comprehensive analytical chemistry

Transcrição

comprehensive analytical chemistry
COMPREHENSIVE
ANALYTICAL CHEMISTRY
VOLUME
54
Elsevier
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
Linacre House, Jordan Hill, Oxford OX2 8DP, UK
First edition 2008
Copyright r 2008 Elsevier B.V. All rights reserved
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of the publisher
Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected].
Alternatively you can submit your request online by visiting the Elsevier web site at http://
www.elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material
Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or property
as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions or ideas contained in the material herein. Because of rapid advances
in the medical sciences, in particular, independent verification of diagnoses and drug dosages should
be made
British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library
Library of Congress Cataloging-in-Publication Data
A catalogue record for this book is available from the Library of Congress
ISBN: 978-0-444-53094-3
ISSN: 0166-526X
For information on all Elsevier publications
visit our website at books.elsevier.com
Printed and bound in Hungary
08 09 10 11 12 10 9 8 7 6 5 4 3 2 1
ADVISORY BOARD
Joseph A. Caruso
University of Cincinnati, Cincinnati, OH, USA
Hendrik Emons
Joint Research Centre, Geel, Belgium
Gary Hieftje
Indiana University, Bloomington, IN, USA
Kiyokatsu Jinno
Toyohashi University of Technology, Toyohashi, Japan
Uwe Karst
University of Münster, Münster, Germany
György Marko-Varga
AstraZeneca, Lund, Sweden
Janusz Pawliszyn
University of Waterloo, Waterloo, Ont., Canada
Susan Richardson
US Environmental Protection Agency, Athens, GA, USA
Wilson & Wilson’s
COMPREHENSIVE
ANALYTICAL CHEMISTRY
Edited by
D. BARCELÓ
Research Professor
Department of Environmental Chemistry
IIQAB-CSIC
Jordi Girona 18-26
08034 Barcelona
Spain
Wilson & Wilson’s
COMPREHENSIVE
ANALYTICAL CHEMISTRY
ADVANCES IN FLOW INJECTION ANALYSIS AND RELATED TECHNIQUES
VOLUME
54
Edited by
SPAS D. KOLEV
School of Chemistry, The University of Melbourne,
Victoria 3010, Australia
IAN D. MCKELVIE
School of Chemistry,
Monash University,
Victoria 3800,
Australia
Amsterdam Boston Heidelberg London
New York Oxford Paris San Diego
San Francisco Singapore Sydney Tokyo
CHAPT ER
18
Food, Beverages and Agricultural
Applications
Ildikó V. Tóth, Marcela A. Segundo and
António O.S.S. Rangel
Contents
1. Introduction
2. Applications: Beverages
3. Applications: Plants and Vegetables
4. Applications: Milk and Dairy Products
5. Applications: Meat and Fish Products
6. Miscellaneous Food Products
Abbreviations
References
513
514
545
546
547
548
548
549
1. INTRODUCTION
Food quality and safety are major issues nowadays. Owing to increased concern
on public health issues, national and international legislation has imposed stricter
regulations on food control, both regarding chemical and microbiological aspects
[1–3]. This scenario has produced a major impact on both agriculture and food
industry practices. Companies and governmental certifying and regulatory
agencies in this sector are faced with an increasing number of parameters to be
monitored and the need to detect ever decreasing concentrations. Meeting these
requirements demands novel analytical methods that are sensitive, efficient, and
which provide significant improvements in laboratory productivity. This
situation calls for the development of fast and automatic analytical methodologies for the food and beverage sector.
Foodstuffs can be considered a complex matrix for a number of reasons: they
are seldom homogeneous, and a solubilization process is normally required
before analysis. This makes the sample pretreatment process relatively complex,
and usually labour intensive. Additionally, these pretreatments might alter the
Comprehensive Analytical Chemistry, Volume 54
ISSN: 0166-526X, DOI 10.1016/S0166-526X(08)00618-1
r 2008 Elsevier B.V.
All rights reserved.
513
514
Ildikó V. Tóth et al.
composition (namely the form of the analyte) of the foodstuff and impair the
quality of the analysis itself. Moreover, food samples have a biological origin
resulting in high temporal and spatial variability in analyte concentrations.
Sample colour and turbidity may also make the analysis more difficult, due to the
widespread use of spectrophotometric methods in this respect.
In this context, flow analysis methods can be a powerful tool to overcome
some of these difficulties and offer a relatively low-cost alternative. In fact,
sample pretreatments such as sample digestion, using microwave, UV or
ultrasound radiation-assisted processes can be efficiently carried out in flow
systems, using an extremely limited amount of reagents and posing no danger to
the operator. Mass separation processes (gas-diffusion, dialysis, ion-exchange)
can also be performed in-manifold, allowing minimization of interferences and/
or analyte preconcentration. Regarding the instrumental measurement, flow
methods make it possible to carry out all the necessary wet chemistry involved,
including analyte derivatization and instrumental detection. Additionally, as
kinetic time-based methods can be easily implemented, additional information
can be obtained from the instrumental measurements.
In this chapter, an overview of the flow methods described for the analysis of
food, beverage and agricultural samples will be presented. The collection
of publications was essentially obtained by using the search engine ISI Web of
Knowledge. Owing to the large number of papers published so far on this subject
(Figure 1), the decision was made to address only the advances reported since the
year 2000. Information on previous works can be found in review papers
published in the last decade focusing on different areas of food analysis [4–9], on
particular flow techniques [10–13], on specific analytes [4,7,14–20] or on specific
detection [21–24] and analyte-processing techniques [25–28]. As depicted in
Figure 1a, the implementation of flow techniques in food analysis accompanies
the trend observed for its application as analytical tool.
Specific developments dealing with advances in sample pretreatment, such as
digestion or mass separation methods, are not discussed in detail in this chapter,
as these topics are the object of discussion in Chapters 6–9 of this book. Therefore,
special emphasis will be given to the commodity involved. Considering the
distribution of applications to specific classes of food (Figure 1b), the following
categories were selected for review: beverages, milk and dairy products, meat
and fish, fruits and vegetables and miscellaneous food products. The collection of
publications from the year 2000 onwards is presented in Tables 1–6, where the
main characteristics of the methodologies are summarized. The discussion that
follows highlights some features of the flow systems, and some trends regarding
the target analytes or groups of analyte.
2. APPLICATIONS: BEVERAGES
A beverage is a drink specifically prepared for human consumption, other than
water. Therefore, this designation includes alcoholic drinks (wine, beer, liquors,
distilled spirits) and also coffee, fruit juices, tea and soft drinks, among others.
Food, Beverages and Agricultural Applications
515
Figure 1 (a) Evolution of flow-injection application to food analysis, and (b) distribution by
commodity.
Owing to its liquid nature, this type of sample can be simply introduced into a
flow system, without being weighed or solubilized. This aspect makes the
automation of the whole analytical process easier, considering that any other
pretreatment operation required can be included in the flow system before the
determination of the target analyte. Furthermore, the possibility of direct
sampling also allows direct, real-time monitoring of food processing, especially
during must fermentation [29–34] or beer production [35].
516
Table 1 Some of the analytical features of flow methods for alcoholic beverages
Matrix
Flow mode
Detection system
Working range
Reference
Alcohols
Ethanol
Ethanol
Ethanol
Beer, liquors, wine
Must
Wine
FIA
FIA
FIA
Amperometry
Amperometry
Amperometry
[84]
[31]
[85]
Wine
Beer, spirits, wine,
Wine
Non-alcoholic beer
Wine, spirits
Sake, wine
Beer, distilled liquors,
white wines
Beer, distilled liquors,
wine
Wine
Wine
Beer fermentation
broth
Wine
Wine
Wine
Must
Wine
Wine
Distilled spirits
Wine
Beer, wine
Wine
FIA
FIA
FIA
FIA
FIA
FIA
FIA
Density measurement
FTIR
UV-Vis
UV-Vis
UV-Vis
UV-Vis
UV-Vis
0.020–2.0 mM
NA
0.01 103–
0.75 103 M
0–40% (v/v)
0.05–15% (v/v)
1–20% (v/v)
0–100 mM
10–30% (v/v)
0.04–100 mM
5 106–1 103 M
FIA
UV-Vis
0.5–30% (v/v)
[92]
FIA
SIA
SIA
UV-Vis
Amperometry
Amperometry
1.0–30.0% (v/v)
1–250 mM
0.15–30 mg L1
[93]
[94]
[35]
SIA
SIA
MCFA
FIA
FIA
FIA
FIA
SIA
SIA
MCFA
UV-Vis
UV-Vis
Chemiluminescence
Amperometry
Amperometry
Fluorimetry
Potentiometry
UV-Vis
UV-Vis
UV-Vis
0.008–0.024% (v/v)
0.03–0.30 mg L1
2.5–25% (v/v)
NA
0.01–1 mM
2–8 g L1
20–500 mg L1
0.10–0.50% (v/v)
0.3–3.0 mM
2.0–10.0 g L1
[95]
[61]
[96]
[31]
[58]
[59]
[60]
[61]
[62]
[63]
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Ethanol
Glycerol
Glycerol
Glycerol
Glycerol
Glycerol
Glycerol
Glycerol
[86]
[87]
[59]
[88]
[89]
[90]
[91]
Ildikó V. Tóth et al.
Analyte
Antioxidant capacity
ABTSd+ assay
ABTSd+ assay
ABTSd+ assay
ABTSd+ assay
Scavenging of H2O2
DPPHdAssay
UV-Vis
UV-Vis
UV-Vis
UV-Vis
Fluorimetry
UV-Vis
Wine
Beer, wine
FIA
MSFIA
Chemiluminescence
UV-Vis
Metals and metalloids
Boron
Grape juice, wine
MCFA
Cadmium
Cadmium
Cadmium
Cadmium
Calcium
Copper
Copper
Iron
Iron
Iron
Iron
Iron(III)
Iron
Iron
Lead
Lead
Lead
Lead
Wine
Wine
Wine
Wine
Wine
Wine
Wine
Beer
Beer
Wine
Wine
Wine
Beer
Wine
Wine
Wine
Wine
Spirits
FIA
FIA
FIA
FIA
FIA
FIA
SIA
FIA
FIA
SIA
SIA
SIA
BI-FIA
BI-FIA
FIA
FIA
FIA
FIA
Piezoelectric
microbalance
FAAS
CV-AAS
ET-AAS
ICP-OES
UV-Vis
FAAS
FAAS
FAAS
UV-Vis
FAAS
FAAS
FAAS
UV-Vis
UV-Vis
FAAS
FAAS
FAAS
FAAS
Total phenolics
Folin–Ciocalteu
reducing assay
10–300 mM
4–250 mM
NA
0.001–0.008 M
0.001–0.01 M
0.25 104–
6.00 104 M
1 109–5 105 M
5–80 mg L1
[41]
[42]
[43]
[44]
[44]
[45]
NA
[97]
NA
r7 mg L1
r300 ng L1
r1.0 mg L1
0–350 mg L1
NA
0.20–2.00 mg L1
NA
NA
0.25–15.0 mg L1
0.10–6.00 mg L1
0.25–15.0 mg L1
NA
0.1–3.0 mg L1
1.0–500 mg L1
NA
0.5–15 mg L1
5–120 mg L1
[64]
[65]
[66]
[67]
[98]
[64]
[99]
[100]
[100]
[99]
[101]
[101]
[100]
[102]
[68]
[64]
[69]
[70]
[46]
[47]
517
FIA
FIA
SIA
SIA
SIA
MSFIA
Food, Beverages and Agricultural Applications
Beer
Wine
Beer
Wine
Wine
Beer, wine
518
Table 1 (Continued )
Matrix
Flow mode
Detection system
Working range
Reference
Lead
Lead
Magnesium
Manganese
Mercury
Potassium
Zinc
Zinc
Wine
Wine
Wine
Wine
Wine
Wine
Beer
Wine
FIA
FIA
FIA
SIA
FIA
SIA
FIA
SIA
HG-AAS
ICP-AES
UV-Vis
FAAS
CV-AAS
Potentiometry
UV-Vis
FAAS
r10 mg L1
0.15–1,000 mg L1
0–350 mg L1
r3.00 mg L1
2–50 mg L1
NA
NA
r1.50 mg L1
[71]
[72]
[98]
[99]
[103]
[104]
[105]
[99]
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
SIA
FIA
MCFA
FIA
Amperometry
Amperometry
Amperometry
UV-Vis
Fluorimetry
Chemiluminescence
Chemiluminescence
Amperometry
Amperometry
Amperometry
Fluorimetry
UV-Vis
Amperometry
Fluorimetry
UV-Vis
UV-Vis
UV-Vis
UV-Vis
Fluorimetry
0.2–8 mM
0.05–20 mM
3–50 mg L1
1–80 mg L1
1 106–1.6 104 M
0.1–10 mM
5–50 mM
5 106–1 103 M
0.02–1.0 mM
0.02–1.0 mM
0.05–1.5 g L1
0.1–1.0 g L1
1 105–4 104 M
0.02–1.5 g L1
0.05–1.0 g L1
0.01–0.15 g L1
0.5–4.0 g L1
0.5–10.0 g L1
0.01–1.20 mM
[106]
[107]
[75]
[108]
[109]
[110]
[111]
[32]
[112]
[112]
[113]
[113]
[32]
[113]
[113]
[114]
[37]
[115]
[116]
Organic acids and conjugate ions
Acetate
Wine
Acetic acid
Wine
Ascorbic acid
Wine
Ascorbic acid
Beer
D-gluconate
Noble rot wine
Lactate
Beer
Lactate
Beer
L-lactic acid
Wine, must
D-lactic acid
Beer, sake, wine
L-lactic acid
Beer, sake, wine
L-(+)-lactic acid
Wine
L-(+)-lactic acid
Wine
L-malic acid
Wine, must
L-(–)-malic acid
Wine
L-(–)-malic acid
Wine
L-(–)-malic acid
Wine
Tartaric acid
Wine
Tartaric acid
Wine
L-tartrate
Wine
Ildikó V. Tóth et al.
Analyte
FIA
HPLC-UV-Vis
Anthocyan index
Flavanoid fraction
Flavonols (total)
Wine
Beer
Wine
FIA
FIA
FIA
Phenolic compounds
Polyphenol index
Beer
Wine
FIA
FIA
UV-Vis
Amperometry
Adsorptive stripping
voltammetry
Amperometry
Amperometry
Polyphenol index
Wine
FIA
UV-Vis
Polyphenol index
Polyphenol index
Polyphenolic (three
fractions)
Wine
Wine
Wine
FIA
SIA
FIA
UV-Vis
UV-Vis
Evaporative light
scattering
Beer
Must
Beer, wine
White wine
Must
Wine
Wine
Beer
Brandy, white wine
Wine
Beer fermentation
broth
SIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
SIA
IR
Amperometry
Amperometry
Amperometry
Amperometry
Amperometry
Amperometry
Amperometry
Chemiluminescence
UV-Vis
Amperometry
Sugars
Carbohydrates
Fructose
Glucose
Glucose
Glucose
Glucose
Glucose
Glucose (bonded)
Glucose
Glucose
Glucose
0.5–16 mg L1
1.0–60 mg L1
20–500 mg L1
NA
0.03–1.0 mg L1
[117]
0.025–14 mM
0.04–2.0 mg L1
(gallic acid)
0.001–0.100 mg L1
(caffeic acid)
4–22 units
3–18 units
20–70 units
5–200 mg L1
5–300 mg L1
[121]
[122]
0.86–7.13 g L1
NA
2–2,500 mg L1
20–500 mg L1
NA
1 106–1 103 M
0.02–50 g L1
0.011–13.9 mM
0.0003–0.05 mM
1 106–1 103 M
5–750 mg L1
[126]
[31]
[127]
[128]
[31]
[129]
[130]
[131]
[132]
[133]
[35]
[118]
[119]
[120]
[123]
[118]
[124]
[125]
519
Wine
Food, Beverages and Agricultural Applications
Polyphenols
Anthocyanins
520
Table 1 (Continued )
Matrix
Flow mode
Detection system
Working range
Reference
Maltooligosaccharides
Reducing sugars
Reducing sugars
Beer
FIA
ESI-MS
5–100 mM
[134]
Wine
Wine
FIA
SIA
UV-Vis
UV-Vis
40–400 mM
2–25 g L1
20–140 g L1
[135]
[36]
Sulfur dioxide
Sulfite
Sulfite
Sulfur dioxide
Sulfur dioxide
Sulfur dioxide
Sulfite
Sulfite
Sulfur dioxide
Sulfur dioxide
Wine, grape juice
Wine
Wine
Wine
Wine
Wine
White wines
Wine
Wine
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
SIA
Amperometry
Amperometry
Amperometry
Amperometry
Amperometry
Conductimetry
UV-Vis
UV-Vis
UV-Vis
[38]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
Sulfur dioxide
Wine
MSFIA
UV-Vis
1.0–5.0 mM
20–100 mM
NA
0.25–15 mg L1
5–100 mM
1.0–500 mg L1
1–20 mg L1
1–200 mg L1
2–40 mg L1
25–250 mg L1
2–75 mg L1
10–250 mg L1
Sake, wine
Beer
Wine, must
Wine
Must, grape juice
Beer
FIA
MCFA
FIA
FIA
SIA
FIA
0.2–100 mM
NA
0–25 mg L1
15–60 mg L1
28–140 mg L1
NA
[90]
[136]
[29]
[30]
[34]
[50]
Wine
FIA
UV-Vis
Potentiometry
UV-Vis
UV-Vis
UV-Vis
Piezoelectric
microbalance
CE–ESI–MS
NA
[83]
Others
Acetaldehyde
Acidity
Ammonia
Assimilable nitrogen
Assimilable nitrogen
Astringency and
bitterness
Biogenic amines
[81]
Ildikó V. Tóth et al.
