Anexos 1 - 2
Transcrição
Anexos 1 - 2
ANEXO 1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D09204, doi:10.1029/2010JD015335, 2011 Understanding three‐dimensional effects in polarized observations with the ground‐based ADMIRARI radiometer during the CHUVA campaign Alessandro Battaglia,1 Pablo Saavedra,2 Carlos Augusto Morales,3 and Clemens Simmer2 Received 15 November 2010; revised 11 February 2011; accepted 17 February 2011; published 10 May 2011. [1] Measurements of down‐welling microwave radiation from raining clouds performed with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) radiometer at 10.7–21–36.5 GHz during the Global Precipitation Measurement Ground Validation “Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the Global Precipitation Measurement” (CHUVA) campaign held in Brazil in March 2010 represent a unique test bed for understanding three‐dimensional (3D) effects in microwave radiative transfer processes. While the necessity of accounting for geometric effects is trivial given the slant observation geometry (ADMIRARI was pointing at a fixed 30° elevation angle), the polarization signal (i.e., the difference between the vertical and horizontal brightness temperatures) shows ubiquitousness of positive values both at 21.0 and 36.5 GHz in coincidence with high brightness temperatures. This signature is a genuine and unique microwave signature of radiation side leakage which cannot be explained in a 1D radiative transfer frame but necessitates the inclusion of three‐dimensional scattering effects. We demonstrate these effects and interdependencies by analyzing two campaign case studies and by exploiting a sophisticated 3D radiative transfer suited for dichroic media like precipitating clouds. Citation: Battaglia, A., P. Saavedra, C. A. Morales, and C. Simmer (2011), Understanding three‐dimensional effects in polarized observations with the ground‐based ADMIRARI radiometer during the CHUVA campaign, J. Geophys. Res., 116, D09204, doi:10.1029/2010JD015335. 1. Introduction [2] Although three‐dimensional (3D) radiative transfer (RT) effects within cloudy atmospheres have been theoretically quantified via sophisticated radiative transfer tools [e.g., Marshak and Davis, 2005], their observation has been always extremely elusive. The main reason is the enormous difficulty to perform closure studies with a full characterization of the radiatively important 3D structure of a cloud. Hence observational studies toward 3D effects have been statistical in nature, for example, by analyzing satellite measurements in ways that illustrate dependencies that are inconsistent with the assumption of 1D RT. Emphasis has always been put on shortwave solar radiances particularly for the understanding of the relationship between cloud albedo, cloud microphysics and cloud structure, which is of great interest for studies of equilibrium climate and climate change. This research avenue has been boosted by the rising number of satellites with increasingly higher spectral and 1 Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom. 2 Meteorological Institute, University of Bonn, Bonn, Germany. 3 Instituto de Astronomia, Geofisica e Ciéncias Atmosféricas, Universidade de São Paulo, São Paulo, Brazil. Copyright 2011 by the American Geophysical Union. 0148‐0227/11/2010JD015335 spatial resolution and more viewing angles (e.g., the Aerosol Polarimetric Sensor on board the upcoming GLORY mission [Mishchenko et al., 2007]). [3] In this paper, we focus on 3D RT in the microwave region with a specific interest in precipitation, which is known to have a high spatiotemporal heterogeneity. The latter represents a caveat for all microwave‐based remote sensing techniques; already in the late 1970s, Weinman and Davies [1978] used both analytical and Monte Carlo 3D RT models to quantify the so‐called nonuniform beam filling (NUBF) effect in passive microwave retrievals of rain rate. The beam‐filling effect arises from the assumption of homogeneous rainfall across the field of view (FOV), coupled with the nonlinear, concave‐downward response of brightness temperatures (TBs) to rainfall rate. The effect depends mainly on the footprint dimension, the microwave frequency under investigation, the cloud type and shape, and in all cases increases with inhomogeneity and mean LWP or rain rate [Kummerow, 1998; Lafont and Guillimet, 2004]. NUBF was found to be the main source of error in retrieved rainfall rate from spaceborne microwave radiometers; an uncertainty of a factor of 2 can exist in the mean rain rate for a given brightness temperature [Weinman and Davies, 1978; Lafont and Guillimet, 2004]. [4] The presence of inhomogeneity in the instrument FOV, and more generally the 3D structure of the system D09204 1 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS Figure 1. Site scheme for the CHUVA campaign with the location of all the instruments. The dash‐dotted line indicates the direction of observation for ADMIRARI (Site 2) and of the RHI scans of the X band radar (Site 1). The distance between sites 1 and 2 is 7.65 km. under observation, does not preclude the use of 1D radiative transfer approaches. In fact the plane‐parallel assumption does not require homogeneity at distances arbitrarily far from the FOV of the sensing instrument. For instance, for pure absorbing atmospheres and Fresnel‐like surfaces, the radiation sensed by spaceborne passive microwave radiometers originates exclusively from the FOV projected slant tube. In these cases, 1D independent pixel approximations work very well, with the simple expedient of taking into account geometric effects in case of off‐nadir looking radiometers [Battaglia et al., 2005]. In the slant path (SP) approximation [Bauer et al., 1998; Roberti et al., 1994] the structure is horizontally homogeneous while the vertical profile is reconstructed by using the slant profile defined by the ray traced from the sensor upward to the TOA for ground‐based or downward to the surface and then reflected upward for spaceborne radiometers. [5] In the presence of scattering media and/or diffusive surfaces, due to the redirecting of radiation by diffusion events, radiation sensed by the radiometer may not be generated within the slant tube of observation. In this case the horizontal displacement of radiation in directions perpendicular to the viewing direction produces scattering effects, which are more subtle and difficult to treat. The study of these effects has matured with the simultaneous development of 3D RT codes, mainly based on Monte Carlo techniques [Roberti et al., 1994; Liu et al., 1996; Roberti and Kummerow, 1999]. D09204 [ 6 ] Kummerow [1998] and Roberti and Kummerow [1999] noticed that, compared to the correct 3D simulations, the 1D SP modeling introduces mainly random errors and only minor bias errors. In fact, in 1D SP approximations, radiation remains trapped by construction in the slant tube: no contribution from outside the tube is allowed, possibly resulting in nonphysical variations for contiguous pixels. A 3D radiation field can be depicted as a smoothed version of the field constructed from many 1D radiation simulations. The computed DTB = TB [3D] − TB ([1DSP] leads to large differences (>10 K) for TRMM Microwave Imager resolutions only at the highest frequency (85.5 GHz, 5 km resolution). Areas with positive DTB are generally followed immediately by areas with negative DTB, thus confirming the overall cancelation of the bias. [7] Only recently, attention has turned toward studies involving 3D effects in the polarization signal. This has been fostered by the introduction of full polarimetry in Monte Carlo RT codes [Battaglia and Mantovani, 2005; Davis et al., 2005; Battaglia et al., 2007], which are now capable of treating dichroic media. While spherical particles are known to produce small polarization signals at microwave frequencies [Liu and Simmer, 1996], preferentially oriented nonspherical particles are potentially more effective in that respect. Two main scenarios have been studied so far. [8] 1. Davis et al. [2007] accurately simulated observations of 3D midlatitude preferentially oriented cirrus clouds (synthetically generated from 2D observations of the Chilbolton radar at a resolution of approximately 780 m by 780 m by 110 m) for a variety of viewing geometries corresponding to operational (Advanced Microwave Sounding Unit AMSU‐B, Earth Observing System–Microwave Limb Sounder EOS‐ MLS) and proposed (Cloud Ice Water Sub‐millimetre Imaging Radiometer CIWSIR) high‐frequency spaceborne radiometers. For the AMSU‐B 190.3 GHz and the CIWSIR 334.65 and 664 GHz channels, they demonstrated the significance of polarization effects for nonspherical particles, and also of beam‐filling effects with regard both to intensity and to polarization. They found a good agreement between 3D and the independent pixel approximation (IPA), which suggests that for slant viewing instruments (with footprint radii of 5.5 km (CIWSIR) or 16 km (AMSU‐B)) and low tangent height limb sounding, 3D scattering RT effects do not have a significant impact and show unequivocal signatures as well. Their study is purely notional; no (statistical) analysis with observations has been performed. [9] 2. Battaglia et al. [2006] studied 3D RT effects in ground‐based low microwave frequency (10–36 GHz) radiometric observations of rain. As theoretically proposed by Czekala and Simmer [1998] and confirmed by Czekala et al. [2001a], larger drops exhibit negative polarization differences (PD ≡ TBV − TBH ) in the downwelling microwave radiation which can be exploited in discriminating between cloud and rain liquid water [Czekala et al., 2001b]. The basis for this information is the assumption of a well‐ defined equilibrium shape of raindrops and their orientation distribution in absence of turbulence and wind shear [e.g., Andsager et al., 1999]. Battaglia et al. [2006] demonstrated that 3D effects tend to modify the distribution of observations in the TB − PD plane, which exhibits a parabolic shape 2 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 2. ADMIRARI measurements collected during the CHUVA campaign displayed in the TB − PD plane at (a) 10.7 and (b) 36.5 GHz. The colorbar indicates the number of occurrences on a logarithmic scale. with a negative PD minimum at intermediate TBs (e.g., see Figures 2 and 3 of Czekala et al. [2001a] or Figure 4 of Battaglia et al. [2010]). The 3D effects may alter the amplitude of the minimum PD and the general slope in the ascending and descending part of the curve. More subtle effects like nonzero PDs at nadir and also nonzero third Stokes vector components may occur. Battaglia et al. [2006] concluded that a 1D SP approximation is generally insufficient for scenarios with high rain rates; here the PD signal is the most affected. [10] To further advance this second research avenue, Advanced Microwave Radiometer for Rain Identification (ADMIRARI) was developed and deployed in different field campaigns [Battaglia et al., 2009, 2010]. A Bayesian scheme including 3D RT simulations designed for the ADMIRARI suite of measurements retrieves simultaneously water vapor, rain and cloud liquid water paths for the slant volume under observation. [11] The goal of this study is to deepen our understanding of 3D RT effects in passive low‐frequency and polarized ground‐based observations of microwaves signal. In particular we aim at validating the conjectures and predictions proposed by notional RT studies with field measurements. Thanks to their proximity to the target which results in narrow FOV, ground‐based radiometry has a huge potential in that respect because polarization features produced by 3D structures can be observed without having to contend with NUBF effects, which tend to smooth them out. The March 2010 Global Precipitation Measurement Ground Validation “Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the Global Precipitation Measurement” (CHUVA) campaign represents a perfect test bed given the distinct structures of the observed typical precipitating systems and the measurement setup (section 2). Two situations are investigated in detail (section 3), which provides excellent examples of pristine 3D RT effects (section 4). Unique scattering 3D RT features are identified in the observations and explained by comparing 3D backward Monte Carlo and 1D SP RT simulations (section 5). Conclusions are drawn in section 6. 