas de responsabilidade socioambiental antes mesmo de iniciar o processo de licenciamento. Na etapa de projeto executivo o ideal é: i) utilizar no projeto as melhores soluções técnicas e práticas de gestão socioambiental disponíveis e economicamente viáveis, incluindo a possibilidade de uso de cruzetas ecológicas e postes de concreto; ii) o projeto deve visar a mínima interferência com o meio ambiente, especialmente em áreas de vegetação densa, evitando desmatamento desnecessário e futura susceptibilidade a processos erosivos; iii) o risco associado à segurança ambiental é inversamente proporcional à qualidade dos estudos realizados. Na etapa de construção o ideal é: i) assegurar o planejamento de conformidade ambiental da contratada; ii) evitar ao máximo o corte de vegetação natural existente no local, não tocar nas áreas de preservação permanente, exceto o mínimo necessário ao deslocamento de pessoas e equipamentos; iii) procure contratar ao máximo a mão de obra local; iv) utilizar, sempre que possível, fornecedores locais de materiais e serviços; v) dar atenção especial à adequada desmobilização de canteiros e alojamentos, bem como a recuperação das áreas degradadas na limpeza da faixa. Na etapa de operação o ideal é: i) fornecer informações adequadas às comunidades afetadas e fornecedoras de mão de obra, incluindo orientação quanto ao risco de acidentes com a rede elétrica e práticas sustentáveis de uso do solo e dos recursos naturais; ii) acompanhar a evolução do uso do solo embaixo da LT – Linha de Transmissão, avaliando a velocidade de degradação ambiental e seus impactos na perda de cobertura vegetal, aumento de erosão, etc.; iii) articular e apoiar ações de 38 preservação ambiental e correto manejo do solo, com ações concretas que podem incluir o fornecimento de mudas para reflorestamento. É mais barato ser inteligente. Um meio ambiente ecologicamente equilibrado é bom também para redução dos custos de operação e manutenção: menor freqüência de interrupções, riscos menores de queimadas e incêndios florestais, menores custos de manutenção e redução de penalizações pelo não fornecimento da energia contratada. No projeto e construção da transmissão para interligação e conexão de PCHs nem sempre o caminho mais curto é o melhor caminho. Considere adequadamente a variável socioambiental no processo decisório. OPINION SHP Connection and Interconnection Translation Adriana Candal In the project and construction of the transmission for SHP connection and interconnection, the shortest way is not always the best. Consider the socio-environmental variable in the decision-making process. Environmental demands are increasingly more complex and expensive. The Public Power is continually transferring issues that they must deal with to the entrepreneur, regionally harmonizing the conflicts between public policies and the interests in protecting the environment. In the project and construction of the transmission for SHP interconnection and connection, the physical, biotic, social and climatic change aspects deserve significant attention along all of the stages of the enterprise. During the stage of basic and feasibility studies it is ideal to ideal é: i) select the route of the transmission, avoiding the interference in forest areas, flooded areas, transposition of streams or lakes, area that have legal restrictions or are especially protected and zo- ne that present any sort of interest (conservation units, areas whose priority is the creation of biodiversity conservation units, land that belongs to native populations and land that belong to the families of old runaway slaves) that even in an indirect way may become obstacles that are impossible to overcome for the implementation of the enterprise. Native Indians populations, in general, claim that they are exempt from paying electric power when there are power lines in their lands, even from SHPs. Verbal agreements are as relevant as the legal ones, as well as the next generation may not feel well-compensated by the agreements that were previously settled, which is a permanent challenge in relation to articulation and socio-environmental management; ii) check the possibilities of building the SHP without the need to create access/service roads, using already existing ones; iii) keep documental records that were