Analyte
Beer
FIA
Body and smoothness
Beer
FIA
Carbon dioxide
Chloride
Diacetyl
Diacetyl
Beer
Wine
Beer
Wine
FIA
MSFA
FIA
FIA
Diacetyl
Diacetyl
Beer
Beer
FIA
MCFA
Dissolved solids
‘‘Fingerprinting’’
‘‘Fingerprinting’’
Histamine
Laccase activity
Phosphorus (total)
Proline
Proteins
Sulfate
Tannin–protein
interaction
Urea
Urea
Urea
Wine
Beer
Beer
Wine, cider
Wine, must
Beer
Wine
Rice wine
Wine
Wine
Rice wine
Wine, must
Rice wine
Note: NA, not given/not available.
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
SIA
FIA
Piezoelectric
microbalance
Piezoelectric
microbalance
UV-Vis
Potentiometry
Amperometry
Cathodic stripping
voltammetry
UV-Vis
Adsorptive stripping
voltammetry
UV-Vis
NMR
MS
Fluorimetry
UV-Vis
UV-Vis
Chemiluminescence
UV-Vis
Turbidimetry
FTIR
FIA
FIA
FIA
Fluorimetry
UV-Vis
UV-Vis
NA
[52]
NA
[53]
0.5–5 g L1
NA
NA
1 108–1 105 M
[137]
[138]
[55]
[56]
NA
5–600 mg L1
[55]
[57]
0.999–1.026 g mL1
NA
NA
r2.0 mg L1
0.6–24.0 U mL1
2–20 mg L1
1 108–5 105 M
NA
300–1,500 mg L1
NA
[123]
[139]
[140]
[141]
[33]
[142]
[143]
[144]
[145]
[51]
1.0–100 mM
0–25 mg L1
0.016–1.0 mM
[146]
[29]
[39]
Food, Beverages and Agricultural Applications
Bitterness
521
522
Table 2 Some of the analytical features of flow methods for non-alcoholic beverages
Analyte
Flow mode
Detection system
Working range
Reference
Fresh fruit extracts,
herbal infusions, tea
Coffee, fruit juices,
soft drinks, tea
Fruit juices, tea
Fruit juices, soft
drinks, tea
Fruit juices, soft
drinks, tea
Tea
FIA
Potentiometry
1 106–1 102 M
[48]
FIA
UV-Vis
10–300 mM
[41]
SIA
MSFIA
UV-Vis
UV-Vis
[43]
[45]
MSFIA
UV-Vis
NA
0.25 104–
6.00 104 M
5–80 mg L1
FIA
Clark-type oxygen
electrode
(polarography)
0.1–1.5 mM
[49]
Organic acids and conjugate ions
Ascorbic acid
Fruit juices
Ascorbic acid
Fruit juices
L-ascorbic acid
Fruit juices
Ascorbic acid
Fruit juices
Ascorbic acid
Fruit juices
Ascorbic acid
Fruit juices
Ascorbic acid
Fruit juices
Ascorbic acid
Fruit juices
Ascorbic acid
Soft drinks
Ascorbic acid
Fruit juices
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
Amperometry
Amperometry
Amperometry
Amperometry
Chemiluminescence
FAAS
FAAS
FAAS
UV-Vis
UV-Vis
[75]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[108]
[154]
Ascorbic
Ascorbic
Ascorbic
Ascorbic
FIA
FIA
SIA
FIA-BI
UV-Vis
Voltammetry
Voltammetry
UV-Vis
3–50 mg L1
0.025–1.0 mM
5–100 mM
NA
10–1,000 mM
0.2–34.5 mg L1
0.1–50 mg L1
0.4–20 mg L1
1–80 mg L1
2.0 106–
1.0 104 M
0.3–0.8 g L1
3–35 mg L1
NA
5.1–68 mM
Antioxidant capacity
Total redox capacity
ABTSd+ assay
ABTSd+ assay
DPPHd assay
Folin–Ciocalteu
reducing capacity
Xanthine oxidase
inhibitory activity
acid
acid
acid
acid
Fruit
Fruit
Fruit
Fruit
juices
juices
juices
juices
[47]
[137]
[155]
[156]
[157]
Ildikó V. Tóth et al.
Matrix
0.1–8.0 mg L1
0.6–6.0 mM
[102]
[158]
MPFS
FIA
FIA
FIA
FIA
FIA
Chemiluminescence
UV-Vis
Potentiometry
Potentiometry
Amperometry
Fluorimetry
r11 mM
NA
1 104–1 101 M
1 103–1 101 M
r20 mM
1 106–1 104 M
[159]
[160]
[161]
[162]
[163]
[164]
FIA
Fluorimetry
1 106–2 104 M
[164]
FIA
UV-Vis
NA
[160]
Sulfur dioxide
Sulfur dioxide
Sulfite
Sulfite
Sulfur dioxide
Fruit
Fruit
Fruit
Fruit
juices
juices
juices
juices
FIA
FIA
FIA
FIA
Amperometry
Amperometry
Conductimetry
UV-Vis
0.25–15 mg L1
20–100 mM
1.0–500 mg L1
1–200 mg L1
[75]
[73]
[77]
[79]
Fruit juices
Fruit juice
Tomato juice
Fruit juices, soft
drinks
Soft drink
Fruit juices
Fruit juices, soft
drinks
Fruit juices, soft
drinks
Fruit juices
FIA
FIA
FIA
FIA
Amperometry
Amperometry
Amperometry
Amperometry
3–25 mM
NA
r100 mM
r12.0 103 M
[165]
[166]
[163]
[167]
FIA
SIA
SIA
Chemiluminescence
Voltammetry
Chemiluminescence
0.0003–0.05 mM
NA
1 105–1 103 M
[132]
[156]
[168]
MSFIA
Chemiluminescence
0.090–2.7 mg L1
[169]
MSFIA
Chemiluminescence
2.5 106–1 103 M
[170]
Ascorbic acid
Benzoic acid
Citrate
Isocitrate
Lactate
D-malate
L-malate
Sugars
Fructose
Glucose
Glucose
Glucose
Glucose
Glucose
Glucose
Glucose
Glucose
523
UV-Vis
UV-Vis
Food, Beverages and Agricultural Applications
FIA-BI
MCFA
Sorbic acid
Fruit juices
Fruit juices, soft
drinks
Fruit juices
Orange juice
Fruit juices
Fruit juices
Tomato juice
Fruit juices, soft
drinks
Fruit juices, soft
drinks
Orange juice
Ascorbic acid
Ascorbic acid
524
Analyte
Matrix
Flow mode
Detection system
Working range
Reference
Sucrose
Sucrose
Fruit juices
Fruit juices
FIA
FIA
Amperometry
Amperometry
NA
1–12 mM
[166]
[165]
Others
Acidity
Fruit juices
SIA
UV-Vis
[171]
Fruit juices
Fruit juices, soft
drinks
Fruit juices, soft
drinks
SIA-LOV
MCFA
UV-Vis
Potentiometry
0.2–1.0% (w/v)
0.5–2.5% (w/v)
0.21.2% (w/v)
NA
FIA
Amperometry
Atrazine
Bitterness
Orange juice
Coffee
FIA
FIA
Boron
Grape juice
MCFA
Cadmium
Cadmium
Orange juice
Orange juice
FIA
FIA
Chemiluminescence
Piezoelectric
microbalance
Piezoelectric
microbalance
ET-AAS
CV-AAS
Acidity
Acidity
Artificial sweeteners
(acesulfame-K,
cyclamate,
saccharine)
[172]
[136]
3–30 mM (cyclamic
acid)
1–10 mM
(acesulfame-K)
0.3–3.5 mM (saccharin)
0.014–1.120 mg L1
NA
[173]
NA
[97]
r300 ng L1
r7 mg L1
[66]
[65]
[174]
[52]
Ildikó V. Tóth et al.
Table 2 (Continued )
10–300 mg L1
[137]
1–16 mg L1
15.0–150 mg L1
NA
NA
[175]
[176]
[177]
[54]
0.1 104–
2.5 104 M
0.03–1.0 mg L1
[178]
2.0–20.0 mg L1
5.0–50 mg L1
0.001–0.01 M
[176]
[176]
[179]
UV-Vis
Mass spectrometry
0.1–1.5 U mL1
NA
[180]
[181]
UV-Vis
Anodic differential pulse
voltammetry
UV-Vis
1–12 mg L1
3 107–1 105 M
[175]
[182]
NA
[105]
Soft drinks
FIA
Caffeine
Calcium
Cations
‘‘Classification’’
Cocoa, soft drinks, tea
Coconut water
Fruit juices
Orange juice, soft
drinks
Tea
FIA
SIA
FIA
FIA
Evaporative light
scattering detector
UV-Vis
UV-Vis
IC-conductivity detector
Potentiometry
FIA
Amperometry
Infusions, tea, tomato
juice
Coconut water
Coconut water
Apple juice
FIA
SIA
SIA
FIA
Adsorptive stripping
voltammetry
UV-Vis
UV-Vis
UV-Vis
Fruit juices
Grape juice
FIA
FIA
Cocoa, soft drinks, tea
Fruit juices
FIA
FIA
Soft drinks
FIA
Flavonoids
Flavonols (total)
Iron
Magnesium
Organophosphate
pesticides
Pectinesterase activity
Proanthocyanidins
oligomers
Theobromine
Tin
Zinc
Note: NA, not given/not available.
[120]
Food, Beverages and Agricultural Applications
Caffeine
525
526
Table 3 Some of the analytical features of flow methods for fruits and vegetables
Matrix
Flow mode
Detection
Working range or LOD
Reference
Pesticides
Bitertanol
Carbamate
Carbaryl
Carbaryl
Fruit, banana
Vegetables
Vegetables
Vegetables
MCFA
FIA
FIA
FIA
Fluorimetry
UV-Vis
Chemiluminescence
Chemiluminescence
[189]
[202]
[194]
[196]
Carbaryl
Carbaryl
Fruits
Vegetables
FIA
FIA
ESI(MS/MS)
UV-Vis
Carbofuran
Carbofuran
Fruits, vegetables
Vegetables
MSFA
FIA
Amperometry
Chemiluminescence
Chlorpyrifos
Fruits
FIA
Chemiluminescence
Dimethylarsinic
Dimethoate
Vegetables
Vegetables
FIA
SIA
Fluorimetry
UV-Vis
Diphenylamine
Fruits
MCFA
Fluorimetry
Dichlorvos
Vegetables
FIA
Chemiluminescence
DDVP
2,4-D
Imazalil
Malathion
Malathion
Methamidophos
Fruits
Fruits
Citrus fruits
Grains, vegetables
Fruits
Vegetables
FIA
FIA
FIA
FIA
FIA
FIA
ESI(MS/MS)
ESI(MS/MS)
ESI(MS/MS)
Fluorimetry
ESI(MS/MS)
Fluorimetry
LOD: 0.014 mg kg1
LOD: 3.5–25mg L1
30–100 mg L1
5–100 ng mL1, LOD:
4.9 ng mL1
0.002–5.0 mg g1
LOD: 0.4 ng
LOD: 25 ng
109–107 M
0.06–0.5 mg mL1
LOD: 0.02 mg mL1
0.48–484 ng mL1
LOD: 0.18 ng mL1
LOD: 0.014 mg mL1
0.03–0.5 mg g1
LOD: 0.01 mg g1
0.25–5 mg kg1
LOD: 0.06 mg kg1
0.02–3.1 mg mL1
LOD: 0.008 mg mL1
0.002–5.0 mg g1
0.002–5.0 mg g1
0.2–5 mg mL1
20–2,000 ng mL1
0.002–5.0 mg g1
14–1,400 ng mL1
LOD: 1.7 ng mL1
[192]
[200]
[203]
[195]
[198]
[183]
[201]
[188]
[197]
[192]
[192]
[191]
[185]
[192]
[184]
Ildikó V. Tóth et al.
Analyte
Methylcarbamates
N-methylcarbamate
o-Phenylphenol
Propoxur
Fruits, vegetables
FIA-LC
Fluorimetry
LOD: 3–12 ng g1
[186]
Fruits
Citrus fruits
Vegetables
FIA
FIA
FIA
ESI(MS/MS)
ESI(MS/MS)
UV-Vis
[193]
[191]
[199]
Propoxur
Vegetables
FIA
UV-Vis
Organophosphorus
Organophosphorus
Vegetables, grains
Vegetables
FIA-HPLC
SIA
Fluorimetry
UV-Vis
Organophosphorus
Thiabendazole
Vegetables
Fruits
FIA
MCFA
UV-Vis
Fluorimetry
Thiabendazole
Citrus fruits
FIA
ESI(MS/MS)
0.01–0.7 mg mL1
0.4–10 mg mL1
1–10 mg L1
LOD: 0.15 mg L1
LOD: 0.4 ng
LOD: 25 ng
LOD: 4–12 ng mL1
0.03–0.5 mg g1
LOD: 0.01 mg g1
LOD: 3.5–25 mg L1
0.3–10 mg kg1
LOD: 0.09 mg kg1
0.4–10 mg mL1
Toxins
Aflatoxin B1
Aflatoxin B1
Fumonisin B1
Fumonisin B1
Ochratoxin A
Fruits
Barley, wheat
Corn products
Corn
Barley, wheat
SIA-immuno
FIA
FIA-immuno
FIA-immuno
FIA
UV-Vis
UV-Vis
UV-Vis
UV-Vis
UV-Vis
LOD: 0.2 ng mL1
0.5–10 ng mL1
NA
1–1,000 ng mL1
0.5–10 ng mL1
[215]
[216]
[217]
[218]
[216]
Inorganic anions
Chloride
Nitrite/nitrate
Coconut water
Vegetables
FIA
FIA
Potentiometry
UV-Vis
[219]
[220]
Nitrite/nitrate
Nitrite/nitrate
Vegetables
Vegetables
FIA
FIA
UV-Vis
FAAS
4–1,000 mg L1
0.30–3.00 mg L1
(NO
2)
1.00–10.00 mg L1
(NO
3)
LOD: 2.96 mg
r20 mg L1 (NO
2)
LOD: 0.07 mg L1
r30 mg L1 (NO
3)
0.14 mg L1
[200]
[190]
[201]
[202]
[187]
[221]
[222]
Food, Beverages and Agricultural Applications
[191]
527
528
Table 3 (Continued )
Matrix
Flow mode
Detection
Working range or LOD
Reference
Nitrate
Nitrite
Vegetables
Flour, wheat
FIA
FIA
UV-Vis
Potentiometry
[223]
[224]
Nitrate
Orthophosphate
Vegetables
Cereals
SIA
FIA
UV-Vis
UV-Vis
1.00–10.00 mg L1
1.0 106–
1.0 101 M
1.35–50 mg L1
r196 106 (P) M
Carbohydrates
Fructose
Fruits
FIA
Voltammetry
[227]
Glucose
Fruits
FIA
Voltammetry
Starch
Flour, bread
FIA
UV-Vis
r60 mM, LOD:
1.2 mM
r60 mM, LOD:
1.2 mM
0.05–9 g L1
Organic acids and conjugate ions
Ascorbic acid
Fruits, vegetables
Ascorbic acid
Vegetables
Ascorbic acid
Vegetables
Ascorbic acid
Vegetables
Ascorbic acid
Vegetables, fruits
Oxalic acid
Vegetables
FIA
FIA
FIA
FIA
FIA
FIA
Turbidimetry
Chemiluminescence
FAAS
FAAS
Fluorimetry
UV-Vis
Oxalic acid
Vegetables
FIA
UV-Vis
Oxalate
Vegetables
FIA
Chemiluminescence
Phytic acid
Pyruvate
Plant
Onion
MPFS
FIA
UV-Vis
UV-Vis
LOD: 1 mg mL1
LOD: 1 1013 M
0.1–50 mg L1
0.3–60 mg mL1
LOD: 0.012 mg mL1
0.1–8.0 mg mL1
LOD: 0.04 mg mL1
0.1–8.0 mg mL1
LOD: 0.08 mg mL1
2 106–9.5 105 M
LOD: 0.05 mg mL1
LOD: 1 mg L1
NA
[225]
[226]
[227]
[228]
[204]
[207]
[152]
[205]
[206]
[229]
[230]
[231]
[232]
[233]
Ildikó V. Tóth et al.