2. The CHUVA Field Campaign [12] As part of CHUVA, several field campaigns will take place in Brazil (during 2010–2013) to support the Brazilian activities of the GPM‐Brazil program toward the cooperation between the Brazilian Space Agency‐AEB and NASA Ground Validation program (GPM/GV). The first campaign, PRE‐CHUVA took place at the Brazilian Launching Center of Alcăntara (CLA) in northeastern Brazil from 1 to 25 March 2010 (http://gpmchuva.cptec.inpe.br). According to CHUVA objectives, in this field experiment the measurements were concentrated to depict the warm rain process and their transition to the vertically developed tropical precipitating systems. During the campaign, AEB, the Brazilian Air Force at CLA, the Space Research Institute (INPE), University of São Paulo, University of Bonn and NASA provided several instruments to support the PRE‐ CHUVA campaign. Figure 1 provides the location of the sensors deployed for this field experiment: X Doppler Dual Polarization weather radar, automatic weather stations, radiosondes, disdrometers (JOSS, Parsivel and Thiess), rain gauges, lidar, the Radiometrics MP3000 Microwave Radiometer and the ADMIRARI radiometer. For the present study, we focus on measurements taken only by ADMIRARI and the X band weather radar. [13] As depicted in Figure 1, ADMIRARI was located at the Delta village (latitude 2°23.16′S, longitude 44°22.8′W, Site 2) and it was aligned at southeast of the weather radar (latitude 2°19.5′S, longitude 44°25.2′W, site 1) at 7.65 km. Along this radial, several ancillary observations were taken in the airport (latitude 2°22.6′S, longitude 44°24′W, site 3). For the campaign, the radar strategy was repeated every 10 min and it was composed of one volume scan with 12 3 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 3. Measurements from 19 March 2010 at 30° elevation angle. (a) MRR reflectivity in dBZ. The dashed line corresponds to the range location of the freezing level as identified by the closest radiosounding. (b) Brightness temperature for the three frequencies. Polarization difference at (c) 36, (d) 21, and (e) 10 GHz. Gray areas indicate rainy periods flagged by the rain sensor collocated with ADMIRARI. elevations and one range height indicator (RHI) along the ADMIRARI direction. The volume scans were set to start at 00, 10, 20, 30, 40 and 50 min every hour, while the RHI was at 06, 16, 26, 36, 46, 56 min. The radar was set to collect radar reflectivity (Z), Doppler velocity and spectral width, differential reflectivity (ZDR), differential phase (FDP) and correlation between horizontal and vertical polarization (rHV) with gate width of 125 m. The RHI scan strategy varied from 0 to 90° every 0.5° elevation steps. ADMIRARI was set to observe at a constant 30° elevation angle in the direction toward the weather radar, Site 1. ADMIRARI measurements comprise TBs at vertical and horizontal polarization at its three frequencies (10.7–21.0–36.5 GHz); the TBs were complemented by slant reflectivity profiles observed at 24.1 GHz by a Micro Rain Radar (MRR) [see, e.g., Peters et al., 2002] at 30° elevation angle with 300 m range resolution and 31 bins. In addition, rain occurrence over the radiometer position from a rain sensor, ambient temperature and pressure as well as internal receiver and stability temperatures were recorded for quality control. [14] During the Pre‐CHUVA, three marked weather regimes could be found based on the radar and gauge measurements: (1) during the first two weeks, dry weather conditions without significant precipitation prevailed; (2) in the third week, isolated and short warm rain cells were observed; and (3) finally, the last week was marked by the rainiest period that included several warm rain events and deep convective storms with a wide range of intensity and duration. As most of these raining systems are small and convective, a large variability on the rain gauge and disdrometer accumulation was found at the three sites, i.e., 250 mm, 200 mm and 270 mm rain accumulation for 13, 9 and 9 days at site 1 (Radar), site 2 (ADMIRARI) and site 3 (CLA), respectively. [15] Figure 2 summarizes all ADMIRARI measurements collected during the CHUVA campaign in the TB − PD plane. Two features are striking: in Figure 2a, extremely large TBs at 10.7 GHz hint at extreme events with high optical thicknesses characteristic for tropical regions (including an unique event reaching saturation level in the radiometric signal, a feature observed at this frequency for the first time); 4 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 4. Radar (top) range height indicator (RHI) and (bottom) plane position indicator (PPI) sequence for the event of 19 March 2010. The RHI scans are performed every 6 min toward ADMIRARI. ADMIRARI position (FOV) is indicated by a cross (cone) in the PPI (RHI) plots. The radiometer is located 7.65 km away from radar. and in Figure 2b, in the region with TBs close to saturation (i.e., close to ambient temperature) positive PDs are ubiquitous both at 36.5 (shown) and at 21.0 GHz (not shown). These features will be discussed in detail in sections 3 and 4. 3. Case Studies 3.1. Scenario from 19 March [16] The first case analyzed is a 6 min long rain shower, which occurred on 19 March 2010 around 2045 UTC. The ADMIRARI observations (i.e., MRR slant reflectivity profiles, TBs and PDs at 10–21–36 GHz) are depicted in Figure 3. This case represents typical situations encountered during the campaign: rain‐bearing cells were forming over the ocean, were advected inland, and passed ADMIRARI. ADMIRARI was looking roughly orthogonal to the flow direction, with the rain cells coming from the northeast toward the southwest (i.e., roughly following the same line as the airport pad in Figure 1). The MRR slant reflectivity profiles clearly identify that this particular event was observed mostly with the radiometer being outside the rain cell; this is corroborated by the rain sensor (gray area in Figures 3 and 6) which did not flag rain during the period under consideration. This evolution is also confirmed by the series in the RHIs (Figure 4). Note that the rain shaft is not very deep along the line of sight of the radiometer, which partially explains why only the highest frequency is reaching complete saturation, and only for a very short period. Compared to the MRR profiles, the onset of precipitation appears to be anticipated in the ADMIRARI measurements, with all PDs being negative from 2043:54 UTC onward. Looking at the plane position indicator (PPI) radar image (Figure 4, bottom), this seems to be caused by a more distant rain cell (beyond the MRR ranging distance) which was passing earlier through the ADMIRARI line of sight (circled in red in Figure 4, bottom left). [17] The time evolution of the ADMIRARI observed variables in the TB − PD plane (Figure 5) showcases a recurrent pattern during the CHUVA campaign. Apart from variations which can be related to the time evolution of the 5 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Note that on the exit path, PDs with similar TBs as during the entering path are characterized by lower absolute values; this is most probably caused by the fact that the ADMIRARI FOV is intercepting an increasing cloud component (e.g., compare the FOVs in Figure 13) which reduces the PDs, because of the spherical shapes of cloud droplets. The 36.5 GHz pattern is completely different, with TB reaching the highest values of 265 K (still 35 K below the ambient temperature of 27°C) after passing a minimum PD of −6 K around 170 K. From saturation on, the TBs go back to the clear‐sky value at 85 K with PDs straddling around 0 K. The 21 GHz observations have an intermediate behavior. [18] The observed 36.5 GHz signal evolution is totally unexpected in a pure 1D world: all the observation pairs from 2045 UTC onward do not fit Figure 3 of Czekala [1998] or Figure 4 of Battaglia et al. [2010], which are both based on 1D simulations without slant path approximations. The series of 36.5 GHz observations with decreasing TBs and zero PDs would be associated with a profile only containing cloud droplets, with lower and lower contents with time. But this is obviously not the case because the 10 GHz signal shows significant negative PDs, and the MRR observed reflectivities are well above the noise level (due to their low signal cloud droplets are well below the noise level of such an instrument). The fact that all our observations are performed at 30° introduced significant geometric effects, but this will only partially explain the observed feature for this instance. Figure 5. Event of 19 March 2010: time evolution in the TB − PD plane for the three ADMIRARI frequencies. The overall duration of the event is 8 min. The colorbar modulates the time passed in minutes from the beginning of the event at 2042 UTC. system itself, the 10 GHz time series is as expected: in the beginning both the TB (the absolute PD) values gradually increase with the rain cell entering the FOV up to 125 (13) K and then gradually decrease when the rain cell exits the FOV. 3.2. Scenario From 20 March [19] The observations from 20 March indicate an extreme scenario with a first period of observation made from outside the rain cell (until 1007 UTC) and then from inside the rain cell as depicted by the rain sensor in Figure 6. The convective cells under observation were much more intense and larger than those from the previous day as clearly shown by the RHI radar observations (Figure 7); the event also lasted much longer (around 45 min). For most of the time the 21.0 and 36.5 GHz TBs were fully saturated (around 18 min saturation), even the 10 GHz TBs reached extraordinary high values up to 280 K (see Figure 6). At certain instants also the MRR signal is fully attenuated by the rain cell. A 21 GHz TB around 180 (250) K corresponds approximately to a slant optical thickness of 1 (2); assuming the same for the 24.1 GHz MRR frequency, this corresponds to a 8.5 (17) dB two‐way attenuation. Therefore for instants when the 21 GHz TBs exceed 250 K the MRR backscattering signal coming from the more distant precipitating volume will be most likely lost. [20] The time evolution of the event in the PD − TB plane (Figure 8) shows a remarkable variability of the PDs at saturated TBs both at 21.0 and 36.5 GHz with positive polarization values up to +4 K and +2.1 K, respectively. As discussed hereafter, these features represent a conundrum which can only be explained via 3D RT. 4. The 3D Polarized Simulations of Precipitating Clouds [21] To understand some of the features observed by ADMIRARI during CHUVA, we resort to a very simple box cloud scenario following ideas similar to Battaglia et al.’s [2006] (see Figure 9). To resemble the situation 6 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 6. Measurements from 20 March 2010 at 30° elevation angle. (a) MRR reflectivity in dBZ (color scale coded). (b) Brightness temperature for the three frequencies. Polarization difference at (c) 36, (d) 21, and (e) 10 GHz. Gray areas indicate rainy periods flagged by the rain sensor. encountered on 20 March 2010, a Lcx × Lal = 4 × 4 = 16 km2 box with liquid water paths of 20.0 and 3.6 kg/m2 of the rain and cloud component, respectively, was assumed with a cloud base located around 2.5 km and a rain column reaching up to 4 km (similar to that shown later on in Figure 15 (top left). This profile matches the radar observations around 1006 UTC (Figure 7, top middle). Note that later on the cell developed some hail as evident from the presence of flare echoes at 1024 and 1030 UTC. [22] In the lowest levels with rain content of the order of 3 g/m3 (corresponding to 13.8 kg/m2 in the slant path), the extinction coefficients are around 0.5, 2 and 5 km−1 for the three ADMIRARI frequencies, with single scattering albedos ranging from 0.36 to 0.53. TBs and PDs are simulated (Figure 10, only 10.7 and 36.5 GHz) as sensed by an ADMIRARI‐like radiometer (i.e., with a 3dB beam width of 6.5°) located at different positions inside and outside the rain shaft with an elevation angle of 30°. The color coding in Figure 10 quantifies the simulated measurements looking “southward,” i.e., along the negative y axis. In the following the position of the radiometer will be identified by two coordinates: a cross‐ and an along‐ground projected line‐of‐ sight (GP‐LOS) distance. In such a reference frame the rain shaft is indicated by the thick black rectangle with corners located at (0,0),(0,4),(−4,4),(−4 km,0 km) in Figure 10 (bottom left); because of the symmetry of the problem all plots are cut at a cross‐LOS distance equal 2 km, i.e., in the middle of the cloud. [23] There are obviously border/edge effects due to the finite antenna beam width of the radiometer, which causes the spill‐out of rain shaft–generated radiation in the region with negative cross‐GP‐LOS distances as well. The