considered income with carbon credits since the stages of the SHP initial studies; iv) initiate discussions with owners and local leaders of the place where the enterprise will be implemented, followed by socio-environmental positive actions, before the beginning of the licensing process. During the stage of executive project it is ideal: i) to use the best technical, practical and economically feasible available solutions regarding socio-environmental management in the project, including the possibility of using ecological crossarms and concrete posts; ii) the project must aim at the minimum environmental interference, particularly in areas of dense vegetation, avoiding unnecessary deforestation and the future susceptibility to erosion processes; iii) the risk associated to the environmental safety is inversely proportional to the quality of the studies that were carried out. During the stage of construction it is ideal to: i) assure that the environmental planning will be followed; ii) avoid cutting down the natural vegetation of the place, do not touch areas of permanent preservation, unless it is absolutely necessary for the displacement of people and the transport of equipment; iii) hire local work power; iv) whenever it is possible, use local suppliers of material and services; v) pay special attention to the appropriate removal of working sites and barracks, as well as the recuperation of the degraded areas. During the operation it is ideal to: i) give appropriate information to the affected communities and to the labor suppliers, including information regarding the risk of accidents with the electric grid and sustainable practices of using the soil and natural resources; ii) follow the use of the soil under the power lines, assessing the speeding of environmental degradation and its impacts on the vegetation cover, erosion; iii) articulate and support environmental preservation actions and the correct management of the soil with concrete actions that may include the supply of seedlings for reforestation. It is cheaper to be intelligent. An ecologically balanced environment is also good for the reduction of O&M costs: smaller number of interruptions, lower risks of burnings and forest fires, lower maintenance costs and reduction in the penalties caused by not supplying the energy that was agreed. In the project and construction of transmission for connections and interconnection of SHPs, the shortest route is not always the best one. It is important to consider the socio-environmental variable in the decision making process. 39 CURTAS ICOLD E CBDB realizam o 23º Congresso Internacional de Grandes Barragens Por Adriana Barbosa Translation Adriana Candal Cerca de 1400 participantes de mais de 80 países participaram do 23º Congresso da Internacional de Grandes Barragens promovido pela Comissão Internacional de Grandes Barragens (ICOLD-CIBG), e organizado pelo Comitê Brasileiro de Grandes Barragens (CBDB), entre os dias 24 e 29 de maio, em Brasília. Com a presença do atual presidente da ICOLD, Luis Berga e do presidente eleito, Jia Jinseng, o evento foi citado pelos componentes da mesa de abertura como a referência mundial na troca de experiências, informação e aprimoramento técnico entre especialistas de diversos países. “É uma satisfação receber o evento mais importante do mundo na área de construção de barragens”, disse o presidente do CBDB, Edilberto Maurer. Segundo ele foi uma grande desafio organizar o evento diante das crises que se instalaram no mundo durante a organização. “O Congresso será uma oportunidade única para que os técnicos e especialistas em construção de barragens possam trocar experiências”, disse. O presidente da ICOLD, Luis Berga, disse que a escolha do Brasil para sediar o Congresso levou em consideração o grande potencial hidrelétrico do país. “O Brasil tem mais de 1000 barragens existentes, com cerca de 650 delas destinadas à produção de energia elétrica. Mais de 70% de toda capacidade de produzir energia é originada das hidrelétricas, sendo o segundo país no mundo em geração hidráulica”, afirmou. Berga lembrou ainda que, apesar de toda capacidade de produção, apenas 30% estão desenvolvidos e explorados. Outro motivo, segundo o presidente, é que o Brasil tem, atualmente, 80 hidrelétricas sendo construídas. O presidente da ICOLD lamentou