Analyte
Metals and metalloids
Aluminium
Arsenic
Boron
Crystallized fruits
Seaweed
Plant
Cadmium
Cadmium
Cadmium
Cadmium
LOD: 0.1–0.8 mg L1
NA
LOD: 0.05 mg mL1
[234]
[235]
[236]
UV-Vis
FAAS
CV-AAS
FAAS
[237]
[238]
[65]
[239]
Cadmium
Copper
Germanium
Gold
Lead
Lead
Lead
Mercury
Molybdenum
Nickel
Nickel
Powdered corn
Plant
Mung bean, kelp
Apple leaves
Vegetables
Powdered corn
Corn
Vegetables
Mung bean, kelp
Plants, flour
Plants
FIA
MCFA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
FIA
UV-Vis
FAAS
UV-Vis
ICP-MS
TS-FF-AAS
UV-Vis
ICP-MS
CV-AAS
UV-Vis
FAAS
UV-Vis
Selenium
Cereals, bakery
products
Apple leaves
Apple leaves
Mung bean, kelp
Apple leaves
Powdered corn
Corn
FIA
HG-GFAAS
5–50 mg L1
LOD: 0.014 mg g1
LOD: 0.02–0.40 mg g1
LOD: 0.014–
0.011 mg g1
0.05–3.0 mg mL1
LOD: 1 ng mL1
NA
LOD: 0.64 pg mL1
5.2–300.0 mg L1
0.05–6.0 mg mL1
NA
LOD: 0.86 mg L1
NA
5–250 mg L1
0.05–0.50 mg L1
LOD: 17 mg L1
LOD: 0.06 mg L1
FIA
FIA
FIA
FIA
FIA
FIA
ICP-MS
ICP-MS
UV-Vis
ICP-MS
UV-Vis
ICP-MS
LOD: 0.82 pg mL1
LOD: 2.24 pg mL1
NA
LOD: 0.05 pg mL1
0.05–2.0 mg mL1
NA
[243]
[243]
[242]
[243]
[240]
[245]
Silver
Tellurium
Tin
Uranium
Zinc
Zinc
[240]
[241]
[242]
[243]
[244]
[240]
[245]
[246]
[242]
[247]
[248]
[249]
Food, Beverages and Agricultural Applications
UV-Vis
HG-AAS
UV-Vis
Vegetables
Vegetables, fruits
Vegetables
Legumes, fruits
MCFA
FIA
Continuous
flow
MCFA
FIA
FIA
FIA
529
530
Analyte
Matrix
Flow mode
Detection
Working range or LOD
Reference
Others
Antioxidant capacity
Antioxidant capacity
Antioxidant capacity
Antioxidant capacity
Formalin
Glucosinolate
Fruits, vegetables
Vegetables
Herbs
Vegetables
Fruits
Vegetables
FIA
FIA
FIA
FIA
FIA
FIA
Amperometry
Amperometry
Amperometry
Chemiluminescence
Amperometry
Amperometry
0.1–0.5 mM
1.0–10 mg L1
NA
NA
LOD: 0.0129 mM
0.005–1.0 mM
LOD: 0.002 mM
NA
LOD: 75 mM
[49]
[208]
[209]
[210]
[250]
[213]
r196 106 (P) M
0.09–45.0 mg mL1
LOD: 0.05 mg mL1
r196 106 (P) M
1.6 ng mL1
[226]
[214]
b-Glucan
myo-inositol
phosphate
Phosphorus (total)
Phylloquinone
Oat
Fruits, legumes
FIA
FIA-CE
Fluorimetry
UV-Vis
Cereals
Vegetables, fruits
FIA
FIA
UV-Vis
Fluorimetry
Phytate
Synephrine
Cereals
Herbs, fruits
FIA
FIA
UV-Vis
Chemiluminescence
Note: NA, not given/not available.
[251]
[212]
[226]
[211]
Ildikó V. Tóth et al.
Table 3 (Continued )
Table 4 Some of the analytical features of flow methods for milk and dairy samples
Analyte
Matrix
Flow mode
Detection
Working range or LOD
Reference
Antibiotics
Gentamicin
Nafcillin
Oxytetracycline
Milk
Milk
Milk
FIA-immuno
FIA
FIA
Amperometry
Phosphorescence
Voltammetry
[254]
[256]
[255]
Streptomycin
Tetracycline
Milk
Milk
FIA
LOV
Chemiluminescence
Chemiluminescence
LOD: 100 mg kg1
LOD: 3.6 107 M
100 ng mL1
200 ng g1
LOD: 5.16 109 M
LOD: 2.0 mg L1
Inorganic anions
Chloride
Chloride
Chloride
Nitrate/nitrite
Nitrite
Milk
Milk
Milk
Dairy
Milk
FIA
SIA
MSFA
SIA
FIA
Potentiometry
Potentiometry
Potentiometry
UV-Vis
Potentiometry
Nitrite
Milk, cheese
FIA
Potentiometry
Milk
Milk
Milk
Milk
Milk
Dairy products
Pasteurized milk,
buttermilk, lowlactose milk
FIA
FIA
FIA
FIA
FIA
FIA
FIA
Amperometry
Amperometry
Amperometry
Amperometry
Amperometry
Amperometry
Amperometry
4–1,000 mg L1
0.01–0.25 M
NA
LOD: 0.15 mg L1
1.0 106–
1.0 101 M
1.0 106–
1.0 101 M
[219]
[281]
[138]
[272]
[273]
LOD: 0.1 mM
0.1–20 mM
LOD: 0.2 mM
LOD: 0.1 mM
0.05–10 mM
LOD: 0.06 mM
1–100 mM
[165]
[277]
[165]
[165]
[277]
[280]
[274]
[224]
Food, Beverages and Agricultural Applications
Sugars
Fructose
Galactose
Galactose
Glucose
Glucose
Glucose
Lactose
[257]
[258]
531
Matrix
Flow mode
Detection
Working range or LOD
Reference
Lactose
Lactose
Cheese whey
Milk and instant
dessert powder
Milk
Milk
Different types of
milk
FIA
FIA
Amperometry
Amperometry
1–30 g L1
LOD: 0.5 mM
[275]
[279]
FIA
FIA
FIA
Amperometry
Amperometry
Amperometry
[165]
[277]
[276]
Milk-based and
sugar candidate
artificial certified
reference
materials (CRMs)
Milk-based and
sugar candidate
artificial CRMs
FIA
UV-Vis
LOD: 0.8 mM
0.2–20 mM
3.0 105–
1.0 103 M
LOD: 9.6 106 M
0.01–0.80% (w/v)
FIA
UV-Vis
0.01–0.80%(w/v)
[278]
MCFA
FIA
HG-AFS
AAS
LOD: 1.67 ng g1
LOD: 0.014 mg g1
[260]
[261]
FIA
FIA
UV-Vis
Electrochemiluminescence
[240]
FIA
FIA
Potentiometry
FAAS
0.05–3.0 mg mL1
8.0 106 to
1.0 104 M
LOD: 2.0 106 M
104–102 M
LOD: 2.5 mg L1
[262]
[263]
[264]
FIA
ICP-MS
LOD: 0.64 pg mL1
[243]
Lactose
Lactose
Lactulose
Monosaccharides
Oligosaccharides
Metals, metalloids
Bismuth
Cadmium
Cadmium
Calcium
Calcium
Chromium (III)
Gold
Milk shakes
Solid and semisolid
milk
Milk powder
Milk
Whole milk
Non-fat milk
powder
Milk powder
[278]
Ildikó V. Tóth et al.
Analyte
532
Table 4 (Continued )
Iron
Iron
Lead
Manganese(II)
Milk powder, infant
formula
Milk
FAAS
LOD: 0.60 mg g1
[265]
Closed-loop
FIA
FIA
FIA
UV-Vis
NA
[266]
UV-Vis
FAAS
0.05–6.0 mg mL1
LOD: 1.1 mg L1
[240]
[264]
MCFA
CV-AFS
LOD: 0.011 ng g1
[267]
FIA
MCFA
MCFA
FIA
FIA
FIA
ICP-MS
HG-AFS
HG-AFS
ICP-MS
ICP-MS
FAAS
LOD:
LOD:
LOD:
LOD:
LOD:
LOD:
FIA
FIA
UV-Vis
ICP
0.05–2.0 mg mL1
Various
[240]
[271]
[252]
[253]
[282]
Others
Aflatoxin M1
Milk
FIA-immuno
Amperometry
Aflatoxin M1
Antioxidant
activity
Antioxidant
activity
Choline
Cheese
Milk
FIA
FIA
Amperometry
Amperometry
20–500 ppt
LOD: 11 ppt
Subnanomolar
NA
Milk
FIA
Amperometry
NA
[283]
Milk
FIA
Potentiometry
[284]
Choline
Milk
FIA
Amperometry
5.0 104–
5.0 103 M
r0.5 mM
Mercury
Silver
Tellurium
Tellurium
Tellurium
Uranium
Zinc
0.82 pg mL1
0.57 ng g1
0.20 ng L1
2.24 pg mL1
0.05 pg mL1
0.3 mg g1
[243]
[269]
[268]
[243]
[243]
[270]
[285]
533
Zinc
Various metals
Milk powder
Non-fat milk
powder
Milk, non-fat milk
powder
Milk powder
Milk
Milk
Milk powder
Milk powder
Milk powder, infant
formula
Milk powder
Powdered milk
Food, Beverages and Agricultural Applications
FIA
534
Analyte
Matrix
Flow mode
Detection
Working range or LOD
Reference
Choline
Milk, milk powder,
soy lecithin
Milk
FIA
Amperometry
NA
[286]
FIA
0.20–0.45% (w/v)
[287]
FIA
FIA
FIA
FIA
Piezoelectric
microbalance
Chemiluminescence
Amperometry
Amperometry
Amperometry
LOD: 0.35 mg mL1
r50 mM
10–180 mM
LOD: 4 mM
[288]
[289]
[290]
[291]
FIA
FIA
SIA
SIA
SIA
Amperometry
UV-Vis
UV-Vis
Conductimetry
UV-Vis
LOD:
LOD:
LOD:
LOD:
LOD:
[280]
[292]
[293]
[294]
[294]
Fat matter
Isoniazid
Lactate
Lactate
Lactate
Lactate
Phosphorus
Phosphorus
Urea
Urea
Milk
Milk and yoghurt
Dairy products
Fermentation
monitor
Dairy products
Milk
Milk
Milk
Milk
Note: NA, not given/not available.
0.1 mM
2 mg L1
2 mg L1
2.6 104 M
2.8 105 M
Ildikó V. Tóth et al.
Table 4 (Continued )
Table 5
Some of the analytical features of flow methods for meat and fish products
Analyte
Matrix
Flow mode
Detection
Working range or LOD
Reference
FIA
UV-Vis
LOD: 0.05 mg L1
[297]
Nitrite/nitrate
Nitrite/nitrate
Frankfurter and
dry sausages
Cured meat
Meat
SIA
FIA
UV-Vis
UV-Vis
[298]
[220]
Nitrite/nitrate
Fish
FIA
UV-Vis
Nitrite
Nitrite
Meat
Sausage
FIA
FIA
UV-Vis
Potentiometry
Nitrite
Sausage
FIA
Potentiometry
Nitrite
Nitrate
Meat
Meat
Continuous flow
FIA
UV-Vis
UV-Vis
LOD: 9 mg L1
LOD: 13 and
20 mg kg1
LOD: 0.01 and
0.025 mg mL1
LOD: 7.5 mg mL1
1.0 106–
1.0 101 M
1.0 106–
1.0 101 M
0.1–50 mg L1
LOD: 2.97 mg
Metals, metalloids
Arsenic
Arsenic
Arsenic
Cadmium
Fish
Fish
Seafood
Meat
FIA
FIA
FIA
FIA
HGAAS
HGAAS
HG-ETAAS
FAAS
Cobalt
Fish and eggs
FIA
Chemiluminescence
Cobalt
Bovine liver, fish,
mussel
Pork liver
Meat
Fish
MSFA
FIA
FIA
FIA
Inorganic anions
Nitrite
[295]
[273]
[224]
[299]
[221]
UV-Vis
FAAS
FAAS
NA
LOD: 0.6 mg g1
LOD: 0.8 mg L1
[242]
[332]
[333]
[330]
[331]
535
[326]
[327]
[328]
[329]
UV-Vis
LOD: 045 mg g1
LOD 0.34 mg L1
LOD 72.1 ng L1
LOD: 0.014 mg
60 mg1
10 fg mL1 to
50 pg mL1
LOD: 1.66 ng L1
Food, Beverages and Agricultural Applications
Germanium
Iron
Lead
[296]
536
Table 5 (Continued )
Matrix
Flow mode
Detection
Working range or LOD
Reference
Lead
Mercury
Mercury
Mercury
Mercury
Mercury
Mercury
Mercury
Mercury
Mercury
Mercury
Molybdenum
Selenium
Selenium
Tin
Zinc
Various metals
FIA
MCFA
FIA
MSFIA
FIA
FIA-HPLC
FIA-LC
FIA
FIA
FIA
SIA
FIA
FIA
FIA
FIA
FIA
FIA
FAAS
CVAAS
CVAAS
CVAAS
VGAAS
UV
ETAS
CVAAS
CVAAS
CVAAS
CVAAS
UV-Vis
Amperometry
HGAAS
UV-Vis
FAAS
ICP
LOD: 1.0 mg L1
LOD: 4.8 mg kg1
LOD: 4–26 ng g1
LOD: 5 ng L1
LOQ: 55 ng g1
LOD: 10–25 ng g1
LOD: 6.8 ng L1
LOD: 57 ng g1
LOQ: 0.86 mg L1
NA
LOD: 0.46 mg L1
NA
LOD: 6 mg L1
LOD: 10 mg L1
NA
LOD: 0.6 mg g1
Various
[334]
[309]
[308]
[307]
[306]
[305]
[304]
[303]
[246]
[335]
[302]
[242]
[336]
[337]
[242]
[338]
[271]
Various metals
Seafood
Fish
Fish
Fish
Fish
Seafood
Fish
Fish
Fish, seafood
Seafood
Fish
Pork liver
Fish
Dry fish
Pork liver
Meat
Bovine liver,
mussel tissue
Fish liver
FIA
ETV-ICP-MS
Various
[339]
Quality indicators
Agmatine
Biogenic amines
Histamine
Histamine
Histamine
Histidine
Putrescine
Trimethylamine
Fish
Fish, meat sausage
Fish
Fish
Fish
Fish
Fish
Fish
FIA
FIA-CE
FIA
FIA
FIA
FIA
FIA
FIA
Amperometry
Amperometry
Amperometry
Fluorimetry
Amperometry
Chemiluminescence
Amperometry
Amperometry
LOD: 0.005 mM
LOD: 0.2–0.6 mg mL1
LOD: 100 pmol
LOD: 0.8 mg kg1
LOD: 2.2 mM
LOD: 0.01 mM
LOD: 5 mM
1.0–50.0 mM
[314]
[322]
[310]
[311]
[312]
[340]
[313]
[315]
Ildikó V. Tóth et al.