effect is roughly restricted to the conical area identified by the dashed thick black lines in Figure 10 (bottom left), with the conical vertex angle being half the radiometer 3dB beam width. For observation points within such areas, the observed volume will be nonuniformly filled. An extreme scenario is achieved when half of the beam is filled by the rain shaft and half by clear sky (cross‐GP‐LOS distance equal to 0 km). If the radiometer is located to the north of the rain shaft and looking toward the shaft at an along‐GP‐LOS distance of around 4 km, the region affected by NUBF is about 0.75 km wide. This corresponds roughly to 3 min for a precipitation cell moving at 20 km/h in the direction orthogonal to the 7 of 17 Figure 7. Radar RHI sequence for the event of 20 March 2010. The RHI scans are performed every 6 min toward ADMIRARI. The ADMIRARI FOV is indicated by the blue cone in the top left panel. D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS 8 of 17 D09204 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS Figure 8. Event of 20 March 2010: time evolution in the TB − PD plane for the three ADMIRARI frequencies. The overall duration of the event is 40 min. The colorbar modulates the time passed in minutes from the beginning of the event at 0950 UTC. radiometer viewing direction. In the NUBF‐affected region the radiation field is clearly characterized by a strong gradient. Certainly the situation is extreme due to the unrealistic sharp edge of the rain shaft assumed, but it is indicative of an important pitfall of the measurements, as we see later. D09204 [24] To have a deeper understanding of the RT, we restrict our analysis to a cross‐GP‐LOS distance equal to 2 km along the double array dash‐dotted line depicted in Figure 10 (bottom left). Thus ADMIRARI “looks” toward the center of the rain shaft, and we vary the distance from the rain shaft (Figure 11). With this selection we avoid the NUBF affected area so that “lateral” NUBF effects do not play any role for these radiometer viewing positions. The continuous lines in Figure 11 indicate the ADMIRARI TB and PDs including all scattering order contributions via a full 3D simulation (backward Monte Carlo [Battaglia et al., 2007]). The black diamond line shows the corresponding measurements simulated for a radiometer with a pencil beam via a full 3D simulation (backward Monte Carlo [Battaglia et al., 2007]). Thus we can study resolution effects. The dashed red line provides also the results for a radiometer with a pencil beam but obtained from a slant path 1D simulation (adapted RT4 code [Evans and Stephens, 1991]). We can draw the following observations. [25] 1. At 36.5 GHz (10.7 GHz), in the region with the highest TBs, half (10%) the total radiation has encountered at least one scattering event (see the difference between black continuous and red diamond lines in Figure 11 (left)). Therefore at the higher frequencies the scattered field is expected to largely affect the radiometer signal; thus 3D scattering effects are likely to occur. [26] 2. The emission (i.e., zero order of scattering) term is very different at the three frequencies because of the different downwelling atmospheric emission (see equations (1) and (2) of Battaglia et al. [2006] for details). PD[0] (diamond red lines in Figure 11, right) is the result of two processes: (1) the propagation of radiation in rain that is vertically polarizing due to the increased absorption of horizontally polarized radiation and (2) the emission of radiation, which is preferentially horizontally polarized. At 21 and 36.5 GHz, due to the presence of a considerable background emission from behind the rain shaft, the propagation effect tends to overcome the emission resulting in positive PD[0] s for all optical thicknesses. Conversely, at 10 GHz, this happens only for large optical thicknesses, while for thin media, PD[0] is negative. [27] 3. The impact of the higher orders of scattering on PDs is much larger than the impact on TBs. For instance, at 10 GHz, the PDs may be affected for more than 50% by the radiation scattered within the observed volume (Figure 11, top right; compare red diamond and black continuous lines). [28] 4. The total signal simulated for an ADMIRARI 3dB beam width (6.5 degrees) significantly differs from the pencil beam only when the along‐GP‐LOS distance from the rain shaft exceeds 4 km (compare the black continuous and diamond black dash‐dotted lines in Figure 11, right). This is due to the NUBF which is responding to the vertical variability of the precipitating cloud. The overall effect is equivalent to spatially smoothing out the PD and TB fields obtained in the pencil beam configuration along the viewing direction. [29] 5. In all situations the 1D pencil beam shows smaller (larger) TBs when the radiometer is well within (far outside) the rain shaft. The difference is almost imperceptible at 10.7 GHz but can reach values as high as 15–20 K at 36.5 GHz. [30] 6. There is an extended region outside the rain shaft with significantly positive PDs (larger than 2K) at 36.5 (and at 21.0 GHz, not shown). The 1D pencil beam cannot 9 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 9. Schematic for the rain cloud simulation. Radiances have been computed at the radiometer location identified by the coordinate (Along GP‐LOS, Cross GP‐LOS). The blue shaded area contains the rain system which has a vertical but no horizontal structure. The length of the horizontal sides of the cloud box are Lal and Lcx. Nonshaded areas contain only atmospheric gases. The surface is assumed to be a blackbody. reproduce this feature, and PDs are even slightly below zero in the same region in a 1D approximation. While at 10.7 GHz PDs are always negative and can also achieve extremely negative values when the radiometer is located either within or outside of the rain shaft (feature well depicted in Figure 6 and confirmed for the whole set of observations in Figure 2a), there is only a confined region at 36.5 GHz where large negative PDs are reached (Figure 10, bottom right). This situation is achieved when the radiometer is looking from underneath the rain shaft, having a small portion of the precipitating cell in the FOV (around one optical thickness). In that region, 3D simulations generally favor more negative PD values than 1D‐SP. better insight is provided by analyzing the contribution of the different orders of scattering to the signal. The zero order of scattering term (i.e., the emission term, red diamonds in Figure 11) is perfectly accounted for by a 1D‐SP approximation. These differences must result from higher order of scattering terms. As visible in Figure 11 (right) the structure of the PD signal is driven by the first order of scattering. For scenarios involving horizontally oriented flattened raindrops the first order of scattering tends to produce negative PDs (blue squares). Hereafter we generalize the theoretical argument proposed by Battaglia and Simmer [2007, equations (17)–(21)]: at the surface (z = 0) the jth order of the downwelling TB sensed at a given direction (mr, r) is given by 0 1 ½ j1 J V ðr ;z′Þ zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{ Z B C i 0 #½ j 1 B R #V ðr ;r ;z′Þ h ½ j1 ½ j1 dz′ C B sl e sl C Z ð ; ; D ÞT ð ; ; z′ Þ þ Z ð ; ; D ÞT ð ; ; z′ Þ dW vv i r i i vh i r i i i TV ðr ; r Þ V H j j r B C @ A¼B C; B C ½ j1 #½ j J ð ;z′ Þ r B C H TH ðr ; r Þ B C zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl ffl }|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl ffl { Z h i @R A #H ½ j1 ½ j1 sl ðr ;r ;z′Þ dz′ Zhv ði ; r ; DÞTV ði ; i ; z′Þ þ Zhh ði ; r ; DÞTH ði ; i ; z′Þ dWi jr j sl e 5. Discussion 5.1. Anisotropic Scattering Effects [31] The three last observations described above deserve further discussion. What is the fundamental cause of the difference between 1D‐SP and 3D radiative transfer? A ð1Þ where Z is the ensemble‐averaged phase matrix (whose elements are expressed in the H‐V basis). The outer integral is performed over the slant volume and accounts for the propagation effect, i.e., the larger H extinction of the medium, which tends to produce V‐polarized radiation (positive PDs). The inner integral accounts for the polarization effect of the 10 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 10. (left) Brightness temperatures and (right) polarization differences as sensed by an ADMIRARI‐ type radiometer looking “southward” (i.e., downward in the image) at an elevation angle of 30° for (top) 10.7 GHz and (bottom) 36.5 GHz. The different radiometer viewing positions are identified by two coordinates: the along‐ and cross‐ground‐projected line‐of‐sight (GP‐LOS) distances. scattering from all possible incoming directions (mi, i) into the radiometer viewing direction (mr, r). Note that with preferentially oriented azimuthally symmetric distributed hydrometeors the phase matrix depends only on the relative azimuth difference D = i − r. For the polarization difference at scattering order j we can write ½ j1 PD½ j ðr ; r Þ / hJ V ½ j1 isl hJ H isl ; ð2Þ where the brackets indicate an averaging along the slant volume. Reverting to the linear basis [T ≡ 0.5(TV + TH), PD ≡ TV − TH] the contribution of the first order of scattering to polarization will be Z h 2Z21 ði ; r ; DÞ T ½0 ði ; i Þ i þ Z22 ði ; r ; DÞ PD½0 ði ; i Þ dWi i: PD½1 ðr ; r Þ / h ð3Þ In the specific CHUVA setup mr = −0.5 and given the amplitude of T[0] and PD[0] and the behavior of Z21 and Z22 (not shown) the first term within the integral is dominant. Thus it is worthy to analyze the dependence of the phase matrix scattering element Z21 on the incoming direction (in = acos(mi)) and the relative azimuth difference when mr = −0.5. Figure 12 (left) depicts a typical behavior for Z21 at 36.5 GHz (but the same is found at the other ADMIRARI frequencies with large horizontally oriented raindrops). The azimuth dependence of the phase matrix elements is the result of two effects: (1) the dependence of the scattering angle on D (with the related dependence of polarization on the scattering angle) and (2) the rotation needed to relate the Stokes parameters of the incident and scattered beams relative to their meridional planes (details in chapter 1 of Mishchenko et al. [2000]) which, for instance, accounts for the azimuthal dependence at in = 0°, 180° in Figure 12. Figure 12 (right) shows the same element azimuthally averaged, i.e., the phase 11 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 11. Contribution of different order of scattering (left) to the brightness temperatures and (right) to the polarization differences for different radiometer positions of Figure 10 along the line with a cross‐ ground‐projected line‐of‐sight (GP‐LOS) distance equal to 2 km (dash‐dotted line in Figure 10, bottom left) for (top) 10.7 GHz and (bottom) 36.5 GHz. matrix element used in a 1D approximation where there is no azimuth dependence of the radiation field. [32] The major differences between 3D and 1D‐SP are found when the radiometer is located immediately underneath the rain shaft and when the radiometer is outside of the rain shaft. The two situations are illustrated in Figure 13. [33] The first configuration (Figure 13, top) is representative of region I (along‐GP‐LOS distance from the rain shaft between −4 and −3 km, i.e., inside the rain shaft in Figure 11). In this case the radiometer is only looking through rain (the cloud base is at 3 km) and, even at 36.5 GHz, the signal is not fully saturated. Very negative values for polarization are reached at 36.5 GHz in the 3D simulation. The 1D‐SP approximation is producing lower TBs and higher PDs. The 1D RT is run on a 1D domain, which is derived by extending horizontally the domain intercepted by the slant ADMIRARI volume (Figure 13, red dash‐dotted line rectangle). Therefore, while the radiation emitted within the slant volume is perfectly accounted for, the scattered radiation is not. Let us consider here the radiation sensed by the radiometer scattered once only, and within the ADMIRARI FOV. The 1D approximation introduces fictitious scattering events like those illustrated with the red dash‐dotted arrows in Figure 13, i.e., corresponding to radiation emitted from outside the sides of the box and emitted downward (side leakages, positive contribution). Conversely, the 1D approximation is missing the radiation coming from the upper part of the box in Figure 13 (blue region), for example, the contributions illustrated with the blue dashed lines (leakages from the upper part of the rain shaft, negative contribution). Moreover, part of the radiation coming from the surface is scattered by the rain medium