M - Inpe
Transcrição
M - Inpe
Interação entre Aerossóis e Chuva Maria Assunção Faus da Silva Dias Departamento de Ciências Atmosféricas – IAG/USP Curso sobre Sensoriamento Remoto e Modelagem dos Processos de Formação da Precipitação PROJETO CHUVA UFRJ, 27 de outubro de 2011 Residence time (or lifetime) ! of a trace constituent in the atmosphere τ= 𝑀 𝐹 M is the amount of the constituent in the atmosphere (in kg) and F is the rate of its removal (in kg s1) from the atmosphere. CO2 Tamanhos Fração Tamanho PM10 D ≤ 10 µm PM2.5 (fração respirável) D ≤ 2,5 µm PM1 D ≤ 1 µm Ultrafinos D ≤ 0,1 µm PM10-PM2,5 (fração grossa) 2,5 µm ≤ D≤ 10 µm Primários – diretamente emitidos para o ar Secundários – formados no ar por reações químicas Direct Condensation Nuclei Counter with Automatic Photographic Recording, and General Problems of “Absolute” Counters R. Jaenicke, H. J. Kanter Journal of Applied Meteorology Volume 15, Issue 6 (June 1976) pp. 620-632 Pressão de vapor T Supersaturação Pressao de vapor de saturação Teoria do crescimento de gotas em nuvens quentes Wallace Hobbs cap 6 Fletcher Deforestation rates in Amazonia Total land use change area: 14% of the 5.5 million Km2 Amazonia deforestation in km² per year 1977-2000 29.059 30000 25000 21,130 20000 15000 19,832 18,161 17,860 13,810 13,786 17,383 17,259 14,896 13,227 11,130 10000 5000 0 77 /8 8* 88 /8 9 89 /9 0 90 /9 1 91 /9 2 92 /9 4 94 /9 5 95 /9 6 96 /9 7 97 /9 8 98 /9 9 99 /0 0* * Deforested area in Km² per year 35000 INPE data 23 -A 08 ug -S -9 25 ep- 2 -S 92 31 ep-O 92 12 c t-J 92 20 an-A 93 13 pr-9 31 -Jul 3 -A -9 08 ug 3 -S -9 26 ep 3 -N -93 23 ov -M 93 21 ar- 9 19 Jun 4 -A -94 15 ug9 07 Oc t 4 -F -94 25 eb-M 9 05 ay 5 -A -9 24 ug 5 -A -9 05 ug 5 -N -9 12 ov - 5 -M 9 24 ar- 5 -A 96 01 ug -S -9 09 ep 6 -S -96 04 ep-O 96 30 c t-M 96 28 ar-9 16 -Jul 7 -A -9 29 ug 7 -S -9 07 ep- 7 -N 97 03 ov - 97 19 Jan -A -98 20 pr-9 24 -Jul 8 -A -9 03 ug 8 -S -98 09 ep- 9 12 Oc t 8 -N -98 28 ov -J 98 29 an-M 99 07 ar-J 99 u 14 n-9 19 Jul 9 -A -9 16 ug 9 -S -99 25 ep- 99 02 Oc t -F -9 24 eb- 9 -A 00 11 pr-0 0 21 Jul-O 00 22 c t-A 00 pr -0 1 Mass concentration (μg/m³) Aerosol Concentrations in Amazonia Aerosol Concentrations in Amazonia changes from very low values of 5-12 μg/m³ to very high 500 μg/m³ in areas affected by biomass burning Alta Floresta Aerosol Mass Concentration 1992-2001 600 500 Coarse Mode Fine Mode 400 300 200 100 0 Biomass burning plume covers millions of km2 Biomass burning trajectories Altitude (m) Freitas Longo and Silva Dias, 1996 23 -A u 11 g-S 92 e 11 p-9 -O 2 19 ct-D 92 e 25 c-9 -M 2 ar 13 -93 -J 01 ul-S 93 e 16 p-9 -S 3 e 04 p-9 -F 3 e 06 b-9 -J 4 u 19 n-A 94 u 01 g-N 94 o 18 v-9 -A 4 pr 24 -95 -J 21 ul-A 95 u 05 g-N 95 o 02 v-9 -A 5 p 27 r-9 -A 6 u 06 g-S 96 e 29 p-S 96 e 30 p-9 -M 6 a 02 r-9 -A 7 u 22 g-A 97 u 25 g-9 -O 7 23 ct-D 97 e 19 c-9 -A 7 p 01 r-9 -A 8 ug 27 -A 98 u 01 g-9 -O 8 03 ct-N 98 o 28 v-9 -J 8 a 16 n-9 -A 9 p 24 r-9 -J 9 u 11 n-A 99 u 11 g-S 99 ep 25 -9 -O 9 c 18 t-9 -F 9 e 23 b-M 00 a 23 y-S 00 e 08 p-0 -A 0 