Analyte
Escherichia coli O15
Others
Nitrosamine
Nitrosodimethylamine
Oxytetracycline
Tetracycline
Seafood
Fish
Fish, hake
Fish sauce
Fish
Fish, hake
FIA
FIA
FIA
FIA
FIA
FIA
Potentiometry
UV-Vis
UV-Vis
UV-Vis
UV-Vis
UV-Vis
LOD: 0.05 mg mL1
NA
0.3–7 mg N L1
50–200 mM (N)
NA
1.4–14 mg N L1
[316]
[341]
[318]
[317]
[342]
[318]
Fish sauce
FIA
UV-Vis
50–500 mM (N)
[317]
Fish
FIA
UV-Vis
NA
[342]
Fish
Meat
Meat
FIA
FIA
FIA
Amperometry
Amperometry
Amperometry
LOD: 2–3 107 M
NA
2 106–2 103 M
[321]
[320]
[343]
Poultry
FIA
Amperometry
105 CFU mL1
[324]
Poultry
FIA
Piezoelectric microbalance
[323]
Poultry
FIA
Amperometry
107–109 CFU mL1 or
106–1,010 CFU
mL1
LOD: 6 102 cell
mL1
Cured meat
Cured meat
FIA
FIA
UV-Vis
Chemiluminescence
0.8–2,000 ng mL1
LOD: 0.29 ng mL1
[301]
[300]
Eggs
Fish
FIA
FIA
Voltammetry
Chemiluminescence
NA
4 109–
4 107 g mL1
[255]
[344]
537
Note: NA, not given/not available.
[325]
Food, Beverages and Agricultural Applications
Trimethylamine
Trimethylamine
Trimethylamine
Trimethylamine
Trimethylamine
Total volatile basic
nitrogen
Total volatile basic
nitrogen
Total volatile basic
nitrogen
‘‘Freshness’’
‘‘Freshness’’
‘‘Freshness’’
(hypoxantine/
polyamines)
Salmonella
typhimurium
S. typhimurium
538
Table 6 Some of the analytical features of flow methods for food analysis, miscellaneous food products
Analyte
Flow mode
Detection
Application range or
LOD
Reference
Sugars
Monosaccharides/
oligosaccharides
Fructose
Glucose
Honey, syrups
FIA
UV-Vis
0.01–0.80% (w/v)
[278]
Syrup
Honey
MPFS
FIA
UV-Vis
Chemiluminescence
[378]
[132]
Glucose
Glucose
Glucose
Oily food
Syrup
Honey
FIA
MPFS
SIA
Amperometry
UV-Vis
Chemiluminescence
Glucose
Honey
SIA/FIA
Chemiluminescence
0.50–2.00% (w/v)
3 104–
5 102 mM
0–1.0 mM
0.50–2.00% (w/v)
1 105–
1 103 M, LOD:
1 106 M
0.01–1 mM, LOD:
4 mM
FIA
HG-AAS
LOD: 0.068 mg kg1
[380]
FIA
HG-AAS
LOD: 0.15 mg kg1
[380]
Boron
Foods (daily food
intake)
Foods (daily food
intake)
Vinegar
MCFA
NA
[97]
Cadmium
Cobalt
Copper
Honey
Honey
Vegetable oil
FIA
FIA
FIA
Piezoelectric
microbalance
FAAS
FAAS
FAAS
LOD: 0.5 ng g1
LOD: 0.18 mg L1
NA
[356]
[357]
[348]
Metals and metalloids
Arsenic
Antimony
[379]
[378]
[168]
[355]
Ildikó V. Tóth et al.
Matrix
Iron
Lead
Selenium
SIA
FIA
FIA
UV-Vis
FAAS
HG-AAS
LOD: 0.31 mg
LOD: 350 ng g1
LOD: 0.060 mg kg1
[349]
[369]
[380]
Zinc
Various metals
Edible oil
Sweeteners
Foods (daily food
intake)
Vegetable oil
Oil
FIA
FIA
FAAS
ICP-MS, FAAS
NA
Various
[348]
[347]
Artificial sweeteners
Acesulfame-K
Sweetener
FIA
UV-Vis
[374]
Acesulfame-K
Aspartame
Sweetener tablets
Sweeteners
FIA
FIA
Amperometry
UV-Vis
Aspartame
FIA
UV-Vis
FIA
UV-Vis
10–200 mg mL1
[372]
Aspartame
Low-calorie dietary
products
Low-calorie dietary
products
Sweetener tablets
40–100 mg mL1,
LOD:
11.9 mg mL1
1–10 mM
10–80 mg mL1,
LOD: 4 mg mL1
5–600 mg mL1
SIA
Chemiluminescence
[373]
Aspartame
Sweetener
FIA
UV-Vis
Cyclamate
Sweetener
FIA
Turbidimetry
Cyclamate
Sweetener
FIA
UV-Vis
Cyclamate
Sweetener tablets
FIA
Amperometry
r350 mg L1, LOD:
2.16 mg L1
10–100 mg mL1,
LOD:
5.65 mg mL1
0.015–0.120%(w/v),
LOD: 0.006%
(w/v)
r3.0 mM, LOD:
30 mM
3–30 mM
[371]
[374]
[375]
[376]
Food, Beverages and Agricultural Applications
Aspartame
[173]
[370]
[173]
539
540
Table 6 (Continued )
Matrix
Flow mode
Detection
Application range or
LOD
Reference
Saccharine
Saccharine
Sweetener tablets
Low-calorie dietary
products
FIA
FIA
Amperometry
UV-Vis
0.3–3.5 mM
10.0–200.0 mg mL1
[173]
[372]
Vinegar
Sweetener
Honey
FIA
FIA
FIA
Conductimetry
UV-Vis
UV-Vis
[77]
[377]
[42]
Honey
FIA
Amperometry
0.010–0.100 M
r103 M
4–250 mM, LOD:
1.3 mM
NA
Honey, propolis,
royal jelly
Sweets
Bread
FIA
Amperometry
NA
[359]
FIA-BI
FIA
UV-Vis
UV-Vis
[157]
[345]
Chocolate
Soup
Pasta
Lard, butter, pasta
Sweetener
Dehydrated broths
FIA
FIA
FIA
FIA
FIA
FIA
UV-Vis
Chemiluminescence
UV-Vis
Amperometry
UV-Vis
UV-Vis
5.1–68 mM
2 106–
2.1 105 M,
LOD: 8 107 M
1–16 mg L1
0.02–0.12 (OD600)
0–2 mg mL1
0.1–0.5 mM
r103 M
0.342–1.368 mg
100 mL1, LOD:
0.185 mg
100 mL1
Others
Acetic acid
Aniline
Antioxidant
activity
Antioxidant
activity
Antioxidant
activity
Ascorbic acid
Bromate
Caffeine
Catalase activity
Cholesterol
Cholesterol
Cyclohexylamine
Creatinine
[358]
[175]
[365]
[361]
[346]
[377]
[366]
Ildikó V. Tóth et al.
Analyte
Glucose
Honey, vinegars
Soup
FIA
FIA
Fluorimetry
Amperometry
Hydroxyl radicals
Oil
FIA
Fluorimetry
Iodine value
Lipid
hydroperoxide
Lysine
Olive oil
Oil
FIA
FIA
UV-Vis
Chemiluminescence
106–1.6 104 M
0.1–15.5 mM, LOD:
0.08 mM
2.6 107–
4 105 M, LOD:
7.91 108 M
9–125 IV
NA
Hydrolysate food
samples
Tomato paste, baby
food
Soup-formulas
Food seasonings
FIA
Amperometry
1 103–5 105 M
[381]
FIA
Amperometry
0–0.1 nM
[382]
FIA
FIA
Potentiometry
Amperometry
[383]
[362]
Soup
FIA
UV-Vis
2.5–75 mM
10–160 mg L1,
LOD: 1.7 mg L1
r140 mM, LOD:
1 mM
Monosodium
glutamate
Oligomeric
proanthocyanidin
Soup
FIA
Amperometry
[368]
Health foods
FIA
UV-Vis
Parabens
Propyl gallate
Soysauce
Dehydrated broth
bar, olive oil
FIA
FIA
Chemiluminescence
Amperometry
0.1–15.5 mM, LOD:
0.08 mM
0.010–
0.20 mg mL1,
LOD: 5 mg mL1
Various
9 107–
1.1 106 M
D-gluconate
L-lactate
[350]
[351]
[352]
[367]
[384]
[363]
[353]
Food, Beverages and Agricultural Applications
L-glutamate
Monosodium
glutamate
Monosodium
glutamate
[109]
[368]
541
542
Analyte
Matrix
Flow mode
Detection
Application range or
LOD
Reference
P4R and N2N
(dyes)
Sweets
FIA
Solid-phase UV-Vis
[385]
Synthetic
antioxidants
Sudan I
Tetracycline
Fat foods
UV-Vis
Hot chilli sauce
Honey
Continuous
flow
FIA
FIA-HPLC
0.30–20 mg L1
(P4R)
0.02–3.0 mg L1
(N2N)
10–300 mg mL1
Chemiluminescence
Chemiluminescence
Chocolate
Oil
FIA
FIA
Oily food
FIA
Theobromine
Total lipid
hydroperoxides
Water
Note: NA, not given/not available.
[386]
[364]
[360]
UV-Vis
Fluorimetry
LOD: 3 pg mL1
LOD: 0.9–
5.0 ng mL1
1–12 mg L1
NA
Amperometry
NA (0–65%)
[387]
[175]
[354]
Ildikó V. Tóth et al.
Table 6 (Continued )
Food, Beverages and Agricultural Applications
543
The analysis of alcoholic beverages can be a cumbersome process because
ethanol can be a serious interferent in almost all detection systems. Calibration
using standards containing ethanol is a frequent solution to this problem [36,37],
but this then requires that the application be devised for a specific matrix,
considering that beer, wine or spirits have very different ethanol content. The
ethanol interference may be circumvented by performing a ‘‘blank’’ measurement, as suggested by Corbo et al. [38] for the amperometric determination of
sulfite. Since ethanol is electroactive and also permeates through the gasdiffusion membrane, the pH of the donor stream was changed to provide an
analytical signal proportional to the ethanol present in the wine samples, which
was then subtracted from the signal corresponding to sulfite plus ethanol.
Another strategy suggested by Iida et al. [39] involved the application of a
hollow-fibre membrane containing a non-porous layer at its outer surface for
selective diffusion of carbon dioxide in the enzymatic determination of urea.
The analytes presented in Tables 1 and 2 illustrate the dual role that flowbased methods have in food analysis. These include flow systems devised for
routine analysis, based on well-established methods. However, flow systems
were also applied to novel analytical tasks, such as the determination of analytes
related to sensory properties or to characteristics that contribute to a value-added
product.
Antioxidants belong to this last class of compounds, and there has recently
been an increased demand for methods to assess the ‘‘antioxidant properties’’ or
the ‘‘antioxidant capacity’’ of food products [40]. These methods include the
evaluation of either the generic ‘‘reduction’’ capacity, or the determination of a
specific analyte (ascorbic acid, vitamin E) or class of analytes (phenolic
compounds, carotenoids). The most common of these methods is based on the
scavenging of a coloured radical, namely 2,2u-azinobis(3-ethylbenzothiazoline-6sulfonic acid) (ABTSd+) or 2,2-diphenyl-1-picrylhydrazyl (DPPHd). The automation of these assays is definitely advantageous, as reported by several authors
[41–49], because strict control of reaction time and media composition are
necessary to achieve repeatable and comparable results. Labrinea and Georgiu
[42] reported the use of gradient calibration to perform automated dilution of
concentrated samples and to obtain analytical measurements at different assay
times. In this way, information concerning the kinetics of ABTSd+ bleaching was
obtained after a single injection. For the same assay, studies concerning the
influence of pH (5.4, 7.4 or unbuffered) were carried out in an SIA system [43].
A thorough mixture between food samples, buffer and ABTSd+ was attained in a
mixing chamber placed in a lateral port of the selection valve. Comparing the two
endpoint batch method protocols, the DPPHd assay takes considerably more time
(up to 2 h) than the ABTSd+ assay (10–30 min). In the multisyringe flow-injection
analysis (MSFIA) system proposed by Magalhães et al., a stopped flow approach
was adopted, and the data collected within the first 3 min of reaction was used to
calculate the total DPPHd consumption for samples containing slow reacting
compounds [45]. The results were comparable to those attained using the
endpoint batch method, with a considerable reduction of the analysis time. The
multi-channel features of the selection valve used in SIA were exploited to
544
Ildikó V. Tóth et al.
implement two complementary determinations. The reagent reservoirs (ABTSd+,
H2O2 and homovanylic acid) and detectors (spectrophotometer and fluorimeter)
were connected to different lateral ports of the selection valve. In accordance with
the routine protocol, the scavenging activity was measured against either ABTSd+
or H2O2 [44].
The application of flow systems to the determination of parameters that can
be correlated to astringency [50,51], bitterness [52], body and smoothness [53] has
also been reported. These reports illustrate how useful flow injection-based
techniques are for these types of studies. The functioning of an FIA manifold can
mimic that which occurs in the mouth, where the sensory receptors (similar to the
detector in a flow system) are constantly washed by saliva (carrier). The sensory
stimulus is equivalent to the sample plug dispersed in the carrier in a flowinjection system, which has a transient effect on the receptor because it is
continuously rinsed by fluids. For example, Kaneda and co-workers applied a
lipid-coated quartz crystal microbalance connected to a flow-injection system to
simulate and study the electrostatic and/or hydrophobic interactions of the beer
taste components with the tongue and throat surfaces [50,52,53]. The results
obtained showed a good correlation with those obtained from a sensory
evaluation panel. The implementation of a potentiometric sensor array in an
FIA system to distinguish simple tastes and to classify food samples has also
been described [54]. Furthermore, systems for determination of specific analytes
that contribute to the typical sensory characteristics of wine and beers have been
proposed. Worthy of mention are manifolds for the determination of diacetyl
[55–57], a strong smelling compound that evokes a buttery aroma, and glycerol
[31,58–63] that is used to confer smoothness to wine.
New flow-based methodologies for routine monitoring of food safety aspects
should be highlighted. These include systems proposed for the determination of
heavy metals, such as cadmium [64–67] and lead [64,68–72]. In almost all of these
proposed manifolds, in-manifold complexation of the target metal, followed by
in-manifold solid-phase extraction, elution and detection by atomic or emission
spectrometry was adopted. Chuachuad and Tyson adopted another strategy by
using immobilized tetrahydroborate to generate volatile species of cadmium [65]
or lead [71], which were further determined by chemical vapour–atomic
absorption spectrometry.
Sulfur dioxide, added as a preservative to wine and fruit juices, may cause
allergic response in susceptible subjects. Besides the mandatory indication of
its presence in many countries, its levels are defined by legislation [3].
Several automatic systems have been proposed for determination of this analyte
[38,73–81], with most incorporating some sort of gas diffusion device to allow the
separation of SO2 from the food matrix before direct electrochemical detection
[38,73,75,77] or before further derivatization and spectrophotometric detection
[78–81].
The automatic assessment of ethyl carbamate precursors has also been
described. High levels of urea and assimilable nitrogen at the initial stages of
wine production are related to the content of potentially carcinogenic ethyl
carbamate in the final product [82]. Therefore, Gonzalez-Rodriguez et al.
Food, Beverages and Agricultural Applications
545
proposed an FI–pervaporation system for monitoring urea and ammonia [29].
The automatic determination of assimilable N using a similar strategy [30] or an
SIA system [34] is also possible.
The application of FIA as a sample-handling tool is highlighted in the
determination of biogenic amines by capillary electrophoresis–electrospray mass
spectrometry [83]. In this case an FIA system was used to perform in-manifold
filtration and exact volume delivery to vials placed at an automatic sampler.
3. APPLICATIONS: PLANTS AND VEGETABLES
Modern agricultural economies are highly dependent on the use of pesticides. A
pesticide is defined as any substance or mixture of substances intended for
preventing, destroying, repelling or mitigating any pest. Pests can be insects,
mice and other animals, unwanted plants (weeds), fungi or other microorganisms. Substances or mixture of substances intended for use as a plant regulator,
defoliant or desiccant can also be considered as pesticides. Therefore, a large and
ever increasing variety of more than 1,000 of these compounds can be applied to
agricultural crops during plant development, post-harvest processing and
transport. These compounds might potentially remain in foodstuffs, resulting
in an elevated risk, especially in freshly consumed fruits and vegetables.