que cerca de 1,6 bilhão de pessoas no mundo ainda não tenham eletricidade em suas casas. “A solução é desenvolver sustentavelmente a construção de barragens e aumentar a capacidade de armazenamento de água. Isso deve ser prioridade”, defendeu Berga. A abertura do evento contou ainda com a participação do secretário-geral da ICOLD, Michel de Vivo, do diretor de Engenharia e Planejamento da Eletronorte, Adhemar Palocci, e do vicepresidente do World Water Council (WWC), Benedito Braga, diretor da Agência Nacional de Águas (ANA). O novo presidente da ICOLD, Jia Jinseng, eleito durante a 77ª Reunião Anual da entidade, realizada durante o encontro, lembrou que a ICOLD não tem apenas o papel técnico, mas também o de trabalhar de forma economicamente sustentável. “A situação atual é desafiadora e por isso é preciso promover, principalmente, o desenvolvimento social”, disse. Jia Jinseng destacou ainda a necessidade de desenvolver a construção de barragens na África que, segundo ele, deve ser prioridade. “A ICOLD tem muito a contribuir com o mundo”, concluiu. ICOLD and CBDB hold 23th International Meeting of Large Dams About 1400 people from over 80 countries participate in the 23rd International Meeting of Large Dams promoted by the International Commission of Large Dams (ICOLD-CIBG), and organized by the Brazilian Committee of Large Dams (CBDB) in Brasilia between May 24th and 29th. the second country in hydropower generation in the world”, he said. Mr. Berga also highlighted that in spite of all this production capacity only 30% have been developed and used. Another reason, according to the president, is that Brazil has 80 hydropower plants that are being built. With the presence of the ICOLD's president, Mr. Luis Berga, and the elected president, Mr. Jia Jinseng, the members of the opening ceremony stated that the meeting is a world reference regarding the exchange of experiences, information and technical improvement among the experts of the area for several countries. “It is a great satisfaction to receive the most important event in the world on the area of dam construction”, said the president of the CBDB, Mr. Edilberto Maurer. According to him it was a challenge to organize the event face the crises that broke out in the world during the organization. “The Meeting will be an opportunity for the technicians and experts on dam construction to exchange experiences”. The president of ICOLD regretted the fact that 1.6 billion people in the world still do not have electric power in their homes. “The solution is to develop a sustainable way to build dams and increase the water storing capacity. This must be a priority”, Mr. Berga said. The president of ICOLD, Mr. Luis Berga, said that the choice of Brazil to held the Meeting took the great hydropower potential of the country into account. “Brazil has over 1000 dams – 650 of them are destined to the production of electric power. More than 70% of the capacity of producing energy comes from hydropower plants. Brazil is 40 ICOLD's general secretary, Mr. Michel de Vivo, Eletronorte's director of engineering and planning, Mr. Adhemar Palocci, the vicepresident of the World Water Council (WWC), Mr. Benedito Braga, director of the National Agency of Water (ANA) participated in the opening ceremony of the event. The new president of ICOLD, Mr. Jia Jinseng, elected during the its 77th Annual Meeting said that ICOLD does no have just a technical role, but it also works in a economically sustainable way. “Today's situation is challenging and it is necessary to promote social development”, he said. Mr. Jia highlighted the need to build dams in Africa, which according to him, must be a priority. “ICOLD has a lot to contribute”, he concluded. CURTAS Limpador de Grades gera eficiência em PCH Informe Publicitário / Advertising Information A primeira Máquina de Limpeza de Grades - MLG 17140, produzida pela SAUR foi adquirida pela Coprel Cooperativa de Geração de Energia e Desenvolvimento, de Ibirubá, Rio Grande do Sul. O equipamento foi instalado na Pequena Central Hidroelétrica (PCH) Cotovelo do Jacuí, no Município de Victor Graeff/RS. O limpador de grades tem a função de remover detritos que ficam acumulados nas grades de entrada da água em direção às turbinas como galhos, folhas, madeiras de diversos tamanhos e espécies, bem como