pr -0 1 Ratio EBC/FPM (%) 23 -A 08 ug -S -9 2 25 ep -S -92 e 31 p-O 92 12 ct-J 92 20 an -A -93 p 13 r-9 - 3 31 Ju -A l-9 3 08 ug -S -9 3 26 ep -N -93 23 ov-M 93 21 ar-J 94 19 un -A -9 u 4 15 g-O 94 07 ct -F -94 25 eb -M -95 05 ay -A -9 5 24 ug -A -9 5 05 ug -N -9 5 12 ov-M 95 24 ar -A -96 01 ug -S -9 6 09 ep -S -96 04 ep-O 96 30 ct -M -96 a 28 r-9 - 7 16 Ju -A l-9 7 29 ug -S -9 7 e 07 p-N 97 03 ov-J 97 19 an -A -98 p 20 r-9 - 8 24 Ju -A l-9 8 03 ug -S -9 8 09 ep-O 98 12 ct -N -9 8 28 ov-J 98 29 an -M -99 07 ar-J 99 u 14 n-9 - 9 19 Ju -A l-9 9 16 ug -S -9 9 25 ep-O 99 02 ct-F 99 24 eb -A -00 p 11 r-0 -J 0 21 ul-O 00 22 ct -A -00 pr -0 1 Black carbon concentration (ng/m³) Equivalent black carbon concentration and ratio to FPM 50000 Alta Floresta black carbon fine mode aerosol 1992-2001 45000 40000 35000 30000 25000 20000 15000 10000 5000 0 Alta Floresta ratio black carbon to fine mode aerosol 1992-2001 30 25 20 15 10 5 0 Natural biogenic aerosol particles EPMA photos from Gunther Helas, MPIC Role of Tropical Convection in Long Range Transport Role of convection on long range transport Aerosol Optical Thickness in Amazonia Optical Thickness AERONET Santarem 500 nm Aerosol Optical Thickness Oct 99 - Jul 01 Rio Branco 500 nm Aerosol Optical Thickness Aug 00 - Jul 01 2.0 1.6 AOT 500 nm 1.2 0.8 1.2 0.8 0.4 0.4 Alta Floresta AOT Jan 99 -Jul 01 Balbina 500 nm Aerosol Optical Thickness Oct 99 - Jul 01 3.5 3.0 AOT 500 nm 1.0 0.6 0.4 2.5 2.0 1.5 1.0 0.5 0.2 0.0 l n n n n v y g p ul ar ar ct pr ov Dec Feb Apr May -Ju -Ja 8-M -Ma 6-Ju -Au 4-O -No 2-Ja 2-M 1-A 0-Ju 30-J -Se 7-N 6- 2615 7 27 2 1 1 1 2 15 15 23 18 27 ov ec 20 -J an 19 -F eb 20 -M ar 19 -A pr 19 -M ay 18 -J un 18 -J u 17 l -A ug 16 -S ep 16 -O ct 15 -N ov 15 -D ec 14 -J an 13 -F eb 15 -M ar 14 -A pr 14 -M ay 13 -J un 13 -J ul 21 -D Rondonia Aerosol Optical Thickness Jan 1999 - Jul 2001 22 -J ul 22 -S ep 22 -N ov 22 -J an 22 -M ar 22 -M ay 22 -J ul 22 -S ep 22 -N ov 22 -J an 22 -M ar 22 -M ay 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 22 -J an 22 -M ar 22 -M ay AOT at 500 nm 21 -N ct 0.0 22 -O AOT 500 nm 0.8 26 -J ul 1Ju l 31 -J ul 30 -A ug 29 -S ep 29 -O ct 28 -N ov 28 -D ec 27 -J an 26 -F eb 28 -M ar 27 -A pr 27 -M ay 26 -J un 1Ju n 2Ap r 2M ay 3M ar 5O ct 4N ov 8Ju l 8Ju n 8M ay 8Ap r eb 8M ar 8F ec 8Ja n ov 8D 8N 8O ct 8Se p 4D ec 3Ja n 2Fe b 0.0 0.0 8Au g AOT at 500 nm 1.6 Aerosols and radiation in Amazonia Instantaneous shortfall of 150-350 w/m2 Photosynthetic Active Radiation Fraction of total irradiance and energy shortfall Amazonia avg. África avg. 500 Shortfall (W/m²) Amazonia avg. África avg. 0.5 0.91 0.87 81 121 1.0 0.84 0.78 145 210 2.0 0.72 0.63 254 353 3.0 0.63 - 337 - Single Scattering albedo 0 0 400 -2 Fraction of background W.m AOT (500 nm) 300 200 Model (Background) Alta Floresta Rondonia Zambia 0.86 0.04 0.87 0.03 0.79 0.03 Model (Smoke) 100 Observed 0 10 12 14 16 Time (GMT) 18 20 22 PAR modelling and measurements in Alta Floresta, 04/09/1999. Red line: no aerosols. Dashed line modelled with AERONET