Regulatory bodies [1–3] have established various maximum residue limits for
pesticides in foodstuffs. The determination of these residue levels in vegetables
and fruits is a difficult task, not only because of the low target concentrations, but
also due to complexity and variety of the samples. For these reasons analytical
procedures with high selectivity and sensitivity are required. In the last few years
various analytical methods based on flow techniques have been developed for
these purposes (Table 3). Flow systems exploiting the selectivity and sensitivity of
fluorimetric detection for the determination of pesticides have been developed
[183–189], with one even incorporating an automated separation of organophosphorus pesticides by high-performance liquid chromatography (HPLC) followed by flow-injection post-column derivatization [190]. Tandem mass
spectrometry (MS/MS) has been used in conjunction with flow injection methods
to solve various analytical problems in biological samples. The hyphenation with
flow injection enables both the quantitative and qualitative analysis of certain
analytes and complex mixtures with little or no clean-up procedure. The first of
the tandem MS detectors is used to detect separated compounds from all of the
ionized compounds based on mass differences, while the second is used for
detection of the target analyte, representing an advantageous alternative for
analysis of pesticide residues [191–193]. Other flow methods can make use of
chemiluminometric [194–198], spectrophotometric [199–202] or electrochemical
[203] detection systems.
The advantages associated with the consumption of vegetables and fruits are
well-known. The nutritional quality of these products is of great interest to
consumers and producers, and the assessment of nutritional parameters using
flow methods has received increased attention since the first applications of these
546
Ildikó V. Tóth et al.
methods were published. These parameters continue to be the centre of attention
as demonstrated by the various papers published on the determination of
ascorbic acid [152,204–207], total antioxidant capacity [49,208–210] and other
components with specific nutritional or health benefits [211–214]. The flow
methods developed for the determination of ascorbic acid were based on the
reducing capacity of the analyte [152,205,206], with detection limits of as little as
1013 M being achieved by signal enhancement of the chemiluminescence
reaction of cerium(IV) with Rhodamine B [207]. The antioxidant capacity assays,
described earlier for the beverage samples, in many cases can be applied with
little modification to the analysis of fruits and vegetable extracts. Besides the
nutritional value of vegetable and fruit products, their inherent ability to
accumulate potentially harmful substances such as nitrates and heavy metals has
also received considerable attention and this is reflected in the number of papers
dealing with these analytes.
4. APPLICATIONS: MILK AND DAIRY PRODUCTS
The aflatoxins are a group of structurally related toxic compounds produced by
certain strains of fungi. Under favourable conditions of temperature and
humidity, these fungi grow on certain foods and feeds, resulting in the production of aflatoxins. These toxins can be found in combination in various foods and
feeds in various proportions; aflatoxin B1, however, is usually predominant and
is the most toxic [3]. Aflatoxin M1 (AFM1) is the major metabolic product of
aflatoxin B1 in animals and is usually excreted into the milk of dairy cattle and
other mammalian species that have consumed aflatoxin-contaminated food or
feed. The food and drug administration (FDA) has set the action levels for
aflatoxins at 20 mg kg1 in all food products designated for humans, other than
milk; in milk this level is lowered to 0.5 mg kg1. However the current maximum
level set by the European Union is 0.05 mg kg1 for AFM1 in milk [2,3]. Thus,
concerns about sampling, sample preparation and analysis still remain in focus
when determination of aflatoxins at the parts-per-billion level is to be reached.
Immunochemical flow methods have been developed on the basis of the
highly specific affinities of monoclonal or polyclonal antibodies for aflatoxins
assays. Badea et al. [252] have developed a flow-injection immunoassay system
for the determination of AFM1 in raw milk, establishing a dynamic concentration
range between 20 and 500 ppt AFM1, with a detection limit of 11 ppt. Siontorou
et al. [253] describe electrochemical flow-injection monitoring of AFM1 in cheese
samples using filter-supported bilayer lipid membrane sensors with incorporated
deoxyribonucleic acid (DNA). Subnanomolar detectable toxin concentrations
were reached, with a sampling rate of four samples per minute.
Another group of key analytes of interest in monitoring food safety is the
antimicrobial agents. These agents can be routinely administered to foodproducing animals to promote growth and for therapeutic and prophylactic
reasons. This practice can lead to the introduction of such agents into the human
food chain resulting in significant health risks, such as the development of
Food, Beverages and Agricultural Applications
547
resistant bacterial populations and allergic responses in sensitive individuals. In
addition, the milk industry can be subjected to significant losses deriving from
the inhibitory effects of drug residues on the culturing/fermentation processes.
As a result, regulatory authorities have stipulated maximum residue/safe
tolerance levels (MRLs/STLs) in foods of animal origin [2,3] in the range of
4–200 mg kg1 for the different type of antibiotics. Analytical methods for
successful routine analysis must not only meet the required limits of detections
but also provide low-cost and robust alternatives to current methods. Various
flow methodologies were recently developed for different antibiotics in milk
samples [254–258], providing adequate analytical figures for the targeted
antimicrobial agents.
Other analytes measured by flow techniques in the area of milk and dairy
products are the metal ions [240,243,259–271], nitrate and nitrite [224,272,273] and
different carbohydrates [165,274–280]. The major effort in this area of research
during the last decade has been focused on performing all the necessary sample
pretreatment steps within the flow method. Table 4 summarizes some of the
analytical features of these methods.
5. APPLICATIONS: MEAT AND FISH PRODUCTS
Of the flow methods developed in the last years for analysis of meat and fish
products, the determination of nitrate and nitrite is still one of the most common
[220,221,224,295–299], probably due to the health concerns related to the
formation of nitrosamine and its carcinogenity. Furthermore in the last decade,
flow methods have also been developed not only for the precursors (nitrite and
nitrate), but also for the nitrosamine content of food samples [300,301].
As it is pointed out in the annual reviews of atomic spectrometry, mercury
continues to be the most common analyte to be determined by chemical vapour
generation, and this is certainly the case in the area of food-related flow analysis.
Mercury is an analyte with great importance due to its toxicity and its
bioaccumulation in animal tissues. This, and the fact that chemical vapour
generation is most efficiently carried out using flow systems, explains the large
numbers of the articles dealing with this analyte [246,302–309]. Similar to the area
of environmental geochemistry, the speciation of the different forms of mercury
is gaining importance in food analysis, sometimes in the form of hyphenated
FIA–HPLC systems [305].
Evaluation of freshness and quality of meat and fish products is based on
sensorial evaluation. However these assays and protocols are complex and time
consuming, involving a trained group of tasters and consequent elevated costs.
Therefore the emerging area of development and application of the so called
electronic tongue and nose – biosensor devices for recognition (identification,
classification and discrimination), quantitative analysis and assessment of taste
and flavour components – has been receiving increased attention. Of these
components, biogenic amines are considered as useful biomarkers of food
freshness. Flow methodologies have been developed for the quantification of
548
Ildikó V. Tóth et al.
histamine [310–312], putrescine [313], agmatine [314] trimethylamine [315–318]
content or for the assessment of a so-called freshness factor that incorporates
the degenerative compounds of adenosine triphosphate (ATP) [319–321]. The
developed flow procedures (Table 5) are simple in configuration and can
make use of electrochemical, fluorescence, chemiluminescence detection methods, with good sensitivity, selectivity and precision, even allowing the direct
introduction of the solid samples [322]. Biosensors have also been implemented
in flow-injection systems with the aim to detect food pathogens such as
Salmonella typhimurium and Escherichia coli. These methods are based on the
separation of the target microorganism from the sample, followed by further
concentration based on its highly specific reaction with immobilized antibodies.
Afterwards, the detection is carried out on a piezoelectric cell [323] or
amperometrically [324,325].
6. MISCELLANEOUS FOOD PRODUCTS
The application to food products that do not fall into the previous sections are
presented in Table 6. These include the analysis of bread [345], butter [346],
chocolate [175], edible oil [347–354], honey [42,109,132,168,278,355–360], lard [346],
pasta [346,361], seasonings [362–364], soup [362,365–368], sweeteners [173,
369–377], syrup [278,378] and vinegar [77,97,109]. In general, these flow systems
were devised for other matrices and are discussed in the previous sections.
ABBREVIATIONS
AFS
ATP
CE
CRM
CV-AAS
DNA
ESI-MS
ET-AAS
ETV-ICP-MS
FAAS
FDA
FIA
FTIR
HG-AAS
HPLC
IC
ICP-MS
ICP-OES
Atomic fluorescence spectrometry
Adenosine triphosphate
Capillary electrophoresis
Certified reference material
Cold vapour atomic absorption spectrometry
Deoxyribonucleic acid
Electrospray ionization mass spectrometry
Electrothermal atomic absorption spectrometry
Electrothermal vapourization inductively coupled plasma mass
spectrometry
Flame atomic absorption spectrometry
Food and drug administration
Flow-injection analysis
Fourier transform infra-red spectrometry
Hydride-generation atomic absorption spectrometry
High-performance liquid chromatography
Ion chromatography
Inductively coupled plasma mass spectrometry
Inductively coupled plasma optical emission spectrometry
Food, Beverages and Agricultural Applications
IR
MCFA
MPFS
MS
MSFA
MSFIA
NMR
SIA
TS-FF-AAS
UV-Vis
549
Infra-red spectrometry
Multicommuted flow analysis
Multipumping flow system
Mass spectrometry
Monosegmented flow analysis
Multisyringe flow-injection analysis
Nuclear magnetic resonance
Sequential injection analysis
Thermospray flame furnace atomic absorption spectrometry
Molecular absorption spectrometry
REFERENCES
1 U.S. Environmental Protection Agency, Food Quality Protection Act (FQPA) of 1996, http://
www.epa.gov/pesticides/regulating/laws/fqpa/
2 U.S. Food and Drug Administration, Center for Food Safety & Applied Nutrition, Action levels
for poisonous or deleterious substances in human food and animal feed, http://www.cfsan.fda.
gov/list.html.
3 Codex Alimentarius Commission, FAO/WHO Food Standards, Pesticide Residues in Food,
Veterinary Drug Residues in Food, Codex General Standard for Food Additives (GSFA) Online
Database, http://www.codexalimentarius.net/web/index_en.jsp
4 P.S. Francis, S.W. Lewis and K.F. Lim, Trends Anal. Chem., 21 (2002) 389–400.
5 M.D.L. de Castro, J. Gonzalez-Rodriguez and P. Perez-Juan, Food Rev. Int., 21 (2005) 231–265.
6 M.D.L. de Castro and J.L. Luque-Garcia, Anal. Lett., 33 (2000) 963–996.
7 I. Mato, S. Suarez-Luque and J.F. Huidobro, Food Res. Int., 38 (2005) 1175–1188.
8 L.D. Mello and L.T. Kubota, Food Chem., 77 (2002) 237–256.
9 L.A. Terry, S.F. White and L.J. Tigwell, J. Agric. Food Chem., 53 (2005) 1309–1316.
10 M.A. Segundo, J.L.F.C. Lima and A.O.S.S. Rangel, Anal. Chim. Acta, 513 (2004) 3–9.
11 M.A. Segundo and L.M. Magalhaes, Anal. Sci., 22 (2006) 3–8.
12 R. Perez-Olmos, J.C. Soto, N. Zarate, A.N. Araujo, J.L.F.C. Lima and M.L.M.F.S. Saraiva, Food
Chem., 90 (2005) 471–490.
13 G. Hanrahan, F. Dahdouh, K. Clarke and F.A. Gomez, Curr. Anal. Chem., 1 (2005) 321–328.
14 M.C. Yebra-Biurrun, Talanta, 52 (2000) 367–383.
15 M.C. Yebra-Biurrun, Food Addit. Contam., 17 (2000) 733–738.
16 A. Kalman, I. Caelen and J. Svorc, J. AOAC Int., 89 (2006) 819–825.
17 A. Isaac, C. Livingstone, A.J. Wain, R.G. Compton and J. Davis, Trends Anal. Chem., 25 (2006)
589–598.
18 D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins and S. Stricker, Electroanalysis, 12 (2000)
317–325.
19 A.J. Baeumner, Anal. Bioanal. Chem., 377 (2003) 434–445.
20 J. Gilbert and E.A. Vargas, J. Toxicol. Toxin Rev., 22 (2003) 381–422.
21 M.I. Prodromidis and M.I. Karayannis, Electroanalysis, 14 (2002) 241–261.
22 I.P.A. Morais, I.V. Toth and A.O.S.S. Rangel, Spectrosc. Lett., 39 (2006) 547–579.
23 M.D. Marazuela and M.C. Moreno-Bondi, Anal. Bioanal. Chem., 372 (2002) 664–682.
24 G. Palleschi and R. Cubadda, Ital. J. Food Sci., 13 (2001) 137–157.
25 M.D.L. de Castro, J.L. Luque-Garcia and E. Mataix, J. AOAC Int., 86 (2003) 394–399.
26 M.F. Silva, E.S. Cerutti and L.D. Martinez, Microchim. Acta, 155 (2006) 349–364.
27 J. Amador-Hernandez and M.D.L. de Castro, Food Chem., 68 (2000) 387–394.
28 P.L. Buldini, L. Ricci and J.L. Sharma, J. Chromatogr. A, 975 (2002) 47–70.
29 J. Gonzalez-Rodriguez, P. Perez-Juan and M.D.L. de Castro, Anal. Chim. Acta, 471 (2002)
105–111.
30 J. Gonzalez-Rodriguez, P. Perez-Juan and M.D.L. de Castro, Analyst, 127 (2002) 420–423.
550
Ildikó V. Tóth et al.
31 M. Esti, G. Volpe, D. Compagnone, G. Mariotti, D. Moscone and G. Palleschi, Am. J. Enol. Vitic., 54
(2003) 39–45.
32 M. Esti, G. Volpe, L. Micheli, E. Delibato, D. Compagnone, D. Moscone and G. Palleschi, Anal.
Chim. Acta, 513 (2004) 357–364.
33 M.U. Cuadrado, P.M. Perez-Juan, M.D.L. de Castro and M.A. Gomez-Nieto, Anal. Chim. Acta, 553
(2005) 99–104.
34 B. Muik, A. Edelmann, B. Lendl and M.J. Ayora-Canada, Anal. Bioanal. Chem., 374 (2002) 167–172.
35 R.A.S. Lapa, J.L.F.C. Lima and I. Pinto, Food Chem., 81 (2003) 141–146.
36 A.N. Araujo, J.L.F.C. Lima, A.O.S.S. Rangel and M.A. Segundo, Talanta, 52 (2000) 59–66.
37 H. Silva and L. Alvares-Ribeiro, Talanta, 58 (2002) 1311–1318.
38 D. Corbo and M. Bertotti, Anal. Bioanal. Chem., 374 (2002) 416–420.
39 Y. Iida, Y. Suganuma, K. Matsumoto and I. Satoh, Anal. Sci., 22 (2006) 173–176.
40 R.L. Prior, X.L. Wu and K. Schaich, J. Agric. Food Chem., 53 (2005) 4290–4302.
41 N. Pellegrini, D. Del Rio, B. Colombi, M. Bianchi and F. Brighenti, J. Agric. Food Chem., 51 (2003)
260–264.
42 E.P. Labrinea and C.A. Georgiou, J. Agric. Food Chem., 53 (2005) 4341–4346.
43 M.J.R. Lima, I.V. Toth and A.O.S.S. Rangel, Talanta, 68 (2005) 207–213.
44 P.C.A.G. Pinto, M.L.M.F.S. Saraiva, S. Reis and J.L.F.C. Lima, Anal. Chim. Acta, 531 (2005) 25–32.
45 L.M. Magalhaes, M.A. Segundo, S. Reis and J.L.F.C. Lima, Anal. Chim. Acta, 558 (2006) 310–318.
46 J.W. Costin, N.W. Barnett, S.W. Lewis and D.J. McGillivery, Anal. Chim. Acta, 499 (2003) 47–56.
47 L.M. Magalhães, M.A. Segundo, S. Reis, J.L.F.C. Lima and A.O.S.S. Rangel, J. Agric. Food Chem., 54
(2006) 5241–5246.
48 L.K. Shpigun, M.A. Arharova, K.Z. Brainina and A.V. Ivanova, Anal. Chim. Acta, 573 (2006)
419–426.
49 L.H. Lam, K. Sakaguchi, H. Ukeda and M. Sawamura, Anal. Sci., 22 (2006) 105–109.
50 H. Kaneda, M. Takashio, K. Shinotsuka and Y. Okahata, J. Biosci. Bioeng., 92 (2001) 221–226.
51 A. Edelmann and B. Lendl, J. Am. Chem. Soc., 124 (2002) 14741–14747.
52 H. Kaneda, J. Watari, M. Takashio and Y. Okahata, J. Inst. Brew., 109 (2003) 27–33.
53 H. Kaneda, N. Kobayashi, J. Watari, K. Shinotsuka, M. Takashio and Y. Okahata, J. Am. Soc. Brew.
Chem., 60 (2002) 71–76.