and therefore the first order of scattering component is penalized in favor of higher order of scattering radiation. Overall, in the 1D approximation, there will be also a loss and a reduction of the radiation traveling upward within the radiometer volume due to radiation escaping to space (negative leakages to space). In the 1D approximation the suppression of the upwelling I[0] coming 12 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 12. (left) Phase function element Z21 for r = 150° for a Marshall and Palmer distributed rain layer with a rain content of 2.8 g/m3. (right) Azimuthally averaged phase function element hZ21iDF from Figure 12 (left). from the right side of the rain shaft represents the most relevant source for the reduction of the negative amplitude of the PD signal at small optical thickness. In the 3D RT, there is a surplus of radiation coming from angles i between 0 and 90° which is scattered back to the radiometer with DF around zero. For this range of angles, Z12 assumes strongly negative values (lower left corner in Figure 12, left), thus explaining the strongly negative PDs in the 3D computations. The leakages from the top have also a relevant effect since they relate to Z12 values with i close to 180° but with predominant DF values around 180°. To summarize, in the 1D approximation the positive leakages from the side are smaller than the negative leakages from the top and to space. The overall effect is to reduce TBs. In addition to that, the 1D approximation tends to favor a radiation field within the radiometer volume characterized by larger orders of scattering; since radiation scattered many times tends to be unpolarized this also explains the less negative PDs in region I. Figure 13. Schematic for understanding 3D effects when the radiometer is (top) underneath the rain shaft and (bottom) outside of it. 13 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 14. Same as in Figure 10 but for the (top) 21 and (bottom) 36.5 GHz channels and for a scenario more appropriate for the 19 March event: Lcx = 1.5 km and Lal = 1.5 km. The magenta line is a guessed position of the radiometer during the 19 March event. [34] Conversely, when the radiometer is in the region II (along‐GP‐LOS distance from the rain shaft between −0.5 and 8 km in Figure 11) the leakages from the side play the most important role. In fact the signal is now close to saturation and the volume effectively contributing to the radiometer signal is confined to a region at most few hundred of meters within the rain shaft (so the leakages from the top have no relevance at all). The situation is reversed from the former case with the 1D approximation TBs exceeding the ones computed accounting for the full 3D structure. The radiation corresponding to these side leakages is generally characterized by incoming polar angle in slightly above 90° and by DF around 180°. The scattering phase function for those angles is significantly negative (center upper part in Figure 12, left). The absence of such radiation in the real 3D world does produce the positive PDs we actually observe. In a 1D‐SP RT on the other hand all the profiles having along‐ GP‐LOS distances from the rain shaft in the range [−2.5, 8] km look quite similar and tend to have TBs approaching the ones characteristic of a blackbody, thus unpolarized. [35] In summary, there is an azimuthal anisotropy of the radiation field within the radiometer FOV when looking at a rain shaft from outside at slant angles. This anisotropy, in combination with the peculiar structure of the phase function elements of preferentially horizontally oriented raindrops (Z21 is predominantly negative when azimuthally averaged), produces the puzzling positive PDs, which are ubiquitous in our CHUVA observations. On the other hand, in a 1D approximation the radiation field has no azimuthal dependence, modifications of the radiation fields caused by horizontal variability cannot be accounted for, and the observed positive PDs cannot be reproduced in a simulation framework because of the behavior of hZ21iDF. The simultaneous collocated observations tend to exclude other possible explanations of the phenomenon of positive PDs observed at 36.5 GHz. For instance, a huge amount of 14 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS D09204 Figure 15. (top left) Hydrometeor profile considered to match the case observed on 19 March 2010. (top right and bottom) The spatial evolution in the TB − PD space is shown when moving from within to the outside of the rain shaft for different cross‐GP‐LOS distances as indicated in the legend. Each line is traveled counterclockwise. The magenta line corresponds to simulated observations in correspondence to the magenta path shown in Figure 14. cloud water located beyond a small amount of horizontally oriented raindrops could potentially produce positive polarization at 35 GHz via differential extinction but such scenario is excluded by the simultaneous large negative PDs at 10.6 GHz and by the high MRR reflectivities. 5.2. NUBF Effects [36] An additional complication is added when NUBF situations are present. Let us reconsider the time evolution shown in Figure 5. Again we resort to a simple square rain shaft with sides equal Lal = 1.5 km and Lcx = 2 km similar to that observed at 2048 UTC according to the RHI profile (Figure 4, top right) and to the MRR reflectivity (Figure 3a) to interpret the measurements. Similarly to Figure 10, simulated TBs and PDs for the 21 and 36.5 GHz channels are shown in Figure 14. The vertical hydrometeor profile here assumed is plotted in Figure 15 (top left). Figure 15 (top right and bottom) depicts the change in the TB − PD plane when moving the radiometer observation point along the radiometer viewing direction with an along‐GP‐LOS distance from the rain shaft from −1.45 km to 10 km, i.e., passing from inside to outside the rain along the line of sight. Different lines correspond to different positions relative to the rain shaft border in the direction orthogonal to the radiometer line of sight, as indicated by the legend. When considering radiometer locations distant from the rain shaft edge (i.e., those labeled with a cross‐GP‐LOS distance equal to 1 km) the counterclockwise transition from the point with along‐GP‐LOS distance from the rain shaft equal to −1.45 km to that with along‐GP‐LOS distance equal 8 km can be interpreted as if a cell with stationary rain has passed over the radiometer and has moved away along the line of sight of the radiometer. Such patterns (black lines in Figure 15) qualitatively resemble the temporal evolution of TB − PDs measured at the three frequencies (Figure 5). At 36.5 GHz, there is a “spatial accumulation point” for TB ∼280 K and PD ∼0; that is, there is no spatial variability in the simulated signal for observation points located from the rain shaft edge up to an along‐GP‐LOS distance from the rain shaft of about 6 km. At such far distance the radiometer 15 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS starts sensing the decrease in rain content at around 4 km altitude and the presence of cloud droplets as well (Figure 15, top left). Similarly, in Figure 5, there is a “temporal accumulation point,” with measurements dwelling at the same location in the 36.5 GHz TB − PD plane between 2045 and 2047 UTC at TB ∼ 270 K. Assuming that the storm is moving at 8 m/s, this will produce a movement of 1.5 km in 3 min (and of 4 km for the whole duration of the event), which is inconsistent with the former length estimate (4 times larger). It is therefore very likely that the storm did not move along the line of sight of the radiometer but on the other hand crossed its FOV. This is in agreement with the two consecutive PPI images of Figure 4 which suggest movement of the rain cells from the east to west. In this case, in Figure 15, instead of dwelling on the continuous black line, the measurements would have progressively jumped on the other symbol lines (circle, then crosses, then dots), undergoing a strong TB gradient. This actually also better explains the presence of near‐null PDs in the 36.5 GHz channel for TBs below 250 K. The accumulation of measurements in such region of the TB − PD plane is likely to be the result of NUBF effects and to occur when precipitating systems are migrating out of the radiometer FOV. [37] To verify our assumption, according to our auxiliary observations for the 19 March event, a sequence of positions of ADMIRARI relative to our simulated rain shaft has been assumed (magenta line in Figure 14, bottom). Note that the sharp change of direction is a pure graphical artefact; the problem is indeed symmetric respect to the vertical line where cross‐GP‐LOS is equal to 0.75 km. The radiometer is first under the rain shaft, and then the rain cell is moving away from the radiometer and exiting its FOV, which is consistent with the MRR observation (Figure 3a), rain shaft going away from the radiometer) and with the PPI image (Figure 4, cell crossing the FOV from east to west). The magenta lines in Figure 15 correspond to this possible solution; these three patterns resemble the ones observed in Figure 5 with all the limitations of the case. [38] It is important to note that in the 10.7 GHz channel the along line of sight optical thicknesses of precipitating media are generally small, PDs are linearly decreasing with TBs, so that, in the TB − PD plane, points corresponding to NUBF scenes fall in the same region of uniform beam filled (UBF) scenes (Figure 15, top right) and the structure of the TB − PD curve does not suffer significant changes. Because of the nonlinearities between the radiometer signal and the retrieved quantities (cloud and rain integrated water path) such ambiguities introduce additional uncertainties in the retrieval. In addition to that, at 21.0 and 36.5 GHz the pronounced concave upward behavior of the TB − PD curves permits the exploration of new regions in the TB − PD plane uncovered by UBF scenes (e.g., blue crosses in Figure 15, bottom right). The inclusion of NUBF effects is therefore mandatory to cover the full range of observations in the PDs space and to decrease the residuals in any Bayesian‐ type retrieval. 6. Conclusions [39] The CHUVA GPM/GV campaign has been a unique opportunity in understanding 3D effects related to microwave ground‐based polarimetric observations of rain sys- D09204 tems. During CHUVA, many events were observed by ADMIRARI, all of them characterized by an overwhelming 3D structure with small localized rain elements surrounded by clear air. The occurrence of warm rain events and the simultaneous acquisitions of collocated X band RHI scans greatly facilitated the RT interpretation. By investigating some case studies, we can draw the following conclusions for polarimetric ground‐based radiometer observations. [40] 1. Geometric 3D effects are, obviously, always affecting measurements performed at slant angles. They can be easily accounted for by adopting 1D slant path approximations. [41] 2. In heavy rain, for radiometers with frequencies in the 10–36 GHz region, the scattered component represents a large fraction (increasing with frequency) of the total signal; for instance, at 36 GHz, raindrops are both absorbing and scattering microwave radiation with single scattering albedos easily exceeding 0.5. The overall power detected by the radiometer is therefore the result both of emission and of scattering processes within the FOV of the radiometer, and 3D scattering effects are likely to occur. [42] 3. The PD signal is particularly sensitive to scattered radiation with the first order of scattering contributing crucially to the overall signal. The polarization property of the scattered radiation is driven by the Z12 phase matrix element of the scattering medium along the radiometer line of sight. For perfectly oriented spheroids like raindrops and for radiometer observations at 30° elevation angle, this term can assume both positive and negative values, depending on the relative geometry of the incoming/outgoing radiation, with a strong dependence on the relative azimuth. Radiation fields with strong azimuthal inhomogeneities (like those produced by side leakages) can produce large departures from the polarization signals produced when adopting 1D SP approximations (which inherently assume azimuthal symmetric radiation fields). [43] 4. Observations of PDs as high as +4 K and +2.5 K at 36.5 GHz and 21.0 GHz, respectively, in combination with almost saturated TB s are clear 3D scattering fingerprints. As a consequence, the interpretation of PD signals for the 21 and 36.5 GHz channels is utterly