resíduos de lixo urbano, principalmente embalagens de bebidas e agrotóxicos, obstruindo o acesso da água e fazendo diminuir a potência gerada. A MLG 17140 possui uma profundidade de limpeza de 10m e uma calha, o que possibilita a retirada dos detritos do rio. Esses são lançados num contêiner por uma esteira rolante. Posteriormente são levados a um aterro reflorestado, separados e encaminhados para o destino correto. O projeto foi desenvolvido em parceria com a Coprel, resultando em um moderno e eficiente equipamento. De acordo com Nélio Koch, Orientador de Geração da Coprel o equipamento é muito importante para aumentar a geração de energia. "Nós já percebemos um ganho em torno de 3% a 4%, além de contribuir para a preservação do meio ambiente e, de uma forma direta, proporciona mais segurança para a execução da atividade. Foi um trabalho em conjunto, que resultou em um equipamento simples, eficiente e que não exigiu reestruturação física do local", avalia Nélio. Além de fornecer máquinas de limpeza de grades para pequenas centrais hidrelétricas, a SAUR é representante da empresa austríaca Künz, que possui limpadores de grades, para aplicação em usinas de médio e grande porte. First SAUR trash rake cleaning increases SHP efficiency The first trash rake cleaning equipment – MLG 17140, produced by SAUR was purchased by Coprel – Power Generation and Development Cooperative, from Ibirubá. The equipment was installed on the Small Hydroelectric Plant (SHP) Cotovelo do Jacuí, located in Victor Graeff/RS. The rake cleaner removes debris accumulated on the water intakes protection, in front of the turbines. Typical debris are branches, leaves and all sorts of wood, as well as urban trash, mostly bottles and embty pesticide containers, blocking water access, reducing generated power. MLG 17140 will clean up to 33 feet depth. Is equipped with a chute to hold the debris. These are carried to a container by means of a rolling track. They are then taken to a landfill to be sorted and 42 taken to the proper destination. The project was developed in partnership with Coprel, resulting on an efficient and modern equipment. According to Nélio Koch, Coprel Generation Leader, the equipment is very important to increase power generation. “We have measured 3 to 4% gains. Besides contributing to the environment preservation, results on increased safety at the power plant. This was a joint work, which resulted in a simple and efficient equipment, and did not require any physical change to the dam structure”, tells Nélio. Besides building trash rake cleaning equipment for SHP's, SAUR is the representative for the Austrian company Künz, which builds the same equipment for medium and large size plants. National Center of Reference for Small Hydropower Plants CURTAS Delegação do Brasil participa de evento internacional de PCH Por Camila Galhardo Translation Adriana Candal Nos dias 28 e 29 de abril de 2009 foi realizado o Small Hydro 2009, em Vancouver no Canadá, onde se reunirão representantes da Associação Européia de Pequenas Centrais Hidrelétricas, Centro Latino americano de PCH, autoridades canadenses, mexicanas e norte americanas, além de uma delegação brasileira. O objetivo do evento foi discutir o rápido crescimento das PCHs, dado suas vantagens ambientais e possibilidade de atendimento de comunidades onde o sistema de transmissão é de difícil acesso. E com a crescente preocupação com o aquecimento global destacou-se o balanço de emissões de CO2 numa PCH. Desafios Nas apresentações de Brasil e Canadá foram destacados os entraves tecnológicos para exploração do potencial remanesceste e ambas as delegações apontaram na mesma direção, o desenvolvimento de tecnologia para aproveitamentos de baixa e baixíssima queda e a busca por soluções de menor impacto sobre a ictiofauna. Encontra-se em fase de implantação um termo de cooperação entre os dois países para o desenvolvimento de pesquisa para turbinas de baixa queda e mecanismos de transposição de peixes, além de outros temas de interesse comum. A iniciativa é fruto da parceria entre o Ministério de Ciência e Tecnologia do Brasil e o consulado do Canadá. Apresentações A equipe do CERPCH apresentou dois artigos técnicos durante o evento, um estudo dos impactos sócios econômicos causados pelas PCH do PROINFA e uma análise de viabilidade para