54 J. Gallardo, S. Alegret and M. del Valle, Talanta, 66 (2005) 1303–1309.
55 L. Vann and J.D. Sheppard, Trans. ASAE, 48 (2005) 2223–2228.
56 J.A. Rodrigues, A.A. Barros, P.J. Almeida, P.G. Rodrigues and A.G. Fogg, Anal. Chim. Acta, 449
(2001) 119–127.
57 P.G. Rodrigues, J.A. Rodrigues, A.A. Barros, R.A.S. Lapa, J.L.F.C. Lima, J.M.M. Cruz and A.A.
Ferreira, J. Agric. Food Chem., 50 (2002) 3647–3653.
58 M. Niculescu, S. Sigina and E. Csoregi, Anal. Lett., 36 (2003) 1721–1737.
59 E. Mataix and M.D.L. de Castro, Talanta, 51 (2000) 489–496.
60 A.P.G. Gervasio, E.P. Borges, E.A.G. Zagatto, B.F. Reis, R.A.S. Lapa and J.L.F.C. Lima, J. Agric. Food
Chem., 50 (2002) 74–77.
61 M.A. Segundo and A.O.S.S. Rangel, Anal. Chim. Acta, 458 (2002) 131–138.
62 H.M. Oliveira, M.A. Segundo, J.L.F.C. Lima, V. Grassi and E.A.G. Zagatto, J. Agric. Food Chem., 54
(2006) 4136–4140.
63 E.N. Fernandes, M.N. de Campos Moura, J.L.F.C. Lima and B.F. Reis, Microchem. J., 77 (2004)
107–112.
64 A.P. Fernandes, M. de Moraes and J.A.G. Neto, Atom. Spectrosc., 24 (2003) 179–184.
65 W. Chuachuad and J.F. Tyson, J. Anal. At. Spectrom., 20 (2005) 273–281.
66 W. Chuachuad and J.F. Tyson, Can. J. Anal. Sci. Spectrosc., 49 (2004) 362–373.
67 R.F. Lara, R.G. Wuilloud, J.A. Salonia, R.A. Olsina and L.D. Martinez, Fresenius J. Anal. Chem., 371
(2001) 989–993.
68 V.A. Lemos, M. de la Guardia and S.L.C. Ferreira, Talanta, 58 (2002) 475–480.
69 Y. Bakircioglu, S.R. Segade, E.R. Yourd and J.F. Tyson, Anal. Chim. Acta, 485 (2003) 9–18.
70 Y.P. de Pena, B. Paredes, W. Rondon, M. Burguera, J.L. Burguera, C. Rondon, P. Carrero and
T. Capote, Talanta, 64 (2004) 1351–1358.
Food, Beverages and Agricultural Applications
551
71 W. Chuachuad and J.F. Tyson, J. Anal. At. Spectrom., 20 (2005) 282–288.
72 R.G. Wuilloud, A.H. Gonzalez, E.J. Marchevsky, R.A. Olsina and L.D. Martinez, J. AOAC Int., 84
(2001) 1555–1560.
73 D. Lowinsohn, M.V. Alipazaga, N. Coichev and M. Bertotti, Microchim. Acta, 144 (2004) 57–62.
74 G.N. Chen, J.S. Liu, J.P. Duan and H.Q. Chen, Talanta, 53 (2000) 651–660.
75 T.J. Cardwell and M.J. Christophersen, Anal. Chim. Acta, 416 (2000) 105–110.
76 M.V. Alipazaga, L. Kosminsky, N. Coichev and M. Bertotti, Talanta, 57 (2002) 375–381.
77 C.S.T. Araujo, J.L. de Carvalho, D.R. Mota, C.L. de Araujo and N.M.M. Coelho, Food Chem., 92
(2005) 765–770.
78 D. Melo, E.A.G. Zagatto, I.L. Mattos and N. Maniasso, J. Braz. Chem. Soc., 14 (2003) 375–379.
79 J.C.C. Santos and M. Korn, Microchim. Acta, 53 (2006) 87–94.
80 M.A. Segundo and A.O.S.S. Rangel, Anal. Chim. Acta, 27 (2001) 279–286.
81 M.A. Segundo, A.O.S.S. Rangel, A. Cladera and V. Cerda, Analyst, 125 (2000) 1501–1505.
82 P. Ribéreau-Gayon, D. Duboudieu, B. Donèche and A. Lonvaud, Handbook of Enology, Wiley,
Chichester, 2000.
83 B. Santos, B.M. Simonet, A. Rios and M. Valcarcel, Electrophoresis, 25 (2004) 3427–3433.
84 A.G.V. de Prada, N. Pena, M.L. Mena, A.J. Reviejo and J.M. Pingarron, Biosens. Bioelectron., 18
(2003) 1279–1288.
85 D. Carelli, D. Centonze, A. De Giglio, M. Quinto and P.G. Zambonin, Anal. Chim. Acta, 565 (2006)
27–35.
86 J. Gonzalez-Rodriguez, P. Perez-Juan and M.D.L. de Castro, Talanta, 59 (2003) 691–696.
87 M. Gallignani, C. Ayala, M.D. Brunetto, J.L. Burguera and M. Burguera, Talanta, 68 (2005) 470–479.
88 T.M. Becker and H.L. Schmidt, Biotechnol. Bioeng., 69 (2000) 377–384.
89 S.R.B. dos Santos, M.C.U. de Araujo and R.A. Barbosa, Analyst, 127 (2002) 324–327.
90 H. Mori, Y. Sekine and Y. Takahashi, J. Health Sci., 49 (2003) 55–58.
91 T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas and M.T. Iniesta, Microchim. Acta, 149 (2005) 67–72.
92 N. Choengchan, T. Mantim, P. Wilairat, P.K. Dasgupta, S. Motomizu and D. Nacapricha, Anal.
Chim. Acta, 579 (2006) 33–37.
93 S.S. Borges, R.M. Frizzarin and B.F. Reis, Anal. Bioanal. Chem., 385 (2006) 197–202.
94 M. Niculescu, T. Erichsen, V. Sukharev, Z. Kerenyi, E. Csoregi and W. Schuhmann, Anal. Chim.
Acta, 463 (2002) 39–51.
95 R.N.M.J. Pascoa, S.S.M.P. Vidigal, I.V. Toth and A.O.S.S. Rangel, J. Agric. Food Chem., 54 (2006)
19–23.
96 E.N. Fernandes and B.F. Reis, J. AOAC Int., 87 (2004) 920–926.
97 D.P. de Jesus, R.M. Saito and C.L. do Lago, J. Braz. Chem. Soc., 15 (2004) 714–718.
98 D.G. Themelis, P.D. Tzanavaras, A.V. Trellopoulos and M.C. Sofoniou, J. Agric. Food Chem., 49
(2001) 5152–5155.
99 R.C.C. Costa, M.I. Cardoso and A.N. Araujo, Am. J. Enol. Vitic., 51 (2000) 131–136.
100 P. Ampan, S. Lapanantnoppakhun, P. Sooksamiti, J. Jakmunee, S.K. Hartwell, S. Jayasvati,
G.D. Christian and K. Grudpan, Talanta, 58 (2002) 1327–1334.
101 R.C.D. Costa and A.N. Araujo, Anal. Chim. Acta, 438 (2001) 227–233.
102 M.J.R. Rama, A.R. Medina and A.M. Diaz, Anal. Chim. Acta, 482 (2003) 209–217.
103 J.L. Capelo, H.A. Pedro and A.M. Mota, Talanta, 61 (2003) 485–491.
104 S. Zarate, A.N. Araujo, M.C.B.S.M. Montenegro and R. Perez-Olmos, Am. J. Enol. Vitic., 54 (2003)
46–49.
105 J.F. van Staden and L.V. Mulaudzi, S. Afr. J. Chem. S. Afr. Tydskr. Chem., 53 (2000) 18–22.
106 R. Mieliauskiene, M. Nistor, V. Laurinavicius and E. Csoregi, Sens. Actuators B, 113 (2006) 671–676.
107 F. Mizutani, Y. Hirata, S. Yabuki and S. Iijima, Sens. Actuator B Chem., 91 (2003) 195–198.
108 E. Luque-Perez, A. Rios and M. Valcarcel, Fresenius J. Anal. Chem., 366 (2000) 857–862.
109 T. Tsukatani and K. Matsumoto, Anal. Chim. Acta, 530 (2005) 221–225.
110 S. Girotti, M. Muratori, F. Fini, E.N. Ferri, G. Carrea, M. Koran and P. Rauch, Eur. Food Res.
Technol., 210 (2000) 216–219.
111 W. Zhang and N.D. Danielson, Microchem. J., 75 (2003) 255–264.
112 Y. Nanjo, T. Yano, R. Hayashi and T. Yao, Anal. Sci., 22 (2006) 1135–1138.
552
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
Ildikó V. Tóth et al.
E. Mataix and M.D.L. de Castro, Anal. Chim. Acta, 428 (2001) 7–14.
M.A. Segundo and A.O.S.S. Rangel, Anal. Chim. Acta, 499 (2003) 99–106.
E.N. Fernandes and B.F. Reis, Anal. Chim. Acta, 557 (2006) 380–386.
T. Tsukatani and K. Matsumoto, Anal. Sci., 16 (2000) 265–268.
E. Mataix and M.D.L. de Castro, J. Chromatogr. A, 910 (2001) 255–263.
J. Gonzalez-Rodriguez, P. Perez-Juan and M.D.L. de Castro, Talanta, 56 (2002) 53–59.
E.A. Cummings, B.R. Eggins, E.T. McAdams, S. Linquette-Mailley, P. Mailley, D. Madigan,
M. Clements and C. Coleman, J. Am. Soc. Brew. Chem., 59 (2001) 84–89.
G.J. Volikakis and C.E. Efstathiou, Anal. Chim. Acta, 551 (2005) 124–131.
E.A. Cummings, S. Linquette-Mailley, P. Mailley, S. Cosnier, B.R. Eggins and E.T. McAdams,
Talanta, 55 (2001) 1015–1027.
M. Gamella, S. Campuzano, A.J. Reviejo and J.M. Pingarron, J. Agric. Food Chem., 54 (2006)
7960–7967.
E. Mataix and M.D.L. de Castro, Analyst, 126 (2001) 251–255.
C.L. Moreno, P.C. Rudner, J.M.C. Garcia and J.M.C. Pavon, Microchim. Acta, 148 (2004) 93–98.
R. Lucena, S. Cardenas, M. Gallego and M. Valcarcel, J. Chromatogr. A, 1081 (2005) 127–131.
M. Haberkorn, P. Hinsmann and B. Lendl, Analyst, 127 (2002) 109–113.
E. Turkusic, K. Kalcher, K. Schachl, A. Komersova, M. Bartos, H. Moderegger, I. Svancara and
K. Vytras, Anal. Lett., 34 (2001) 2633–2647.
K. Schachl, E. Turkusic, A. Komersova, M. Bartos, H. Moderegger, I. Svancara, H. Alemu,
K. Vytras, M. Jimenez-Castro and K. Kalcher, Collect. Czech. Chem. Commun., 67 (2002) 302–313.
E.A. Ulasova, L. Micheli, L. Vasii, D. Moscone, G. Palleschi, S.V. Vdovichev, A.V. Zorin,
S.A. Krutovertsev, E.E. Karyakina and A.A. Karyakin, Electroanalysis, 15 (2003) 447–451.
S. Serban, A.F. Danet and N. El Murr, J. Agric. Food Chem., 52 (2004) 5588–5592.
E. Turkusic, J. Kalcher, E. Kahrovic, N.W. Beyene, H. Moderegger, E. Sofic, S. Begic and K. Kalcher,
Talanta, 65 (2005) 559–564.
A.F. Danet, C. Velea and D. Murarau, Rev. Chim., 54 (2003) 867–870.
H. Katsumata, T. Sekine, M. Teshima, M. Kurihara and T. Kawashima, Talanta, 51 (2000)
1197–1204.
P. Mauri, M. Minoggio, P. Simonetti, C. Gardana and P. Pietta, Rapid Commun. Mass Spectrom., 16
(2002) 743–748.
A.F. Oliveira, O. Fatibello and J.A. Nobrega, Talanta, 55 (2001) 677–684.
E.P. Borges, P.B. Martelli and B.F. Reis, Mikrochim. Acta, 135 (2000) 179–184.
R. Lucena, S. Cardenas, M. Gallego and M. Valcarcel, Anal. Chim. Acta, 509 (2004) 47–54.
J.A. Vieira, I.M. Raimundo, B.F. Reis, M.C.B.S.M. Montenegro and A.N. Araujo, J. Braz. Chem. Soc.,
14 (2003) 259–264.
D.W. Lachenmeier, W. Frank, E. Humpfer, H. Schafer, S. Keller, M. Mortter and M. Spraul, Eur.
Food Res. Technol., 220 (2005) 215–221.
A.S. Araujo, L.L. da Rocha, D.M. Tomazela, A. Sawaya, R.R. Almeida, R.R. Catharino and
M.N. Eberlin, Analyst, 130 (2005) 884–889.
G. del Campo, B. Gallego and I. Berregi, Talanta, 68 (2006) 1126–1134.
S.M.V. Fernandes, J.L.F.C. Lima and A.O.S.S. Rangel, Fresenius J. Anal. Chem., 366 (2000) 112–115.
J.W. Costin, N.W. Barnett and S.W. Lewis, Talanta, 64 (2004) 894–898.
F. Lin and S.Y. Bai, Chin. J. Anal. Chem., 33 (2005) 1459–1461.
H.R. Silva, M.A. Segundo and A.O.S.S. Rangel, J. Braz. Chem. Soc., 14 (2003) 59–64.
Y. Iida, A. Ikeda, M. Aoto and I. Satoh, Talanta, 64 (2004) 1278–1282.
J.H. Khorasani, M.K. Amini, H. Ghanei and S. Tangestaninejad, Iran J. Chem. Chem. Eng. Int. Engl.
Ed., 20 (2001) 66–74.
P.J. O’Connell, C. Gormally, M. Pravda and G.G. Guilbault, Anal. Chim. Acta, 431 (2001) 239–247.
P.R. Roy, M.S. Saha, T. Okajima and T. Ohsaka, Electroanalysis, 16 (2004) 289–297.
A.F. Danet, M. Badea and H.Y. Aboul-Enein, Luminescence, 15 (2000) 305–309.
M.C. Yebra-Biurrun, R.M. Cespon-Romero and A. Moreno-Cid, Atom. Spectrosc., 22 (2001)
346–349.
Y.C. Jiang, Z.Q. Zhang and J. Zhang, Anal. Chim. Acta, 435 (2001) 351–355.
Food, Beverages and Agricultural Applications
553
153 M.C. Yebra, R.M. Cespon and A. Moreno-Cid, Anal. Chim. Acta, 448 (2001) 157–164.
154 A.A. Ensafi, B. Rezaei and M. Beglari, Anal. Lett., 35 (2002) 909–920.
155 R.I.L. Catarino, M.B.Q. Garcia, J.L.F.C. Lima, E. Barrado and M. Vega, Electroanalysis, 14 (2002)
741–746.
156 A. Gutes, A.B. Ibanez, M. del Valle and F. Cespedes, Electroanalysis, 18 (2006) 82–88.
157 M.J.R. Rama, A.R. Medina and A.M. Diaz, Microchem. J., 78 (2004) 157–162.
158 A.P.S. Paim and B.F. Reis, Anal. Sci., 16 (2000) 487–491.
159 C.K. Pires, A.F. Lavorante, L.M.T. Marconi, S.R.P. Meneses and E.A.G. Zagatto, Microchem. J., 83
(2006) 70–74.
160 N.R. Marsili, A. Lista, B.S.F. Band, H.C. Goicoechea and A.C. Olivieri, J. Agric. Food Chem., 52
(2004) 2479–2484.