difficult at large optical thicknesses because they are heavily influenced by the 3D structure of the system. This poses serious problems when interpreting the PD results for instance in the implementation of ADMIRARI‐like physically based schemes tailored to retrieve integrated cloud and rain water paths. [44] 5. Due to the smaller footprint, ground‐based observations are potentially less affected by NUBF than spaceborne observations and therefore more suited for pristine studies of the radiation field. However, when the precipitating system is tall (e.g., in tropical environments) and it is located far away from the radiometer position, NUBF can play a relevant role as well. Because of the nonlinear response of PDs with TBs and of both these quantities with the variables to be retrieved (cloud and rain integrated water path), NUBF is difficult to disentangle. Its effect is twofold: either it bears ambiguities (i.e., measurements with the same PDs and TBs but corresponding to different microphysical states) or it favors the occurrence of PDs and TB unpredicted by UBF scenarios. [45] The current analysis stresses thorny issues related to 3D RT effects present in physically based schemes aimed at retrieving integrated cloud and rain water paths from 16 of 17 D09204 BATTAGLIA ET AL.: 3D EFFECTS IN POLARIZED PASSIVE MICROWAVE RADIOMETERS ADMIRARI‐like observations. The introduction of highly resolved (500 m resolution or less) cloud model runs (tailored to the different synoptic conditions experienced during the measurement field campaigns) coupled with full 3D RT models represents the most rigorous modus operandi for the foundation of a RT database suited for a Bayesian retrieval scheme. This is the strategy we are currently pursuing for an optimal interpretation of ADMIRARI observations. [46] Acknowledgments. The authors would like to thank the NASA GPM/GV program for funding the participation of ADMIRARI in the CHUVA campaign, the Brazilian GPM/GV counterpart for logistic assistance and cooperation during the experiment, and the access to auxiliary data. We are also grateful to C. Kummerow for useful discussions during the field campaign and afterward and to the reviewers for their comments. The ADMIRARI project has been funded by the Deutsche Forschungsgemeinshaft (DFG) under grant BA 3485/1‐1. The authors are grateful for the financial support provided by the Brazilian Space Agency‐AEB during the CHUVA field campaign at Alcantara, Brazil. One of the authors (C.A. Morales) was also partially supported by FAPESP grant 2009/ 15235‐8 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior‐CAPES. A. Battaglia was funded for his travels by the NCEO Mission Support funding. References Andsager, K., K. V. Beard, and N. S. Laird (1999), A laboratory study of oscillations and axis ratios for large raindrops, J. Atmos. Sci., 56, 2673–2683. Battaglia, A., and S. Mantovani (2005), Forward Monte Carlo computations of fully polarized microwave radiation in non‐isotropic media, J. Quant. Spectrosc. Radiat. Transfer, 95(3), 285–308. Battaglia, A. and C. Simmer (2007), Explaining the polarization signal from rain dichroic media, J. Quant. Spectrosc. Radiat. Transfer, 105(1), 84–101, doi:10.1016/j.jqsrt.2006.11.012. Battaglia, A., F. Prodi, F. Porcu, and D.‐B. Shin (2005), 3D effects in MW radiative transport inside precipitating clouds: Modeling and applications, in Measuring Precipitation From Space: EURAINSAT and the Future, edited by V. Levizzani, P. Bauer, and F. J. Turk, pp. 113–126, Kluwer Acad., Norwell, Mass. Battaglia, A., H. Czekala, and C. Simmer (2006), Three‐dimensional effects in polarization signatures as observed from precipitating clouds by low frequency ground‐based microwave radiometers, Atmos. Chem. Phys., 4383–4394. Battaglia, A., C. Davis, C. Emde, and C. Simmer (2007), Microwave radiative transfer intercomparison study for 3‐D dichroic media, J. Quant. Spectrosc. Radiat. Transfer, 105(1), 55–67, doi:10.1016/j.jqsrt.2006.09.017. Battaglia, A., P. Saavedra, T. Rose, and C. Simmer (2009), Rain observations by a multi‐frequency dual polarized radiometer, IEEE Geosci. Remote Sens. Lett., 6(2), 354–358. Battaglia, A., P. Saavedra, T. Rose, and C. Simmer (2010), Characterization of precipitating clouds by ground‐based measurements with the triple‐frequency polarized microwave radiometer ADMIRARI, J. Appl. Meteorol. Climatol., 49, 394‐414, doi:10.1175/2009JAMC2340.1. Bauer, P., L. Schanz, and L. Roberti (1998), Correction of three‐ dimensional effects for passive microwave remote sensing of convective clouds, J. Appl. Meteorol., 37, 1619–1632. Czekala, H. (1998), Effects of ice particle shape and orientation on polarized microwave radiation for off‐nadir problems, Geophys. Res. Lett., 25(10), 1669–1672, doi:10.1029/98GL51132. D09204 Czekala, H., and C. Simmer (1998), Microwave radiative transfer with nonspherical precipitating hydrometeors, J. Quant. Spectrosc. Radiat. Transfer, 60(3), 365–374. Czekala, H., S. Crewell, A. Hornbostel, A. Schroth, C. Simmer, and A. Thiele (2001a), Interpretation of polarization features in ground‐based microwave observations as caused by horizontally aligned oblate rain drops, J. Appl. Meteorol., 40, 1918–1932. Czekala, H., S. Crewell, C. Simmer, and A. Thiele (2001b), Discrimination of cloud and rain liquid water path by groundbased polarized microwave radiometry, Geophys. Res. Lett., 28(2), 267–270, doi:10.1029/ 2000GL012247. Davis, C. P., C. Emde, and R. S. Harwood (2005), A 3D polarized reversed Monte Carlo radiative transfer model for mm and sub‐mm passive remote sensing in cloudy atmospheres, IEEE Trans. Geosci. Remote Sens., 43, 1096–1101. Davis, C. P., K. F. Evans, S. A. Buehler, D. L. Wu, and H. C. Pumphrey (2007), 3‐D polarised simulations of space‐borne passive mm/sub‐mm midlatitude cirrus observations: A case study, Atmos. Chem. Phys., 7, 4149–4158. Evans, K. F., and G. L. Stephens (1991), A new polarized atmospheric radiative transfer model, J. Quant. Spectrosc. Radiat. Transfer, 46(5), 413–423. Kummerow, C. (1998), Beamfilling errors in passive microwave rainfall retrievals, J. Appl. Meteorol., 37, 356–370. Lafont, D., and B. Guillimet (2004), Subpixel fractional cloud cover and inhomogenety effects in microwave beam filling error, Atmos. Res., 72, 149–168. Liu, Q., and C. Simmer (1996), Polarization and intensity in microwave radiative transfer, Beitr. Phys. Atmos., 69, 535–545. Liu, Q., C. Simmer, and E. Ruprecht (1996), Three‐dimensional radiative transfer effects of clouds in the microwave spectral range, J. Geophys. Res., 101(D2), 4289–4298, doi:10.1029/95JD03421. Marshak, A., and A. B. Davis (Eds.) (2005), 3D Radiative Transfer in Cloudy Atmospheres, Springer, New York. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis (Eds.) (2000), Light Scattering by Nonspherical Particles, 690 pp., Academic, San Diego, Calif. Mishchenko, M., et al. (2007), Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission, Bull. Am. Meteorol. Soc., 88, 677–691, doi:10.1175/BAMS-88-5-677. Peters, G., B. Fischer, and T. Andersson (2002), Rain observations with a vertically looking Micro Rain Radar (MRR), Bor. Environ. Res., 7(4), 353–362. Roberti, L., and C. Kummerow (1999), Monte Carlo calculations of polarized microwave radiation emerging from cloud structures, J. Geophys. Res., 104(D2), 2093–2104, doi:10.1029/1998JD200038. Roberti, L., J. Haferman, and C. Kummerow (1994), Microwave radiative transfer through horizontally inhomogeneous precipitating clouds, J. Geophys. Res., 99(D8), 16,707–16,716, doi:10.1029/94JD01150. Weinman, J. A., and R. Davies (1978), Thermal microwave radiances from horizontally finite clouds of hydrometeors, J. Geophys. Res., 83(C6), 3099–3107, doi:10.1029/JC083iC06p03099. A. Battaglia, Department of Physics and Astronomy, University of Leicester, University Road, LE1 7RH Leicester, UK. ([email protected]) C. A. Morales, Instituto de Astronomia, Geofisica e Ciéncias Atmosféricas, Universidade de São Paulo, Rua do Matão, 1226, São Paulo, Brazil. ([email protected]) P. Saavedra and C. Simmer, Meteorological Institute, University of Bonn, Auf dem Hügel 20, D‐53121 Bonn, Germany. (pablosaa@uni‐bonn.de; csimmer@uni‐bonn.de) 17 of 17 ANEXO 2 Cursos de Treinamento do Projeto CHUVA Curso de Fortaleza. O treinamento durante a campanha do CHUVA em Fortaleza valerá como disciplina no Mestrado Acadêmico em Ciências Físicas Aplicadas (MCFA) da UECE. O nome da disciplina é "Tópicos de Meteorologia e Climatologia I", que tem conteúdo variável como ementa. De acordo com a duração do curso, que foi de 30h/a, ele somará 2 créditos ao currículo dos alunos, conforme decidido em reunião do colegiado do MCFA. Relatório de Avaliação do Curso “Sensoriamento Remoto e dos Processos de Formação da Precipitação” Com 110 alunos inscritos, o curso originalmente previsto para o auditório da FUNCEME, foi transferido para o Instituto Aldy Mentor, que tem se tornado parceiro da FUNCEME na realização de nossos treinamentos. O perfil dos alunos foi bastante diverso, envolvendo, de graduandos a doutores, bem como de áreas diversas, tais como: física, meteorologia, oceanografia, geografia e ciências ambientais. Do total de inscritos, 92 alunos compareceram, o que corresponde a 84% do previsto. Destes 92 alunos, 98% tiveram freqüência, em pelo menos 80% das aulas. Sessenta e cinco destes 92 alunos, ou seja, 71% responderam ao questionário de avaliação, cujo modelo encontra-se em anexo. Resultado da Avaliação Quanto ao Curso Na primeira questão, foram atribuídas notas de 1 a 4, correspondendo aos conceitos: 1Ruim, 2-Razoável, 3-Bom e 4-Muito Bom. Nesta questão foram avaliados os seguintes itens: Temas abordados, Professores, Carga horária, Organização do curso, Auditório e Infra-estrutura. A nota média dada aos itens é mostrada na Tabela 1, a seguir. De modo geral, o curso foi muito bem avaliado, com nota média entre Bom e Muito Bom. Tabela 1 – Nota média do curso, por item avaliado. Item Nota média Temas abordados 3,74 Professores 3,78 Carga horária 3,32 Organização do curso 3,72 Auditório e Infra-estrutura 3,74 A Figura 1 mostra os percentuais das notas dadas a cada um dos itens. O que se observa é que a maior parte dos alunos avaliou como Muito Bom, principalmente, os itens: Temas abordados, Professores, Organização do curso e Auditório e Infra-estrutura. Em relação ao quesito Carga Horária, a nota média mais baixa, próxima do conceito Bom, pode ter explicação na diversidade de opiniões apresentadas: para alguns, a carga horária foi insuficiente, e para outros, foi demais, tornando as aulas cansativas (vide Tabela 2). 90% Percentual das Respostas 80% 70% Temas Abordados Professores Carga Horária 60% Organização do Curso 50% Auditório e Infra-estrutura 40% 30% 20% 10% 0% Ruim Razoável Bom Muito Bom Avaliação Figura 1 – Avaliação do curso. Tabela 2 – Observações dos alunos em relação aos itens avaliados. Itens Temas abordados Professores Carga horária Organização do curso Auditório e Infra-estrutura Observações - Bem comentados. - Abordar relacionando com outros assuntos e trazendo essa realidade para os acontecimentos no oceano. - Todos maravilhosos. - Com boa didática. - Excelente. - Alguns bons, outros ruins. - Seria bom um pouco mais de tempo. - Muito compacto. - Bem distribuída. - Melhor com maior carga horária. - Muita informação X pouco tempo. - Intensidade exagerada. - Muito cansativo. - Poderia ter sido maior. - Orientar o professor sobre a utilização da mídia. - Todos de parabéns. - Faltou material didático. - Controle e tela de datashow. - Problemas de som, computador e cadeiras quebradas. - Às vezes muito frio. - Melhorar áudio e datashow. 