investimentos em PCH utilizando os benefícios do Crédito de Carbono. Os trabalhos foram desenvolvidos pelo Prof. Geraldo Lúcio Tiago Filho, Secretário Executivo, e a MSc. Camila Galhardo, Gerente de Comunicação. Brazilian delegation participates in international event on SHPs On April 28th and 29th, 2009, the Small Hydro 2009 was held in Vancouver, Canada, where representatives of the European Small Hydropower Association, the Latin American Center Of Small Hydropower Plants, Canadian Mexican and North-American authorities and a Brazilian delegation participated in the event. The objective of the meeting was to talk about the rapid growth of the SHPs due to their environmental advantages and the possibility to assist communities where there is a difficult access for the power lines. Also, because of the increasing concern about global warming, the CO2 emission balance of a SHP was highlighted. Challenges The presentations of Brazil and Canada highlighted the technological obstacles regarding the use of the remaining potential and both delegations point to the same direction: the development of a technology aiming at low and very low heads and the search for solutions that have a smaller impact on the Ichthyofauna. Both countries are working on an agreement towards the development of research for low head turbines and fish diversion mechanisms, among other topics of mutual interest. The initiative 44 started from the partnership between the Ministry of Science and Technology and the Canadian. Presentations CERPCH team presented two technical papers during the event: a study on the socio-economic impacts caused by the PROINFA SHPs and a feasibility analysis for investments in SHPs using Carbon Credits benefits. The papers were developed by Professor Geraldo Lúcio Tiago Filho, CERPCH's executive secretary, and Ms. Camila Galhardo, MSc, Communication manager. 05 e 06 de Agosto de 2009 Centro de Convenções do Novotel Center Norte Av. Zaki Narchi, nº 500 - São Paulo - SP EXPOPCH 2009 Exposição de Equipamentos, Tecnologias e Serviços para Projeto, Implantação e Operação de PCHs. 05 e 06 de agosto de 2009 Centro de Convenções do Novotel Center Norte – SP Maior evento do mercado de PCH Confira a programação no site: www.conferenciadepch.com.br EXPOPCH - Exposição de Equipamentos, Tecnologias e Serviços para Projeto, Implantação e Operação de Pequenas Centrais Hidrelétricas, que consolida o Salão de Negócios existente nas edições anteriores; RODADA DE NEGÓCIOS EM PCH - Espaço durante o evento para realização de reuniões previamente agendadas entre os inscritos; PRÊMIO PCH – Apresentação e entrega dos melhores trabalhos técnicos. Contato: CERPCH: (35) 3629-1443 (35) 3629-1439 E-mail: [email protected] Organização Realização Patrocínio Ouro Apoio 46 Patrocínio Prata Patrocínio Bronze CURSO DE ESPECIALIZAÇÃO EM PEQUENAS CENTRAIS HIDRELÉTRICAS Este curso é voltado para a capacitação profissional na área de gestão e projetos de pequenas centrais hidrelétricas (PCH). Direcionado para engenheiros, administradores, advogados, economistas e todos os profissionais correlacionados com a área de PCH, o curso destaca-se como um diferencial exigido pelo mercado profissional. GARANTA JÁ A SUA PARTICIPAÇÃO AULAS EM SETEMBRO DE 2009 ANTECIPE-SE E GARANTA SUA VAGA. FAÇA HOJE MESMO SUA INSCRIÇÃO PELO SITE. PÚBLICO ALVO: ENGENHEIROS ECONOMISTAS ADMINISTRADORES GERENTES ADVOGADOS INVESTIDORES EMPRESÁRIOS PROFISSIONAIS DO SETOR Dividido em 10 módulos presenciais, este curso visa o ensino de procedimentos para a viabilidade técnica e econômica, dimensionamento e especificação de componentes hidromecânicos e elétricos, elaboração de projeto básico, aspectos regulatórios e ambientais. O curso pode ser integralizado em um período máximo de 24 meses. Com a conclusão de 9 módulos teóricos e a defesa do trabalho de conclusão de curso, o aluno será avaliado por uma banca para receber o título de especialista. É permitido cursar os módulos individuais, dando direito a certificação técnica. Local: Itajubá-MG Aulas concentradas em uma semana por mês 10 módulos presenciais Traslado Gratuito: Rio/Itajubá e São Paulo/Itajubá Integralização: mínimo de 10 e máximo de 24 meses INVESTIMENTO: R$ 1.800,00 R$ 16.000,00 por módulo à vista Apoio Realização Para mais informações, acesse: www.cerpch.org.br/cepch 47