161 M. Kim, Food Chem., 99 (2006) 851–857.
162 M. Kim and M.J. Kim, Food Res. Int., 36 (2003) 223–230.
163 F. Palmisano, R. Rizzi, D. Centonze and P.G. Zambonin, Biosens. Bioelectron., 15 (2000) 531–539.
164 T. Tsukatani and K. Matsumoto, Talanta, 65 (2005) 396–401.
165 E. Maestre, I. Katakis, A. Narvaez and E. Dominguez, Biosens. Bioelectron., 21 (2005) 774–781.
166 Y. Guemas, M. Boujtita and N. El Murr, Appl. Biochem. Biotechnol., 89 (2000) 171–181.
167 A. Mignani, E. Scavetta and D. Tonelli, Anal. Chim. Acta, 577 (2006) 98–106.
168 A. Economou, P. Panoutsou and D.G. Themelis, Anal. Chim. Acta, 572 (2006) 140–147.
169 N. Piza, M. Miro, J.M. Estela and V. Cerda, Anal. Chem., 76 (2004) 773–780.
170 M. Manera, M. Miro, J.M. Estela and V. Cerda, Anal. Chim. Acta, 508 (2004) 23–30.
171 J. Jakmunee, T. Rujiralai and K. Grudpan, Anal. Sci., 22 (2006) 157–160.
172 J. Jakmunee, L. Pathimapornlert, S.K. Hartwell and K. Grudpan, Analyst, 130 (2005) 299–303.
173 D.P. Nikolelis and S. Pantoulias, Anal. Chem., 73 (2001) 5945–5952.
174 J. Yakovleva, R. Davidsson, M. Bengtsson, T. Laurell and J. Emneus, Biosens. Bioelectron., 19 (2003)
21–34.
175 E.J. Llorent-Martinez, J.F. Garcia-Reyes, P. Ortega-Barrales and A. Molina-Diaz, Anal. Bioanal.
Chem., 382 (2005) 158–163.
176 C.C. Oliveira, R.P. Sartini and E.A.G. Zagatto, Anal. Chim. Acta, 413 (2000) 41–48.
177 B.M. De Borba, J.M. Brewer and J. Camarda, J. Chromatogr. A, 919 (2001) 59–65.
178 V.A. Pedrosa, A.R. Malagutti, L.H. Mazo and L.A. Avaca, Anal. Lett., 39 (2006) 2737–2748.
179 K. Meznar, B. Pihlar, L. Pogacnik and M. Franko, Acta Chim. Slov., 50 (2003) 383–394.
180 F. Delgado-Reyes, J.M. Fernandez-Romero and M.D.L. de Castro, Anal. Lett., 34 (2001) 2277–2284.
181 Q.L. Wu, M.F. Wang and J.E. Simon, Rapid Commun. Mass Spectrom., 19 (2005) 2062–2068.
182 S.B. Khoo and R.D. Ye, Analyst, 125 (2000) 895–902.
183 T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas and J. Martin, Anal. Chim. Acta, 447 (2001) 229–235.
184 T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas and J. Martin, Talanta, 54 (2001) 989–995.
185 T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas and J. Martin, Anal. Lett., 35 (2002) 1239–1250.
186 A. Caballo-Lopez and M.D.L. de Castro, J. Chromatogr. A, 998 (2003) 51–59.
187 J.F. Garcia-Reyes, E.J. Llorent-Martinez, P. Ortega-Barrales and A. Molina-Diaz, Anal. Chim. Acta,
557 (2006) 95–100.
188 J.F. Garcia-Reyes, P. Ortega-Barrales and A. Molina-Diaz, J. Agric. Food Chem., 53 (2005)
9874–9878.
189 E.J. Llorent-Martinez, J.F. Garcia-Reyes, P. Ortega-Barrales and A. Molina-Diaz, Food Chem., 102
(2007) 676–682.
190 T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas and J. Martin, Anal. Chim. Acta, 540 (2005) 383–391.
191 Y. Ito, T. Goto, H. Oka, H. Matsumoto, Y. Miyazaki, N. Takahashi and H. Nakazawa, J. Agric. Food
Chem., 51 (2003) 861–866.
192 H. Nakazawa, N. Takahashi, K. Inoue, Y. Ito, T. Goto, K. Kato, Y. Yoshimura and H. Oka, Talanta,
64 (2004) 899–905.
193 T. Goto, Y. Ito, H. Oka, I. Saito, H. Matsumoto and H. Nakazawa, Anal. Chim. Acta, 487 (2003)
201–209.
194 L. Gamiz-Gracia, L. Cuadros-Rodriguez, J.J. Soto-Chinchilla, J.F. Huertas-Perez, A. GonzalezCasado and A. Garcia-Campana, Anal. Bioanal. Chem., 384 (2006) 295–301.
554
Ildikó V. Tóth et al.
195 J.F. Huertas-Perez, L. Gamiz-Gracia, A.M. Garcia-Campana, A. Gonzalez-Casado and
J.L.M. Vidal, Talanta, 65 (2005) 980–985.
196 J.F. Huertas-Perez, A. Garcia-Campana, L. Gamiz-Gracia, A. Gonzalez-Casado and M. del Olmo
Iruela, Anal. Chim. Acta, 524 (2004) 161–166.
197 J.N. Wang, C. Zhang, H.X. Wang, F.Z. Yang and X.R. Zhang, Talanta, 54 (2001) 1185–1193.
198 Z.G. Song, S.A. Hou and N. Zhang, J. Agric. Food Chem., 50 (2002) 4468–4474.
199 R. Zanella, E.G. Primel, M.H.S. Kurz and F.F. Goncalves, Anal. Lett., 35 (2002) 1095–1105.
200 M.P. Xavier, B. Vallejo, M.D. Marazuela, M.C. Moreno-Bondi, F. Baldini and A. Falai, Biosens.
Bioelectron., 14 (2000) 895–905.
201 L.L. Qian, Y.Z. He and Y.Y. Hu, Spectrosc. Lett., 39 (2006) 581–592.
202 S.Y. Jin, Z.C. Xu, J.P. Chen, X.M. Liang, Y.N. Wu and X.H. Qian, Anal. Chim. Acta, 523 (2004)
117–123.
203 D.P. Nikolelis, M.G. Simantiraki, C.G. Siontorou and K. Tóth, Anal. Chim. Acta, 537 (2005) 169–177.
204 M.A. Farajzadeh and S. Nagizadeh, J. Chin. Chem. Soc., 49 (2002) 949–956.
205 Z.Q. Zhang and Y.C. Jiang, Atom. Spectrosc., 21 (2000) 100–104.
206 S.L. Feng, J. Wang, X.G. Chen and J. Fan, Spectrochim. Acta A, 61 (2005) 841–844.
207 Y.J. Ma, M. Zhou, X.Y. Jin, B.Z. Zhang, H. Chen and N.Y. Guo, Anal. Chim. Acta, 464 (2002)
289–293.
208 S. Buratti, N. Pellegrini, O.V. Brenna and S. Mannino, J. Agric. Food Chem., 49 (2001) 5136–5141.
209 M.S. Cosio, S. Buratti, S. Mannino and S. Benedetti, Food Chem., 97 (2006) 725–731.
210 N. Erdemoglu, N.N. Turan, I. Cakici, B. Sener and A. Aydin, Phytother. Res., 20 (2006) 9–13.
211 Q. Li, C.Z. Huang and Y.M. Huang, Luminescence, 21 (2006) 43–48.
212 B.M. Simonet, A. Rios, F. Grases and M. Valcarcel, Electrophoresis, 24 (2003) 2092–2098.
213 C.G. Tsiafoulis, M.I. Prodromidis and M.I. Karayannis, Anal. Chem., 75 (2003) 927–934.
214 T. Perez-Ruiz, C. Martinez-Lozano, J. Martin and M.D. Garcia, Anal. Bioanal. Chem., 384 (2006)
280–285.
215 S.R. Garden and N.J.C. Strachan, Anal. Chim. Acta, 444 (2001) 187–191.
216 N. Adanyi, I.A. Levkovets, S. Rodriguez-Gil, A. Ronald, M. Varadi and I. Szendro, Biosens.
Bioelectron., 22 (2007) 797–802.
217 J.A.A. Ho and R.A. Durst, Anal. Chim. Acta, 414 (2000) 51–60.
218 J.A.A. Ho and R.A. Durst, Anal. Chim. Acta, 414 (2000) 61–69.
219 I.S. da Silva, E.M. Richter, C.L. do Lago, I.G.R. Gutz, A.A. Tanaka and L. Angnes, Talanta, 67 (2005)
651–657.
220 R. Andrade, C.O. Viana, S.G. Guadagnin, F.G.R. Reyes and S. Rath, Food Chem., 80 (2003) 597–602.
221 B. Haghighi and A. Tavassoli, Fresenius J. Anal. Chem., 371 (2001) 1113–1118.
222 M. Noroozifar, M. Khorasani-Motlagh, A. Taheri and M. Homayoonfard, Talanta, 71 (2007) 359–364.
223 S.G. Guadagnin, S. Rath and F.G.R. Reyes, Food Addit. Contam., 22 (2005) 1203–1208.
224 M.R. Ganjali, S. Shirvani-Arani, P. Norouzi, M. Rezapour and M. Salavati-Niasari, Microchim.
Acta, 146 (2004) 35–41.
225 S.M. Oliveira, T.I.M.S. Lopes and A.O.S.S. Rangel, Commun. Soil Sci. Plant Anal., 38 (2007) 533–544.
226 E.C. Vieira and R.A. Nogueira, J. Agric. Food Chem., 52 (2004) 1800–1803.
227 W. Surareungchai, W. Deepunya and P. Tasakorn, Anal. Chim. Acta, 448 (2001) 215–220.
228 A. Caballo-Lopez and L. de Castro, Talanta, 59 (2003) 837–843.
229 X.Q. Xu and Z.Q. Zhang, Mikrochim. Acta, 135 (2000) 169–172.
230 Z.Q. Zhang and X.Q. Xu, Anal. Chim. Acta, 406 (2000) 303–308.
231 T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas and J. Fenoll, Anal. Chim. Acta, 552 (2005) 147–151.
232 J.M.T. Carneiro, E.A.G. Zagatto, J.L.M. Santos and J.L.F.C. Lima, Anal. Chim. Acta, 474 (2002)
161–166.
233 P. Marcos, M.P. Lue-Meru, R. Ricardo, G. Maximo, V. Maribel, B.J. Luis and B. Marcela, Talanta, 64
(2004) 1299–1303.
234 I.V. Toth, A.O.S.S. Rangel, J.L.M. Santos and J.L.F.C. Lima, J. Agric. Food Chem., 52 (2004)
2450–2454.
235 J.M. Laparra, D. Velez, R. Montoro, R. Barbera and R. Farre, J. Agric. Food Chem., 51 (2003)
6080–6085.
Food, Beverages and Agricultural Applications
555
236 P. Carrero, A. Malave, E. Rojas, C. Rondon, Y.P. de Pena, J.L. Burguera and M. Burguera, Talanta,
68 (2005) 374–381.
237 J.A.G. Neto, A.P. Oliveira, G.P.G. Freshi, C.S. Dakuzaku and M. de Moraes, Talanta, 53 (2000)
497–503.
238 M.C. Yebra, S. Cancela and A. Moreno-Cid, Int. J. Environ. Anal. Chem., 85 (2005) 305–313.
239 M.C. Yebra and S. Cancela, Anal. Bioanal. Chem., 382 (2005) 1093–1098.
240 Y.Q. Li, J.M. Hu, J.G. Yang, B. Zheng and Y.Q. Ha, Anal. Chim. Acta, 461 (2002) 181–188.
241 C.E.S. Miranda, S. Olivares, B.F. Reis and F.M. Luzardo, J. Braz. Chem. Soc., 11 (2000) 44–49.
242 X.L. Zou, Y.Q. Li, M.L. Li, B. Zheng and J.G. Yang, Talanta, 62 (2004) 719–725.
243 V.L. Dressler, D. Pozebon and A.J. Curtius, Anal. Chim. Acta, 438 (2001) 235–244.
244 C.R.T. Tarley and M.A.Z. Arruda, Anal. Lett., 38 (2005) 1427–1443.
245 M.Y. Chu and D. Beauchemin, J. Anal. At. Spectrom., 19 (2004) 1213–1216.
246 O. Zenebon, A.M. Sakuma, S. Dovidauskas, I.A. Okada, F.D. de Maio and J. Lichtig, J. AOAC Int.,
85 (2002) 149–152.
247 S.L.C. Ferreira, W.N.L. dos Santos and V.A. Lemos, Anal. Chim. Acta, 445 (2001) 145–151.
248 S. Vicente, N. Maniasso, Z.F. Queiroz and E.A.G. Zagatto, Talanta, 57 (2002) 475–480.
249 Z. Ajtony, N. Szoboszlai, Z. Bella, S. Bolla, P. Szakal and L. Bencs, Microchim. Acta, 150 (2005) 1–8.
250 S. Ngamchana and W. Surareungchai, Anal. Chim. Acta, 510 (2004) 195–201.
251 S. Kim and G.E. Inglett, J. Food Compos. Anal., 19 (2006) 466–472.
252 M. Badea, L. Micheli, M.C. Messia, T. Candigliota, E. Marconi, T. Mottram, M. Velasco-Garcia,
D. Moscone and G. Palleschi, Anal. Chim. Acta, 520 (2004) 141–148.
253 C.G. Siontorou, V.G. Andreou, D.P. Nikolelis and U.J. Krull, Electroanalysis, 12 (2000) 747–751.
254 R.M. Van Es, S.J. Setford, Y.J. Blankwater and D. Meijer, Anal. Chim. Acta, 429 (2001) 37–47.
255 L. Agui, A. Guzman, M. Pedrero, P. Yanez-Sedeno and J.M. Pingarron, Electroanalysis, 15 (2003)
601–607.
256 A. Fernandez-Gonzalez, R. Badia and M.E. Diaz-Garcia, Anal. Chim. Acta, 498 (2003) 69–77.
257 G.H. Wan, H. Cui, H.S. Zheng, Y.Q. Pang, L.J. Liu and X.F. Yu, Luminescence, 21 (2006) 36–42.
258 M. Yang, Y. Xu and J.H. Wang, Anal. Chem., 78 (2006) 5900–5905.
259 I. Lopez-Garcia, I. Ruiz-Alcaraz and M. Hernandez-Cordoba, Spectrochim. Acta B, 61 (2006)
368–372.
260 J.F. Ventura-Gayete, E. Rodenas-Torralba, A. Morales-Rubio, S. Garrigues and M. De La Guardia,
J. AOAC Int., 87 (2004) 1252–1259.
261 S. Cancela and M.C. Yebra, J. AOAC Int., 89 (2006) 185–191.
262 J. Lv, Z.J. Zhang and L.R. Luo, Anal. Sci., 19 (2003) 883–886.
263 A. Bratov, N. Abramova, C. Dominguez and A. Baldi, Anal. Chim. Acta, 408 (2000) 57–64.
264 C.G. Bruhn, F.E. Pino, V.H. Campos and J.A. Nobrega, Anal. Bioanal. Chem., 374 (2002) 131–140.
265 M.C. Yebra, A. Moreno-Cid, R. Cespon and S. Cancela, Talanta, 62 (2004) 403–406.
266 I. Lugo, H. Carrero and L.E. Leon, Anal. Lett., 34 (2001) 2735–2745.
267 P. Cava-Montesinos, E. Rodenas-Torralba, A. Morales-Rubio, M.L. Cervera and M. de la Guardia,
Anal. Chim. Acta, 506 (2004) 145–153.
268 E. Rodenas-Torralba, P. Cava-Montesinos, A. Morales-Rubio, M.L. Cervera and M. de la Guardia,
Anal. Bioanal. Chem., 379 (2004) 83–89.
269 E. Rodenas-Torralba, A. Morales-Rubio and M. de la Guardia, Food Chem., 91 (2005) 181–189.
270 M.C. Yebra, A. Moreno-Cid, S. Cancela and R.M. Cespon, Atom. Spectrosc., 24 (2004) 218–221.
271 E. Paredes, S.E. Maestre and J.L. Todoli, Anal. Bioanal. Chem., 384 (2006) 531–541.
272 M.J.R. Lima, S.M.V. Fernandes and A.O.S.S. Rangel, Int. Dairy J., 16 (2006) 1442–1447.
273 M.R. Ganjali, M. Rezapour, M.R. Pourjavid and M. Salavati-Niasari, Anal. Sci., 19 (2003)
1127–1131.
274 L. Stoica, R. Ludwig, D. Haltrich and L. Gorton, Anal. Chem., 78 (2006) 393–398.
275 L.S. Ferreira, J.O. Trierweiler, M.B. De Souza and R.O.M. Folly, Braz. J. Chem. Eng., 21 (2004)
307–315.
276 S. Campuzano, M. Pedrero, F.J.M. de Villena and J.M. Pingarron, Electroanalysis, 16 (2004)
1385–1392.