14% 12% 10% 8% 6% 4% 2% Ferramentas para Previsão Imediata Utilizando Radar e Satélites Eletrif icação das Nuvens Estimativa de Precipitação por Satélite e Radar Satélites Meteorológicos e a Observação em Microondas Radar Princípios Básicos Microf ísica das Nuvens A Parametrização de Nuvens e Convecção Camada Limite Planetára e o Processo de Convecção Princípios Básicos de Modelagem em Alta Resolução 0% Camada Limite Planetária: Conceitos Básicos Percentual de Seleção de Tema Quanto aos Temas Abordados O resultado da pesquisa em relação aos temas que despertaram maior atenção dos alunos é mostrado na Figura 2, a seguir. Desde que foram permitidas múltiplas escolhas, houve um total de 312 seleções, sendo que o tema que mais despertou a atenção dos alunos foi: Camada Limite Planetária: Conceitos Básicos, com 13% dos votos. Contudo, como mostrado na Figura 2, praticamente todos os temas mostraram-se atraentes para os alunos. Temas Figura 2 – Percentual de seleções de temas de maior interesse. Ainda em relação aos temas abordados, 97% dos alunos afirmaram que eles serão úteis em seus estudos; 3% dos alunos se abstiveram desta questão. Quanto aos Comentários Alguns dos alunos transcreveram comentários em sua avaliação. A maioria destes comentários traz elogios ao curso, porém, também indicam aspectos que podem ser melhorados, tais como a carga horária, a existência de material de apoio ou “didático”, como mencionado. Por outro lado é gratificante perceber nesses comentários que o curso despertou o interesse para o experimento e para os temas, servindo de apoio para os estudos atuais, e abrindo possibilidades para o futuro. Tabela 3 – Comentários dos alunos. - - - - - - Em geral o curso foi muito bom, mas, se a carga horária fosse um pouco maior seria melhor. A programação do curso foi muito bem feita, pois foi possível focar no melhor de cada área de conhecimento (física, oceanografia, etc.) Tive oportunidade de ver assuntos da área a qual faço parte, sendo abordados de formas diferentes. Conhecendo e aprofundando informações relevantes no exercício de meus trabalhos. Considero de extrema importância esse período conceitual. Gostaria de aprofundar mais nessas áreas de microfísica de nuvens modelagem numérica. Curso muito bem organizado, professores muito bem preparados, porém, deveriam focar inicialmente seus slides a ligação do seu tema com o projeto CHUVA. Excelente idéia de conciliar os estudantes em um projeto tão conceituado e promissor para as diversas áreas. A idéia deste curso foi muito boa, e boa parte do que foi abordado será de grande proveito, ainda abriu a mente para outros rumos. Parabéns à organização. Parabéns pela iniciativa foi um ótimo curso. O curso foi muito bem organizado e de conteúdo muito atrativo. Apesar de estar na área de instrumentação eu me interessei muito pelos sistemas de radares. Como bom oceanógrafo, gostaria de ter visto mais sobre interação oceano-atmosfera, mas, como o curso é baseado no Projeto CHUVA eu achei os temas abordados bem pertinentes. O curso serviu para rever conceitos e entender a campanha no seu sentido e em seu desenvolvimento. O curso apesar de breve foi bem técnico e as abordagens foram bastante precisas. Todos os temas abordados serão de grande importância para mim, Agradeço a oportunidade. Gostei muito do curso, principalmente da parte de radar meteorológico. Gostaria de trabalhar nessa parte de pesquisa. Possibilitou o acesso a informações muito interessantes, de uma forma didática, aumentando o interesse pela área de estudo. Poderia haver mais cursos como esse ao longo do ano, ou pelo menos todo ano. Excelente curso e parabéns pela organização. Os temas foram ministrados de forma bastante didática, o que possibilitou o entendimento para pessoas que não são exatamente da área de meteorologia, como eu. Gostaria de parabenizar a organização do curso, pelo incentivo em disseminar o conhecimento sobre os temas, fazendo uma análise construtiva do desenvolvimento da região. Sempre é bom aprender! Parabéns pelo curso e professores. Preciso participar dos experimentos. O curso foi muito interessante, de grande importância, mas, um pouco cansativo. Na busca por uma melhor qualificação acadêmica o curso se torna notável. Palestras bastante úteis e uma ótima estrutura. Como graduando em oceanografia, senti-me satisfeito com o conteúdo. Poderei usar deste aprendizado em meu futuro trabalho de conclusão de curso (TCC) e talvez investir numa pós-graduação em Sensoriamento Remoto. Em geral, achei o curso bastante proveitoso, sendo, principalmente uma ferramenta para aprofundar os conhecimentos vistos em sala de aula. Deveria haver seminários de aprofundamento dos temas. Servirá de base para os estudos que farei no mestrado. Ótima idéia do curso e os professores escolhidos são exemplares. Poderia ter sido melhor se tivesse material didático. Anexo – O questionário de avaliação aplicado Curso Sensoriamento Remoto e Modelagem dos Processos de Formação da Precipitação Nome (opcional) _________________________________________________________________ Dê a nota, considerando a seguinte pontuação: Nota 1 2 3 4 Item Temas abordados Professores Carga horária Organização do curso Auditório e Infra-estrutura Avaliação Ruim Razoável Bom Muito bom Nota Observação Marque com (x) o tema ou os temas que despertaram mais a sua atenção e você gostaria de aprofundar seus conhecimentos: ( ( ( ( ( ( ( ( ( ( ) Camada Limite Planetária: Conceitos Básicos ) Princípios básicos da Modelagem em Alta Resolução ) Camada Limite Planetária e o Processo de Convecção ) A Parametrização de Nuvens e Convecção ) Microfísica das Nuvens ) Radar Princípios Básicos ) Satélites Meteorológicos e a Observação em Microondas ) Estimativa de Precipitação por Satélite e Radar ) Eletrificação das Nuvens ) Ferramentas para Previsão Imediata Utilizando Radar e Satélites Os temas abordados serão úteis para você? ( ) sim ( ) não Comentários: ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ _____________________________________________________________________________ N. Nome Completo Instituição 1 Adriano Correia de Marchi UFAL 2 Alan Zeno Martins Viana UFC 3 Ana Luzia de F. Lacerda UFC-Labomar 4 André de Sena Pinheiro UECE 5 Angélica Silva de Oliveira FUNCEME 6 Antônio Geovan de Araújo Holanda Guerra UECE 7 Antonio Tavares Bittencourt UECE 8 Arthur Costa Tomaz de Souza UECE 9 Augusto César de O. Freitas UFC 10 Aurélio Wildson Teixeira de Noronha UECE 11 Bruno Nogueira Catunda UFC 12 Bruno Pires Sombra FUNCEME 13 Cíntia Carolina Mota Menezes UECE 14 Clodoaldo Campos dos Santos UECE 15 Cristiano da Silva Rocha UFC 16 Davison Lucas Mendes Viana UECE 17 Daysiane Barbosa Brandão UFC-Labomar 18 Dhemetryo de Freitas Cassundé de Oliveira UFC 19 Diogenes Passos Fontenele UFC 20 Domingo Cassain Sales UECE 21 Ednardo Moreira Rodrigues UECE 22 Évila Pinheiro Damasceno UFC-Labomar 23 Felipe Viana Pimentel UECE 24 Fernanda Oliveira UFC-Labomar 25 Fiamma Eugênia Lemos Abreu UFC-Labomar 26 Francisco Elineldo Maia Pinheiro Defesa Civil Fortaleza 27 Francisco Franklin Sousa Rios UECE 28 Gabrielle Melo Fernandes UFC-Labomar 29 Gaia Tavares Machado UFC-Labomar 30 Giullian Nícola Lima dos Reis UFC-Labomar 31 Gláucia Miranda Lopes Barbieri UFC 32 Heitor Flávio de Albuquerque Gentil Neto UFC-Labomar 33 Heládio Gonçalves Nepomuceno UECE 34 Iliana Maria da Silva Gomes UFC 35 Iohanna Bezerra Rodrigues UFC 36 Italo Gois Miranda UFC-Labomar N. Nome Completo Instituição 37 Jacques Servain IRD 38 Janne Kelly Lima Rabelo UECE 39 João Bosco Passos Accioly Filho FUNCEME 40 Jonathan Alencar da Silva UECE 41 Jorge Felipe Gomes Rocha UFC 42 José Airton Bezerra Viana Filho UFC-Labomar 43 José Cavalcante de Oliveira Filho UFC-Labomar 44 José Gabriel Barbosa Neto UFC 45 Jose Madson de Oliveira Filho UFC 46 José Marcelo Rodrigues Pereira FUNCEME 47 José Nacizo Holanda Luciano Júnior UECE 48 Kleber Melo Oliveira UFC 49 Kurtis François Bastos IBAMA 50 Larissa Plutarco UFC-Labomar 51 Lauro Pessoa Maia Junior UECE 52 Leonardo Hislei Uchôa Monteiro UFC-Labomar 53 Levi Mendes Franklin UECE 54 Liana Pacheco Bittencourt UFC-Labomar 55 Luidhy Santana da Silva UECE 56 Luiz Martins de Araújo Júnior UECE 57 Marcos Wender Santiago Marinho UECE 58 Marcus Vinicius de Abreu Avila UFC-Labomar 59 Maria Cibele Torres Lemos UFC-Labomar 60 Maria Jocilandia Mendes Vasconcelos UECE 61 Maria Valdete Lira FUNCEME 62 Mariany Sousa Cavalcante UFC-Labomar 63 Mario Rodrigues Pinto de Sousa Filho FUNCEME 64 Michaela de Sousa Costa UFC-Labomar 65 Natalia Paiva Castro UFC 66 Natanael Vieira de Sousa UECE 67 Nayanna Cris M. Chaves UFC-Labomar 68 Paulo José dos Santos FUNCEME 69 Paulo Ricardo Bardou Barbieri FUNCEME 70 Pedro Silveira Calixto UFC 71 Priscila Lima Pereira FUNCEME 72 Raquel Almeida Bezerra Rodrigues UFC-Labomar N. Nome Completo Instituição 73 Raul Fritz Bechtel Teixeira FUNCEME 74 Rayza Ponce Leon Araruna UFC-Labomar 75 Renan Gomes Crisóstomo da Silveira UFC-Labomar 76 Rigoberto Soares do Nascimento UECE 77 Rodolfo Teixeira Alves UFC-Labomar 78 Rodrigo Alves Patricio UECE 79 Roger Barreto Magalhães Defesa Civil Fortaleza 80 Samuel Galvão de Souza UECE 81 Samuellson Lopes Cabral UFC 82 Simony Maia Vieira UECE 83 Suany Campos da Silva UECE 84 Sullyandro Oliveira Guimarães UECE 85 Thaysa Portela de Carvalho UFC-Labomar 86 Thiago Valério de Araújo UFC-Labomar 87 Tyhago Aragão Dias UECE 88 Victor Peixoto N. Cordeiro UFC-Labomar 89 Vinícius Milanez Couto UECE 90 Vinicius Oliveira FUNCEME 91 Wagner Luiz Barbosa Melciades FUNCEME 92 Wersângela Duaví UFC-Labomar Curso Belém Curso: Sensoriamento Remoto e Modelagem dos processos de formação da precipitação – O PROJETO CHUVA Horário 9:00 às 12:00 Dia 2/6 I) O Projeto CHUVA II) Satélites Meteorológicos e a observação em microondas. Dia 3/6 9/6 10/6 IV) Princípios básicos da Modelagem em alta resolução vI) O Uso do GPS na Meteorologia VIII) Radar de dupla polarização (David - UEA) (Marc Adrian Schneebeli - INPE) (Henrique Barbosa IFUSP) 16/6 17/6 21/6 22/6 XII) Camada Limite Planetária: conceitos básicos XIV) Camada Limite Planetária e o Processo de Convecção Gilberto Fisch (IAE-DCTA) Gilberto Fisch (IAE-DCTA (Luiz Machado-INPE) 14:00 às 17:00 III) Ferramentas para Previsão imediata utilizando radar e satélites (Luiz Machado-INPE) V) A parametrização de nuvens e convecção (Henrique Barbosa IFUSP) VII) Microfísica das nuvens IX) Eletrificação das nuvens (Carlos Morales – IAGUSP) (Carlos Morales – IAGUSP) X) Estimativa de precipitação por satélite e Radar XI) Introduction to the LIDAR technique (Riad Bourayou – INPE) (Frederico Angelis – INPE) XIII) (David Fitzjarrald – SUNY) XV) (David Fitzjarrald – SUNY) I ) O Projeto CHUVA – Descrição dos objetivos, instrumentação e das campanhas e os resultados preliminares. II) Satélites Meteorológicos e a observação em microondas. – Descrição sobre os principais satélites em órbita, o sistema de observação por satélites para a década 2010-2020, os principais canais e o uso para conhecer a estrutura e a microfísica da nuvem, a observação por microondas, o espectro de absorção na faixa das microondas, características dos canais. III) Ferramentas para Previsão imediata utilizando radar e satélites. – Características observacionais das células de chuva, conceitos sobre previsão imediata, parâmetros previsores observados por satélite e radar, deslocamento dos sistemas, o fortracc, separação entre convectivo e estratiforme, previsão de descargas elétricas e evolução dos campos de umidade. IV) Princípios básicos da Modelagem em alta resolução: Equações básicas da atmosfera. Operator splitting. Taylor e diferenças finitas. Teorema de Nyquist. Média de Reynolds. Convergência e estabilidade de soluções numéricas. Erro de truncamento, dispersão e difusão numérica. Aplicação a equação de advecção-difusão: Foward Euler, Implicit e Runge-Kutta. V) Princípios básicos da Modelagem em alta resolução: Equações básicas da atmosfera. Operator splitting. Taylor e diferenças finitas. Teorema de Nyquist. Média de Reynolds. Convergência e estabilidade de soluções numéricas. Erro de truncamento, dispersão e difusão numérica. Aplicação a equação de advecção-difusão: Foward Euler, Implicit e Runge-Kutta. VI) O uso do GPS (GNSS) na Meteorologia – Conversão de atraso dos sinais de GNSS em água precipitável, metodologias para processar dados GNSS, campos de vapor d'água em 3D usando GNSS, relações convecção profunda/vapor d'água observadas com GNSS. VII) Microfísica das nuvens – Transformação de fase; Convecção e mistura; aerossóis e CCN; formação e crescimento de gotículas, gotas e cristais de gelo; e características de precipitação VIII) Radar de dupla polarização – IX) Eletrificação das nuvens – Modelos conceituais de eletrificação das nuvens; processos de eletrificação; características dos relâmpagos; sistemas de medição e distribuição de raios no Brasil X) Estimativa de precipitação por satélite e radar: Conceitos básicos de sensoriamento remoto, espectro eletromagnético, sensores infravermelho, sensores de microondas passivo, estimativa de precipitação por satélites, estimativa de precipitação por radar. XI) Introduction to the LIDAR technique- Principle of measurement; relevant laser light / particle interactions; Inversion schemes of the ill-posed problem; advanced corrections of the signals; tropospheric aerosol sensing; review of environmental sensing; active networks and systems. XII) Camada Limite Planetária: conceitos básicos - Características da CLP e suas camadas, balanço de radiação (componentes) e de energia, fluxos turbulentos de calor sensível e latente, instrumentação micrometorológica (resposta rápida e lenta) XIII) Landscape and precipitation in the eastern Amazon Basin I - Large scale inflow