277 V. Rajendran and J. Irudayaraj, J. Dairy Sci., 85 (2002) 1357–1361.
556
Ildikó V. Tóth et al.
278 A. Caceres, S. Cardenas, M. Gallego and M. Valcarcel, Anal. Chim. Acta, 404 (2000) 121–129.
279 N. Adanyi, E.E. Szabo and M. Varadi, Eur. Food Res. Technol., 209 (1999) 220–226.
280 S.A.M. Marzouk, H.E.M. Sayour, A.M. Ragab, W.E. Cascio and S.S.M. Hassan, Electroanalysis, 12
(2000) 1304–1311.
281 M.J.R. Lima, S.M.V. Fernandes and A.O.S.S. Rangel, Food Control, 15 (2004) 609–613.
282 J. Chen, H. Lindmark-Mansson, L. Gorton and B. Akesson, Int. Dairy J., 13 (2003) 927–935.
283 J. Chen, L. Gorton and B. Akesson, Anal. Chim. Acta, 474 (2002) 137–146.
284 J.L.F.C. Lima, C. Delerue-Matos and M.C.V.F. Vaz, Analyst, 125 (2000) 1281–1284.
285 S. Pati, F. Palmisano, A. Quinto and P.G. Zambonin, J. Agric. Food Chem., 53 (2005) 6974–6979.
286 S. Pati, M. Quinto, F. Palmisano and P.G. Zambonin, J. Agric. Food Chem., 52 (2004) 4638–4642.
287 L. Manganiello, A. Rios, M. Valcarcel, A. Ligero and T. Tena, Anal. Chim. Acta, 406 (2000) 309–315.
288 Z.H. Song, J.H. Lu and T.Z. Zhao, Talanta, 53 (2001) 1171–1177.
289 F. Palmisano, M. Quinto, R. Rizzi and P.G. Zambonin, Analyst, 126 (2001) 866–870.
290 F. Ghamouss, S. Ledru, N. Ruille, F. Lantier and M. Boujtita, Anal. Chim. Acta, 570 (2006) 158–164.
291 R. Zaydan, M. Dion and M. Boujtita, J. Agric. Food Chem., 52 (2004) 8–14.
292 M.J.R. Lima, S.M.V. Fernandes and A.O.S.S. Rangel, Ital. J. Food Sci., 14 (2002) 9–16.
293 M.J.R. Lima, S.M.V. Fernandes and A.O.S.S. Rangel, J. Food Sci., 67 (2002) 3280–3283.
294 M.J.R. Lima, S.M.V. Fernandes and A.O.S.S. Rangel, J. Agric. Food Chem., 52 (2004) 6887–6890.
295 B. Haghighi and A. Tavassoli, Talanta, 56 (2002) 137–144.
296 L. Monser, S. Sadok, G.M. Greenway, I. Shah and R.F. Uglow, Talanta, 57 (2002) 511–518.
297 C. Ruiz-Capillas, P. Aller-Guiote and F. Jimenez-Colmenero, Food Chem., 101 (2007) 812–816.
298 S.M. Oliveira, T.I.M.S. Lopes and A.O.S.S. Rangel, J. Food Sci., 69 (2004) C690–C695.
299 W. Frenzel, J. Schulz-Brussel and B. Zinvirt, Talanta, 64 (2004) 278–282.
300 T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas and J. Martin, Anal. Chim. Acta, 541 (2005) 69–74.
301 E. Luque-Perez, A. Rios and M. Valcarcel, Fresenius J. Anal. Chem., 371 (2001) 891–895.
302 W.E. Doering, R.R. James and R.T. Echols, Fresenius J. Anal. Chem., 368 (2000) 475–479.
303 S.R. Segade and J.F. Tyson, J. Anal. At. Spectrom., 18 (2003) 268–273.
304 X.P. Yan, Y. Li and Y. Jiang, Anal. Chem., 75 (2003) 2251–2255.
305 L.M. Dong, X.P. Yan, Y. Li, Y. Jiang, S.W. Wang and D.Q. Jiang, J. Chromatogr. A, 1036 (2004)
119–125.
306 L.E. Kaercher, F. Goldschmidt, J.N.G. Paniz, E.M.D. Flores and V.L. Dressler, Spectroc. Acta B, 60
(2005) 705–710.
307 L.O. Leal, O. Elsholz, R. Forteza and V. Cerda, Anal. Chim. Acta, 573 (2006) 399–405.
308 J.J.B. Nevado, R.C.R. Martin-Doimeadios, F.J.G. Bernardo and M.J. Moreno, Anal. Lett., 39 (2006)
2657–2669.
309 M.F. Silva, I.V. Toth and A.O.S.S. Rangel, Anal. Sci., 22 (2006) 861–864.
310 K. Takagi and S. Shikata, Anal. Chim. Acta, 505 (2004) 189–193.
311 J.M. Hungerford, T.A. Hollingworth and M.M. Wekell, Anal. Chim. Acta, 438 (2001) 123–129.
312 M. Niculescu, I. Frebort, P. Pec, P. Galuszka, B. Mattiasson and E. Csoregi, Electroanalysis, 12 (2000)
369–375.
313 C. Saby, T.V. Nguyen and J.H.T. Luong, Electroanalysis, 16 (2004) 260–267.
314 Y. Inaba, S. Tokishita, N. Hamada-Sato, T. Kobayashi, C. Imada, H. Yamagata and E. Watanabe,
Biosens. Bioelectron., 20 (2004) 833–840.
315 K. Mitsubayashi, Y. Kubotera, K. Yano, Y. Hashimoto, T. Kon, S. Nakakura, Y. Nishi and
H. Endo, Sens. Actuators B, 103 (2004) 463–467.
316 N. Adhoum, L. Monser, S. Sadok, A. El-Abed, G.M. Greenway and R.F. Uglow, Anal. Chim. Acta,
478 (2003) 53–58.
317 C. Ruiz-Capillas, C.M. Gillyon and W.F.A. Horner, Eur. Food Res. Technol., 210 (2000) 434–436.
318 S. Baixas-Nogueras, S. Bover-Cid, M.C. Vidal-Carou, M.T. Veciana-Nogues and A. Marine-Font,
J. Agric. Food Chem., 49 (2001) 1681–1686.
319 I.S. Park, Y.J. Cho and N. Kim, Anal. Chim. Acta, 404 (2000) 75–81.
320 Y. Yano, M. Numata, H. Hachiya, S. Ito, T. Masadome, S. Ohkubo, Y. Asano and T. Imato, Talanta,
54 (2001) 255–262.
321 Y. Nanjyo and T. Yao, Anal. Chim. Acta, 470 (2002) 175–183.
Food, Beverages and Agricultural Applications
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
557
J. Ruiz-Jimenez and M.D.L. de Castro, J. Chromatogr. A, 1110 (2006) 245–253.
S. Babacan, P. Pivarnik, S. Letcher and A. Rand, J. Food Sci., 67 (2002) 314–320.
L.J. Yang, C.M. Ruan and Y.B. Li, Rapid Methods Autom. Microbiol., 9 (2001) 229–240.
C. Ruan, H. Wang and Y. Li, Trans. ASAE, 45 (2002) 249–255.
I. Serafimovski, I.B. Karadjova, T. Stafilov and D.L. Tsalev, Microchem. J., 83 (2006) 55–60.
A.L. Moretto and S. Cadore, Microchim. Acta, 146 (2004) 239–244.
S. Ringmann, K. Boch, W. Marquardt, M. Schuster, G. Schlemmer and P. Kainrath, Anal. Chim.
Acta, 452 (2002) 207–215.
S. Cancela-Perez and M.C. Yebra-Biurrun, Atom. Spectrosc., 26 (2005) 110–116.
Z.H. Song, Q.L. Yue and C.N. Wang, Food Chem., 94 (2006) 457–463.
E.R. Pereira, C. Mello, P.A. Costa, M.A.Z. Arruda and R.J. Poppi, Anal. Chim. Acta, 433 (2001)
111–117.
A. Moreno-Cid, M.C. Yebra, S. Cancela and R.M. Cespon, Anal. Bioanal. Chem., 377 (2003) 730–734.
G.A. Zachariadis, A.N. Anthemidis, P.G. Bettas and J.A. Stratis, Talanta, 57 (2002) 919–927.
V.A. Lemos and S.L.C. Ferreira, Anal. Chim. Acta, 441 (2001) 281–289.
K. Julshamn and J. Brenna, J. AOAC Int., 85 (2002) 626–631.
F.B. Gonzaga, C.F. Pereira, A.J.M. Guarita-Santos and J.R.S. De, Electroanalysis, 17 (2005)
2084–2089.
L.F.R. Machado, A.O. Jacintho and M.F. Gine, Quim. Nova, 23 (2000) 30–33.
M.C. Yebra-Biurrun, A. Moreno-Cid and S. Cancela-Perez, Talanta, 66 (2005) 691–695.
D. Pozebon, V.L. Dressler and A.J. Curtius, Talanta, 51 (2000) 903–911.
N. Kiba, A. Koga, M. Tachibana, K. Tani, H. Koizumi, T. Koyama, A. Yamamura, K. Matsumoto,
T. Okuda and K. Yokotsuka, Anal. Sci., 22 (2006) 95–98.
C. Ruiz-Capillas, C.M. Gillyon and W.F.A. Horner, J. Food Biochem., 25 (2001) 541–553.
S. Pons-Sanchez-Cascado, M. Izquierdo-Pulido, A. Marine-Font, M.T. Veciana-Nogues and
M.C. Vidal-Carou, Quim. Anal., 19 (2000) 165–170.
T. Yao and A. Uno, Bunseki Kagaku, 49 (2000) 369–374.
Y. Xiong, H.J. Zhou, Z.J. Zhang, D.Y. He and C. He, Analyst, 131 (2006) 829–834.
K.T. Wang, H.T. Liu, J. Huang, X.G. Chen and Z.D. Hu, Food Chem., 70 (2000) 509–514.
N. Adanyi and M. Varadi, Eur. Food Res. Technol., 218 (2003) 99–104.
M.S. Jimenez, R. Velarte, M.T. Gomez and J.R. Castillo, Atom. Spectrosc., 25 (2004) 1–12.
L.J. Chen, L.Y. Zheng, D.S. Zhao and H.W. Sun, Spectrosc. Spectr. Anal., 24 (2004) 1013–1015.
P.C.A.G. Pinto, M.L.M.F.S. Saraiva and J.L.F.C. Lima, Anal. Chim. Acta, 555 (2006) 377–383.
J.J. Gao, K.H. Xu, J.X. Hu, H. Huang and B. Tang, J. Agric. Food Chem., 54 (2006) 7968–7972.
N.S. Thomaidis and C.A. Georgiou, Anal. Chim. Acta, 405 (2000) 239–245.
J.P. Bunting and D.A. Gray, J. Am. Oil Chem. Soc., 80 (2003) 951–955.
M.D. Morales, M.C. Gonzalez, A.J. Reviejo and J.M. Pingarron, Microchem. J., 80 (2005) 71–78.
J.H. Sohn, Y.S. Taki, H. Ushio and T. Ohshima, Lipids, 40 (2005) 203–209.
P. Panoutsou and A. Economou, Talanta, 67 (2005) 603–609.
R.F. Orsi, R.G. Wuilloud, J.C.A. de Wuilloud, R.A. Olsina and L.D. Martinez, J. AOAC Int., 85
(2002) 1410–1414.
S. Cerutti, R.F. Orsi, M. Kaplan, J.A. Gasquez, R.A. Olsina and L.D. Martinez, Instrum. Sci. Technol.,
32 (2004) 401–412.
M. Avila, A.G. Crevillen, M.C. Gonzalez, A. Escarpa, L.V. Hortiguela, C.D. Carretero and
R.A.P. Martin, Electroanalysis, 18 (2006) 1821–1826.
S. Buratti, S. Benedetti and M.S. Cosio, Talanta, 71 (2007) 1387–1392.
G.H. Wan, H. Cui, H.S. Zheng, H. Zhou, L.J. Liu and X.F. Yu, J. Chromatogr. B, 824 (2005) 57–64.
O. Baticz and S. Tomoskozi, Nahr. Food, 46 (2002) 46–50.
N.W. Beyene, H. Moderegger and K. Kalcher, S. Afr. J. Chem. S. Afr. Tydskr. Chem., 56 (2003) 54–59.
A. Myint, Q.L.O. Zhang, L.J. Liu and H. Cui, Anal. Chim. Acta, 517 (2004) 119–124.
Y.H. Liu, Z.H. Song, F.X. Dong and L. Zhang, J. Agric. Food Chem., 55 (2007) 614–617.
M. Wada, T. Kabashima, N. Kuroda, T. Yoshimoto, H. Katoh, S. Hayashida and K. Nakashima,
Bunseki Kagaku, 51 (2002) 123–126.
C. Acebal, M.E. Centurion, A.G. Lista and B.S.F. Band, Anal. Lett., 39 (2006) 387–394.
558
Ildikó V. Tóth et al.
367 U. Mankasingh, D. Narinesingh and T.T. Ngo, Anal. Lett., 33 (2000) 2407–2423.
368 A. Guiseppi-Elie, N.F. Sheppard, S. Brahim and D. Narinesingh, Biotechnol. Bioeng., 75 (2001)
475–484.
369 A. Antonia and L.B. Allen, J. Agric. Food Chem., 49 (2001) 4615–4618.
370 A.V. Pereira, L.H. Marcolino and O. Fatibello, Quim. Nova, 23 (2000) 167–172.
371 F. Capitan-Vallvey, M.C. Valencia and E.A. Nicolas, Anal. Sci., 20 (2004) 1437–1442.
372 L.F. Capitan-Vallvey, M.C. Valencia, E.A. Nicolas and J.F. Garcia-Jimenez, Anal. Bioanal. Chem., 385
(2006) 385–391.
373 R.M. Pena, J.L.F.C. Lima and M.L.M.F.S. Saraiva, Anal. Chim. Acta, 514 (2004) 37–43.
374 J.F. Garcia-Jimenez, M.C. Valencia and L.F. Capitan-Vallvey, Anal. Lett., 39 (2006) 1333–1347.
375 N.E. Llamas, M.S. Di Nezio, M.E. Palomeque and B.S.F. Band, Anal. Chim. Acta, 539 (2005)
301–304.
376 F.R.P. Rocha, E. Rodenas-Torralba, A. Morales-Rubio and M. de la Guardia, Anal. Chim. Acta, 547
(2005) 204–208.
377 L. Hlabangana, J. Saurina and S. Hernandez-Cassou, Microchim. Acta, 150 (2005) 115–123.
378 J.M.T. Carneiro, A.C.B. Dias, E.A.G. Zagatto, J.L.M. Santos and J.L.F.C. Lima, Anal. Chim. Acta, 531
(2005) 279–284.
379 N. Adanyi, M. Toth-Markus, E.E. Szabo, M. Varadi, M.P. Sammartino, M. Tomassetti and
L. Campanella, Anal. Chim. Acta, 501 (2004) 219–225.
380 M. Korenovska, J. Food Nutr. Res., 45 (2006) 84–88.
381 M.H. Divritsioti, I.D. Karalemas, C.A. Georgiou and D.S. Papastathopoulos, Anal. Lett., 36 (2003)
1939–1963.
382 K. Kriz, L. Kraft, M. Krook and D. Kriz, J. Agric. Food Chem., 50 (2002) 3419–3424.
383 M.I.P. Oliveira, M.C. Pimentel, M.C.B.S.M. Montenegro, A.N. Araujo, M.F. Pimentel and
V.L. da Silva, Anal. Chim. Acta, 448 (2001) 207–213.
384 Y.Q. Li, X. Lu, X.L. Zou, J.P. Mi and J.G. Yang, Spectrosc. Spectr. Anal., 25 (2005) 1724–1726.
385 L.F. Capitan-Vallvey, M.C. Valencia and E.A. Nicolas, Mikrochim. Acta, 138 (2002) 69–76.
386 L.F. Capitan-Vallvey, M.C. Valencia and E.A. Nicolas, Anal. Chim. Acta, 503 (2004) 179–186.
387 N. Adanyi and M. Varadi, Eur. Food Res. Technol., 219 (2004) 432–437.

Documentos relacionados

here - International Conference on Flow Injection Analysis

here - International Conference on Flow Injection Analysis Comparative study in the use of isocratic, multi-isocratic and gradient systems by Multi-Syringe Flow Injection Analysis Igor Botello, Camelia Henríquez, Hilda M. González-San Miguel, Víctor Cerdà ...

Leia mais