and precipitation patterns (seasonal and downstream of lower atmosphere variation, moisture convergence, precipitation recycling and types). XIV) Camada Limite Planetária e o Processo de Convecção - Evapotranspiração, transporte vertical de calor latente, topo da CLP e base das nuvens, processos de convecção livre e forçada XV) Landscape and precipitation in the eastern Amazon Basin II - Mesoscale factors on boundary layer flows and precipitation (Sea and river Breeze, coastal convergences, topographic effects, cloud patterns, land cover influences), Observational problems with observing precipitation and climatic parameters in remote areas (surface in situ, satellite and radar data). O Curso de Belém também contou como crédito do Programa de Pós-Graduação em Ciências Ambientais da UFPA. Lista de Inscritos no Curso do CHUVA-Belém. Nº Nome Email Instituição Telefone 1 JULIA CLARINDA PAIVA COHEN [email protected] UFPA 9132017255 2 TARCÍSIO MIRANDA DO AMARAL NETO [email protected] UFPA 88763743 3 ALBERT RICHARD MORAES LOPES [email protected] UFPA 87118416 4 LUCIANO DA SILVA BORGES [email protected] UFPA 32017255 5 BERNARDINO SIMÕES NETO [email protected] SIPAM 32430460 6 IVAN BITAR FIUZA DE MELLO [email protected] UFPA (91)32721254 7 QUEZIA LEANDRO DE MOURA [email protected] UFPA 88247380 8 FLÁVIO AUGUSTO FARIAS D'OLIVEIRA [email protected] UFPA 32283426 9 LILIANE FERREIRA DO ROSÁRIO [email protected] UFPA 91-91994908 10 JAKELINE DA SILVA VIANA [email protected] SIPAM 33662292 11 MARCELA MACHADO POMPEU [email protected] UFPA 32451575 12 JOAO DE ATHAYDES SILVA JUNIOR [email protected] OUTRAS 88327585 13 RAIMUNDO NONATO NASCIMENTO AARÃO JUNIOR [email protected] UFPA9188030210 14 LAURA SUÉLLEN LISBOA FERREIRA [email protected] UFPA 81968544 15 ILLELSON RAFAEL DA SILVA BARBOSA [email protected] UFPA 91 82483006 16 LETICIA LORENA BRAGA AMORIM [email protected] UFPA 32784993 17 PAULA KYZANY CARVALHO MORAES [email protected] UFPA 82777434 18 LUDMILA MONTEIRO DA SILVA TANAKA [email protected] OUTRAS (92)81165215 19 MIRLEN TÁSSIA FILGUEIRA DA SILVA [email protected] SIPAM 32695087 20 RENATA SILVA DE LOUREIRO [email protected] SIPAM 32780523 21 DAVID NOGUEIRA DOS SANTOS [email protected] SIPAM 91-82536354 22 DOUGLAS BATISTA DA SILVA FERREIRA [email protected] SIPAM 32263118 23 KÉZIA MONTEIRO ARAÚJO [email protected] OUTRAS 91 32797993 24 JORGE LUÍS MACHADO LOPES [email protected] SIPAM 3366-2285 25 FELIPE DO SOUTO DE SÁ GILLE [email protected] DECEA 814956336 26 AYLCI NAZARÉ FERREIRA DE BARROS [email protected] INMET 91 32434599 27 ANTONIO GUILHERME SOARES CAMPOS [email protected] OUTRAS 91 32041150 28 MARIA ODINÉA BRITO BARRA [email protected] INMET 91 32434599 29 JOSIANE SARMENTO DOS SANTOS [email protected] UFPA 91-32362171 30 MAURÍCIO DO NASCIMENTO MOURA [email protected] UFPA 83417758 31 ANDREIA CAMPOS TAVARES [email protected] OUTRAS 32634024 32 RAMON DIEGO NASCIMENTO DA SILVA [email protected] UFPA 91 83276679 33 ANTONIO SERGIO CUNHA FREIRE [email protected] UFPA 8156-8584 34 ANTONIO SERGIO CUNHA FREIRE [email protected] UFPA 8156-8584 35 LUCIANA DANIELLE ANTUNES MONTEIRO [email protected] UFPA 91 32337865 36 WANJA JANAYNA DE MIRANDA LAMEIRA [email protected] OUTRAS 91 3075161 37 IRENE CRISTINA PEREIRA CORRÊA [email protected] UFPA (91)32432957 38 MARCO ANTONIO VIEIRA FERREIRA [email protected] SIPAM9132530721 39 GABRIELLE MATOS BOUÇÃO [email protected] UFPA 88905912 40 LAURE MADELEINE DENTEL [email protected] UFPA 9132266946 41 TATIANE BATISTA DA SILVA SANTIAGO [email protected] UFPA 9132273549 42 BRENDA SANTOS SIQUEIRA [email protected] UFPA (91)32225342 43 WELDE MORAES GALVÃO [email protected] UFPA (91)81011533 44 JACI MARIA BILHALVA SARAIVA [email protected] SIPAM 33662281 45 MARGARETE PESSOA DA MOTA [email protected] OUTRAS 91 32499757 46 VANIA CARLA DIAS MARTINS [email protected] UFPA 32387816 47 VANIA CARLA DIAS MARTINS [email protected] UFPA 32387816 48 CÁSSIA CAMILA SILVA DA SILVA [email protected] UFPA (91)81050023 49 SIRLENE DE LIMA CASTRO [email protected] UFPA (91)82528788 50 ADRIANO SOUSA [email protected] OUTRAS 9132105140 51 LÚCIA CARDOSO DA PAIXÃO [email protected] UFPA 91 8102 4541 52 CÉZAR AUGUSTO REIS DA FONSECA BORGES [email protected] UFPA82330200 53 WANDA MARIA DO NASCIMENTO RIBEIRO [email protected] UFPA 54 GUNDISALVO PIRATOBA MORALES [email protected] OUTRAS 91 81215466 55 ROSARIA RODRIGUES FERREIRA [email protected] UFPA 9188393996 56 CINTIA LIMA DOS SANTOS [email protected] UFPA 9196323772 57 FRANCISCO ALVES DOS SANTOS NETO [email protected] UFPA(91)32792312 58 DÉBORAH LORENA DAVIS NASCIMENTO DUARTE [email protected] 3246-4916 59 SUZANE CRUZ DE AQUINO [email protected] UFPA 09132494298 60 THIAGO MELO SOUZA [email protected] UFPA 32465096 61 LUAN ROOSEWEL COSTA NUNES [email protected] UFPA 3245-3655 62 GLAYSON FRANCISCO BEZERRA DAS CHAGAS [email protected] 92-82446404 63 DÉBORAH LORENA DAVIS NASCIMENTO DUARTE [email protected] 32464916 64 FABIANO SOARES ANDRADE [email protected] OUTRAS 9182083934 65 PÂMELA LORENA RIBEIRO ÁVILA [email protected] UFPA 82449825 66 MICHEL JUNIOR LISBOA RODRIGUES [email protected] UFPA 8236-5932 67 AMANDA NASCIMENTO PINHEIRO [email protected] UFPA 92368348 68 SAMYR BARATA CHEBLY [email protected] UFPA 9132634914 69 ABNOÃ DA COSTA E COSTA [email protected] UFPA 84698196 70 ROSARIA RODRIGUES FERREIRA [email protected] UFPA 9188393996 71 MAGNO DE JESUS SIQUEIRA REIS [email protected] OUTRAS 92086040 72 MARINA LOPES DE SOUZA [email protected] UFPA 91664135 73 RENATA SENA VIANA [email protected] UFPA 32454400 74 HELDER JOSE FARIAS DA SILVA [email protected] UFPA 9132487356 75 JEYMISON MARGADO BEZERRA [email protected] UFPA 9182797892 76 CINTIA LIMA DOS SANTOS [email protected] UFPA 9182592580 77 REGINALDO BERNARDES PACHECO [email protected] OUTRAS 91-99668860 78 PAULO JOSÉ LOBÃO FADUL [email protected] OUTRAS (91)92079694 79 DAYSE DA COSTA FERREIRA [email protected] UFPA (91)81873078 80 NELTON CAVALCANTE LUZ [email protected] UFPA 81134552 81 VERENA DE FATIMA DAS CHAGAS [email protected] UFPA (91)88151109 82 VIVIANE SÁ DE PAIVA PEREIRA [email protected] UFPA 32554836 83 ANA ROSA BAGANHA BARP [email protected] UFPA 32245266 84 ALLYSON ALLENNON PINHEIRO DO ROSARIO [email protected] UFPA81869294 85 DIONES DA SILVA LOPES [email protected] UFPA 32821047 86 DIONES DA SILVA LOPES [email protected] UFPA 32821047 87 SEBASTIÃO FRANCISCO DA CONCEIÇÃO MOUTINHO [email protected] INMET 91 32434599 88 VALERRY HENRIQUE BARROS GARCIA [email protected] OUTRAS(91)82874996 89 JOENY SANTOS FARIAS [email protected] UFPA 32546822 90 CARMEN SANTANA COSTA TORRES [email protected] OUTRAS 32921382 91 FABRÍCIO MARTINS SILVA [email protected] UFPA 91 3231-6046 92 RONALDO DA SILVA RODRIGUES [email protected] OUTRAS 32581792 93 ADIANE ALCÂNTARA E SILVA [email protected] UFPA 82352561 94 PEDRO COELHO DE REZENDE NETO [email protected] UFPA 88697114 95 ADRIANO SOUZA DA ROCHA [email protected] UFPA 9132482850 96 BARBARA SUELEN VALVERDE ROTTERDAM DE [email protected] SIPAM 81057260 97 DEYSIANE NONATO QUARESMA [email protected] UFPA 9132553101 98 ADRIANA ALVES DE CARVALHO [email protected] UFPA 32665610 99 FERNANDA ALVES PAZ [email protected] UFPA 91-81088109 100 FERNANDA ALVES PAZ [email protected] UFPA 91-81088109 101 SOYANNA MARA COSTA BAHIA [email protected] UFPA 9132263723 102 DANIELLE DO SOCORRO NUNES CAMPINAS [email protected] 32351794 103 NATALIA DRIELLY FERREIRA PINHEIRO [email protected] UFPA82746267 104 CAMILO DOS REIS PEDROSO [email protected] UFPA 91-32574416 105 CHARLES MARTINS GOMES [email protected] UFPA 81295259 106 SIMONE PINTO MEIRELES MATOS [email protected] UFPA 91 99059778 107 ALCIONE SANTOS DE SOUZA [email protected] OUTRAS 91-32632160 108 ANA LETICIA MELO DOS SANTOS [email protected] UFPA 91 32384573 109 CASSIO ROGERIO GRAÇAS DOS SANTOS [email protected] UFPA 30875789 110 CLEBERSON MARQUES SERRÃO [email protected] UFPA 32427551 111 DENILSON FREITAS ALMEIDA [email protected] OUTRAS 9111-6746 112 LAYRSON DE JESUS MENEZES GONÇALVES [email protected] UFPA32636981 113 VICTOR PROENÇA DO AMARAL [email protected] OUTRAS 32636294 114 MARIA JOSE DE SOUSA TRINDADE [email protected] OUTRAS 32490985 115 IÊDO SOUZA SANTOS [email protected] OUTRAS 091-84472501 116 BRUNO NAZARENO PRAZERES DE MIRANDA [email protected] SIPAM82702060 117 AGIRLAYNE DE SOUZA REIS [email protected] OUTRAS 3263 0824 118 SUELLEN CRISTINA LAVAREDA DO NASCIMENTO [email protected] 91161661 119 ANTONIO JOSÉ DA SILVA SOUSA [email protected]/MAIL OUTRAS91-81479975 120 LILIAN DE SOUZA DO CARMO [email protected] UFPA 32233617 121 MAYANY SOARES SALGADO [email protected] UFPA 81171632 122 YVIG SILVA DE MOURA [email protected] SIPAM 32479884 123 WHAVERTON PIRES SALDANHA [email protected] OUTRAS 8167-1864 124 DANILO FRAZÃO SOUSA [email protected] UFPA 81964001 125 CARLA DANIELE SILVA BORCEM [email protected] UFPA 8222-4665 126 CARMEN SILVIA DE OLIVEIRA E SILVA [email protected] OUTRAS82363960 127 JOSE DE ARIMATEIA RODRIGUES DO REGO [email protected] UFPA 32290256 128 THIAGO MOREIRA CARDOSO [email protected] OUTRAS 91-81572836 129 ELLEN SIANY SAMPAIO LIMA [email protected] UFPA 91-32313748 130 LUCIANA MARTINS FREIRE [email protected] UFPA 93 81235573 131 EDNA MARIA SOUZA DE OLIVEIRA [email protected] OUTRAS 32555818 132 MARIA DAS GRAÇAS JAQUES RODRIGUES [email protected] UFPA09187454707 133 AUGUSTO CESAR DE MAGALHÃES CHAVES [email protected] 09132017883 134 LARISSA VEIGA DA SILVA CORDOVIL [email protected] UFPA 91-32640189 135 MONICA DE OLIVEIRA COSTA [email protected] OUTRAS 32555818 136 MONICA DE OLIVEIRA COSTA [email protected] OUTRAS 32555818 137 DDDDDDDDDDD DDDDDDDDDD@DDD UFPA dddd 138 CARLA DANIELE FURTADO DA COSTA [email protected] UFPA 81586126 139 JOELSON DE JESUS CORRÊA DA SILVA [email protected] UFPA 81727361 140 JAMILLE FERREIRA GUIMARÃES [email protected] UFPA 82540514 141 HEYDE GONÇALVES GOMES [email protected] UFPA 09181905799 142 MARCO ANTONIO VIEIRA FERREIRA [email protected] SIPAM9132530721 143 DENIS CONRADO DA CRUZ [email protected] OUTRAS 091-81055609 144 LAISA FARIA VIANA [email protected] UFPA 81142040 145 ANA MARIA MOREIRA FERNANADES [email protected] OUTRAS82131593 146 BELTO KLESIO FURTADO DE SOUZA [email protected] OUTRAS 91 32436004 147 GILSON SARMENTO CASTRO [email protected] UFPA 30328133 148 CARLYLE RIBEIRO LIMA [email protected] UFPA 84078261 149 LUANA OLIVEIRA DA CONCEIÇÃO [email protected] UFPA 9181478853 150 JOSIANE AMANDA GOMES MIRANDA [email protected] SIPAM32579632 151 ROSIELLE SOUZA PEGADO [email protected] UFPA 32264160 152 OTÁVIO AUGUSTO DIAS CÂMARA [email protected] OUTRAS 32411996 153 WELINGTON AOOD DA SILVA [email protected] UFPA 83361837 154 MARCOS LUCÍDIO MARTINS BATISTA [email protected] OUTRAS32499571 155 MARIA JOSE DE SOUSA TRINDADE [email protected] OUTRAS 32490985 156 ISRAEL MOURA SERRA NETO [email protected] UFPA 82307720 157 MARIANA NEVES CRUZ [email protected] UFPA 30881704 158 PAMELLA OLIMPIA ANDRADE MAIA [email protected] UFPA 32070865 159 BIANCA DE NAZARE FONSECA DOS REIS PIRES [email protected] 91 81891336 160 RAQUEL GONÇALVES BECHARA [email protected] OUTRAS 9181455638 161 HUGO RAFAEL LINS DE SOUZA [email protected] UFPA 82699849 162 EDUARDO IVAN DE MIRANDA DOURADO [email protected] OUTRAS91-32310778 163 BRUNA CHAVES BRASILEIRO [email protected] UFPA 32332261 164 ANA ALICE SILVA FERNANDES [email protected] UFPA 87279356 165 ANTONIO JOSÉ DA SILVA SOUSA [email protected] OUTRAS91-32451420 166 JOÃO PAULO OLIVEIRA DA COSTA MACHADO [email protected] 09183068585 167 JONAS SOUSA COELHO [email protected] OUTRAS 32523891 168 BRIAN JONES XAVIER DE ALMEIDA [email protected] OUTRAS 91 81062369 169 RODRIGO DA SILVA [email protected] OUTRAS 9388025865 170 JOSÉ DE PAULO ROCHA DA COSTA [email protected] UFPA 32492760 171 CARLOS ALBERTO BORGES GUIMARÃES JUNIOR [email protected] 82940094 172 CARLOS SIMÕES PEREIRA [email protected] SIPAM 91 32575286 173 VANDA MARIA SALES DE ANDRADE [email protected] SIPAM9132350263 174 CLÊNIA RODRIGUES ALCÂNTARA [email protected] OUTRAS (83)33334219 175 MADLENE NUNES CARDOSO [email protected] UFPA 81504051 176 RENATA KELEN CARDOSO CÂMARA [email protected] UFPA 9181113777 177 LEILA SHEILA SILVA LISBOA [email protected] OUTRAS 81025650 178 JOSIAS BATISTA DOS SANTOS [email protected] UFPA(91)87159053 179 SIGLEA SANNA DE FREITAS CHAVES [email protected] OUTRAS 09181453120 180 ROSILENE SILVA DE LOUREIRO [email protected] OUTRAS9181562401 181 NATALIA PINHEIRO DA COSTA [email protected] OUTRAS 32380253 182 MAISSA LUDYMILLA CARVALHO PONTES [email protected] UFPA82144340 183 MICLEIDE DE SOUZA NASCIMENTO [email protected] OUTRAS 8130-9454 184 LEANDRO JOSE TAVARES SANTANA [email protected] OUTRAS32449727 185 VÍVIAN DE FÁTIMA VALE DE OLIVEIRA [email protected] OUTRAS32786171 186 NEUMA TEIXEIRA DOS SANTOS [email protected] UFPA 32318333 187 NATÁLIA FABIANA CANTUÁRIA DA SILVA [email protected] UFPA8192-7012 188 MARIA DE FÁTIMA PINHEIRO CORREA [email protected] OUTRAS91-83697792 189 DANIELA DOS SANTOS ANANIAS [email protected] UFPA 88569935 190 ADRIANA COSTA DOS SANTOS [email protected] OUTRAS 32467143 191 RAÍSA NICOLE CAMPOS CARDOSO [email protected] OUTRAS 32292014 192 DANIELA DOS SANTOS ANANIAS [email protected] UFPA 88569935 193 FRANCISCO [email protected] INMET +5154450136 194 PÂMELLA SUYLY GOMES LOPES [email protected] UFPA 32449557 195 ELINETE DO NASCIMENTO ALMEIDA [email protected] OUTRAS (91)32310146 196 ALEXSANDRA CHRISTINE BORGES DE QUEIROZ [email protected] OUTRAS(91 32553353 197 JÉSSICA DE CÁSSIA RODRIGUES MIRANDA [email protected] UFPA 83172208 198 RICARDO FONSECA DE LIMA [email protected] OUTRAS 81892919 199 JACQUELINE BELO MORAES [email protected] UFPA 3227-5002 200 JULIANA MARIA PINHEIRO SILVA [email protected] UFPA 3227-5002 201 LUANA KARINE SARAIVA ARAÚJO MATOS [email protected] OUTRAS81719803 202 MARCIA CORREA CURSINO [email protected] OUTRAS 82648959 203 MARIA DO CARMO FELIPE DE OLIVEIRA [email protected] UFPA 3201-7985 204 JOSÉ HENRIQUE CATTANIO [email protected] UFPA 32018158 205 GALDINO VIANA MOTA [email protected] UFPA 91-91127287 206 HELEN KAROLLYNE LIMA DE LIMA [email protected] UFPA 32483904 207 MARCELLE FERNANDA SANTOS CORRÊA [email protected] OUTRAS87069217 208 DOUGLAS GASPARETTO [email protected] OUTRAS 91-81376367 209 LAYANA ROBERTA DE SOUZA MELO [email protected] UFPA(91)87152572 210 SIONE VALENTE PINTO [email protected] UFPA (91)82532721 211 GISELLE NERINO BRITO DE SOUZA [email protected] UFPA 32785693 212 SUZAN LETICIA SANTIAGO PINHEIRO [email protected] 32634333 213 SUZAN LETICIA SANTIAGO PINHEIRO [email protected] 32634333 214 PATRÍCIA MALCHER CHAVES [email protected] UFPA 88712647 215 RICHARD DE NIXON RAIOL LEÃO [email protected] OUTRAS 81656536 216 JOSÉ DANILO DA COSTA SOUZA FILHO [email protected] UFPA 32632366 217 LUCINEUSA DA COSTA BORGES [email protected] OUTRAS 84046362 218 WAGNER LEITE DOS SANTOS [email protected] UFPA 3228-4416 219 PAULO ROBERTO DE ARAUJO VIANA JUNIOR [email protected] UFPA(91)91341880 220 PAMELA DE OLIVEIRA BATISTA [email protected] UFPA 32535693 221 KAMILA SOUZA SANTOS [email protected] UFPA 81598056 222 FÁBIO ENRICO ATAIDE LAMEIRA [email protected] UFPA 82937880 223 MARCELA GONÇALVES PEREIRA [email protected] OUTRAS 32234879 224 MARCELA GONÇALVES PEREIRA [email protected] OUTRAS 32234879 225 RITA DE CASSIA IGLESIAS DA SILVA [email protected] UFPA 82085551 226 PAMELLA OLIMPIA ANDRADE MAIA [email protected] UFPA 32070865 227 RAÍSA NICOLE CAMPOS CARDOSO [email protected] OUTRAS 32292014 228 JESSICA CAMILA REIS CAMPOS [email protected] UFPA 82145662 229 RAFAEL RODRIGUES SACRAMENTO [email protected] UFPA09132570407 230 ANDRESSA AZAMBUJA [email protected] OUTRAS 81568698 231 JULIANA ISE DE SOUSA E SOUSA [email protected] OUTRAS91-82064942 232 JULIANA ISE DE SOUSA E SOUSA [email protected] OUTRAS91-82064942 233 JULIANA ISE DE SOUSA E SOUSA [email protected] OUTRAS91-82064942 Relatório de Avaliação do Curso “Sensoriamento Remoto e Modelagem dos Processos de Formação da Precipitação” Junho 2011 – Belém, Pará O curso do Projeto Chuva "Sensoriamento Remoto e Modelagem dos Processos de Formação da Precipitação" foi realizado com a participação de especialistas nacionais e internacionais nas áreas de sensoriamento remoto por satélite, radar e Lidar, descargas elétricas, microfísica das nuvens, camada limite e modelagem em alta resolução. Esses tópicos correspondem as linhas de pesquisa que estão sendo estudadas no marco do Projeto CHUVA. O número de participantes por aula é mostrada na Tabela 1, a seguir. De modo geral, as aulas contaram com uma média de 72 participantes. Tabela 1 – Número de participantes por aula Aulas Satélites Meteorológicos e a observação em microondas Ferramentas para Previsão imediata utilizando radar e satélites Princípios básicos da Modelagem em alta resolução A parametrização de nuvens e convecção O Uso do GPS na Meteorologia Microfísica das nuvens Radar de dupla polarização Eletrificação das nuvens Estimativa de precipitação por satélite e radar Introduction to the LIDAR technique Camada Limite Planetária: conceitos básicos Landscape and precipitation in the eastern Amazon Basin I Camada Limite Planetária e o Processo de Convecção Landscape and precipitation in the eastern Amazon Basin II Participantes 122 88 81 71 89 76 77 53 70 50 67 63 58 44 Trinta e três alunos responderam ao questionário de avaliação, cujo modelo encontra-se em anexo. Resultado da Avaliação Quanto ao Curso Na primeira questão, foram atribuídas notas de 1 a 4, correspondendo aos conceitos: 1-Ruim, 2-Razoável, 3-Bom e 4-Muito Bom. Nesta questão foram avaliados os seguintes itens: Temas abordados, Professores, Carga horária, Organização do curso, Auditório e Infra-estrutura. A nota média dada aos itens é mostrada na Tabela 2, a seguir. De modo geral, o curso foi muito bem avaliado, com nota média entre Bom e Muito Bom. Tabela 2 – Nota média do curso, por item avaliado. Item Temas abordados Professores Carga horária Organização do curso Auditório e Infra-estrutura Nota Média 3,79 3,61 3,09 3,21 3,09 A Figura 1 mostra os percentuais das notas dadas a cada um dos itens. O que se observa é que a maior parte dos alunos avaliou como Muito Bom, principalmente, os itens: Temas abordados e Professores. Os itens: Carga horária, Organização do curso e Auditório e Infra-estrutura foram maiormente avaliados com a qualificação Bom. Em relação ao quesito Carga Horária, próxima do conceito Bom, pode ter explicação na diversidade de opiniões apresentadas: para alguns, a carga horária foi suficiente, e para outros, deveria ter sido maior devido à importância de cada item (vide Tabela 3). Também próximo ao conceito Bom, o item relacionado ao Auditório e Infraestrutura, o qual em algumas palestras resultou apertado e inadequado em detrimento da apresentação da aula. 90% Temas abordados 80% Professores Carga horária Percentual das Respostas 70% Organização do curso 60% Auditório e Infra-estrutura 50% 40% 30% 20% 10% 0% Muito Bom Bom Razoável Ruim Avaliação Figura 1 – Avaliação do curso. Tabela 3 – Observações dos alunos em relação aos itens avaliados. Itens Temas abordados Professores Carga horária Organização do curso Auditório e Infra-estrutura Observações - Muito relevantes. - Muito específicos. - Foram ótimos os temas abordados. - Com conhecimentos fantásticos. - A maioria foi muito bem. - Excelente. - Algumas palestras em Inglês. - Deveria ser maior (mais aulas). - Foi suficiente e palpável. - Para a importância de cada item foi insuficiente. - Poderia circular resumos das palestras. - Nada a reclamar, satisfatória. - Trocas de auditórios. - Auditório apertado e inadequado na palestra de LIDAR - Nada a reclamar. Quanto aos Temas Abordados O resultado da pesquisa em relação aos temas que despertaram maior atenção dos alunos é mostrado na Figura 2, a seguir. Desde que foram permitidas múltiplas escolhas, houve um total de 156 seleções, sendo que o tema que mais despertou a atenção dos alunos foi: Estimativa de Precipitação por Satélite e Radar, com 15,38% dos votos. Contudo, como mostrado na Figura 2, praticamente todos os temas mostraram-se atraentes para os alunos. 18% Percentual de Seleção de Tema 16% 14% 12% 10% 8% 6% 4% 2% Ferramentas para Previsão Imediata Utilizando Radar e Satélites Eletrificação das Nuvens Estimativa de Precipitação por Satélite e Radar Satélites Meteorológicos e a Observação em Microondas Radar Princípios Básicos Microfísica das Nuvens A Parametrização de Nuvens e Convecção Camada Limite Planetária e o Processo de Convecção Princípios básicos da Modelagem em Alta Resolução Camada Limite Planetária: Conceitos Básicos 0% Temas Figura 2 – Percentual de seleções de temas de maior interesse. Ainda em relação aos temas abordados, o 100% dos alunos afirmaram que eles serão úteis em seus estudos. Quanto aos Comentários Alguns dos alunos transcreveram comentários em sua avaliação. A maioria destes comentários traz elogios ao curso, porém, também indicam aspectos que podem ser melhorados, tais como a carga horária, a existência de resumos das palestras ou a eleição de auditórios mais adequados para as apresentações dos professores, como mencionado. Por outro lado é gratificante perceber nesses comentários que o curso despertou o interesse para o experimento e para os temas, servindo de apoio para os estudos atuais, e abrindo possibilidades para o futuro. Tabela 4 – Comentários dos alunos - O projeto CHUVA foi uma boa aprendizagem que deu para ter uma boa visão e ver na prática a funcionalidade. - Boas palestras, bons temas, mas com horários matutinos de encontro com o horário de nossas aulas. - Um curso de suma importância, porém senti falta da parte mais prática apesar de não saber dos procedimentos para participar das coletas de dados. Mas no geral o curso foi excelente e tenho certeza que ira contribuir bastante para futuras pesquisas. - O curso foi excelente porém em alguns temas pelo fato de serem muito específicos não tive aproveitamento positivo. - Como para os alunos do mestrado este curso substitui parte de uma disciplina, talvez teria sido muito mais proveitoso se tivesse havido um acompanhamento do professor. - Sugiro um curso de extensão sobre “Linhas de Inestabilidade” -Gostaria de ter maiores conhecimentos na área de geoprocessamiento e sensoriamento remoto. - Somente os horários, acredito que eles prejudicaram um pouco algumas matérias. - O curso além de proporcionar-me peso curricular, será de grande ajuda nas atividades de pesquisa acadêmica que desempenho. Buscou-se uma abordagem simples dos temas, já que o público-alvo não era exclusivamente de meteorologistas, o que facilitou a compreensão. Resultado satisfatório! - O curso de maneira geral foi muito proveitoso, uma oportunidade para absorver os conteúdos apresentados. - O curso foi muito bom, participei de todas as aulas. Estas foram muito boas adquiri o conhecimento que esperava sobre todos os assuntos abordados. - Os avanços que estão ocorrendo em nossa faculdade são notáveis. O projeto CHUVA tenha sido uma “porta de abertura” para outros. - O curso atingiu o seu objetivo maior a meu ver que é acima de tudo difundir o conhecimento nessas áreas afins, com palestrantes diversos de outros institutos e universidades. - Gostaria de participar de um curso mais detalhado sobre microfísica das nuvens e Satélites Meteorológicos e a observação em microondas. - Este tipo de ciclo de palestra poderia ser ministrado mais vezes (pelo menos uma vez cada dois anos) para mostrar para os alunos, principalmente de graduação que realmente pode ser trabalhado na área de meteorologia. Além de incentivar na pesquisa. - Parabéns pela iniciativa do curso e pela oportunidade que deram, não só aos alunos mas as pessoas ligadas a área de Meteorologia de assistirem excelentes palestras com magníficos professores. - Foi de grande importância este curso. Notamos o empenho dos professores para conosco, alunos, em nos proporcionar esse grande momento de aprendizagem. - Este curso foi lucrativo pois deu para ter una visão mais ampla da Meteorologia e as áreas de atuação e a própria interação entre os demais colegas meteorologistas e conhecer os “nomes famosos” do curso. - Temas relevantes e professores excelentes. - Professores com conhecimentos fantásticos. Anexo – O questionário de avaliação aplicado Curso Sensoriamento Remoto e Modelagem dos Processos de Formação da Precipitação Nome (opcional) _________________________________________________________________ Dê a nota, considerando a seguinte pontuação: Nota 1 2 3 4 Item Temas abordados Professores Carga horária Organização do curso Auditório e Infra-estrutura Avaliação Ruim Razoável Bom Muito bom Nota Observação Marque com (x) o tema ou os temas que despertaram mais a sua atenção e você gostaria de aprofundar seus conhecimentos: ( ( ( ( ( ( ( ( ( ( ) Camada Limite Planetária: Conceitos Básicos ) Princípios básicos da Modelagem em Alta Resolução ) Camada Limite Planetária e o Processo de Convecção ) A Parametrização de Nuvens e Convecção ) Microfísica das Nuvens ) Radar Princípios Básicos ) Satélites Meteorológicos e a Observação em Microondas ) Estimativa de Precipitação por Satélite e Radar ) Eletrificação das Nuvens ) Ferramentas para Previsão Imediata Utilizando Radar e Satélites Os temas abordados serão úteis para você? ( ) sim ( ) não Comentários: ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ _____________________________________________________________________________