measurements. Joel Schaffer et al., 2002 Joel Schaffer et al., JGR 2001 Cloud-aerosol-mediated feedback loop on forest carbon uptake Adapted from Jose Fuentes, 2002 Clear day Visibility ~ ??? km NCN ~ 500 cm-3 BC ~ 0.2 mg m-3 Smoke haze Visibility ~ 800 m NCN ~ 10000 cm-3 BC ~ 7 mg m-3 Ji-Paraná clean air (SW Amazon) Ji-Paraná haze layer (SW Amazon) 25 SEP 2002 Ji-Paraná haze layer Aerosol surface forcing - Rondônia (Aline Procópico, 2003) AOT(500nm)=3.5 =>~ -380W/m2 AOT(500nm)=2.0 =>~ -250W/m2 *Data from Hazemeter network NASA-GSFC Summary of CCN Spectra ** 1000 ** ** ** -3 N (cm ) ** 100 Wet Season Pasture site Jaru Tower (120 - 132) CLAIRE '98 Dry season Pasture site Transition Jaru Tower (134 - 143) 10 0.0 0.2 0.4 0.6 0.8 Sc (%) 1.0 1.2 1.4 1.6 The atmosphere has more aerosol, and more Cloud Condensation Nuclei, during easterlies Easterlies Westerlies Dry to Wet Williams et al, 2002 Easterlies and Westerlies are two modes of the continental scale circulation and are part of the intraseasonal oscillations Wet Seasons 1980-1999 Jones and Carvalho, 2002 E E More lightning during the easterlies = deep convective systems with large Ice Water Content Petersen & Rutledge, 2000 E Blakeslee,2000 E Blakeslee, 2000 Diurnal cycle more pronounced during easterlies, systems are larger and with larger convective rain fraction Solid line= total rain, dotted line = convective dashed line = stratiform Westerlies Easterlies Rickenbach et al. 2002 Westerly case “maritime” Convective systems are deeper during easterlies Easterly case “continental” S-pol Rondônia Petersen, Rutledge 2000 > 5000 fires GOES-8 WF_ABBA Local smoke plume (deforestation fires) (picture from A. Andreae) smoke smoke smoke Regional smoke plume ~5 millions km2 (Prins et al. 1998) Freitas et al, 2005, 2007 Modelo de transporte dos procutos de queima de biomassa (CATTBRAMS) www.cptec.inpe.br/ meio_ambiente n99 -9 9 M ay -9 9 Ju l- 9 9 Se p99 No v99 Ja n00 M ar -0 0 M ay -0 0 Ju l- 0 0 Se p00 No v00 Ja n01 M ar -0 1 M ay -0 1 Ju l- 0 1 Se p01 No v01 Ja n02 M ar -0 2 M ay -0 2 Ju l- 0 2 Se p02 No v02 M ar Ja 01No v -9 8 21De c -9 8 09Fe b- 9 9 31Ma r-9 9 20Ma y -9 9 09Ju l - 99 28Au g -9 9 17Oc t- 9 9 06De c -9 9 25Ja n -0 0 15Ma r-0 0 04Ma y -0 0 23Ju n -0 0 12Au g -0 0 01Oc t- 0 0 20No v -0 0 09Ja n -0 1 28Fe b- 0 1 19Ap r-0 1 08Ju n -0 1 28Ju l - 01 16Se p -0 1 05No v -0 1 25De c -0 1 13Fe b- 0 2 04Ap r-0 2 24Ma y -0 2 13Ju l - 02 01Se p -0 2 21Oc t- 0 2 10De c -0 2 Aerosol optical thickness 500 nm AOT 500 nm Aeronet measurements in Alta Floresta and Rondonia 1999-2002 Artaxo et al 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Alta Floresta AERONET Aerosol Optical Thickness Jan 99 - Nov 2002 1999 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1999 2000 2001 2000 2001 2002 Aerosol Optical Thickness Aeronet Abracos Hill Rondonia 500 nm 2002 Aerossóis e Precipitação na transição da estação seca para a estação chuvosa: medidas em Rondônia Setembro a Dezembro de 2002 100 90 80 70 60 50 40 30 20 10 0 9-Sep 15-Sep 21-Sep 27-Sep 3-Oct 9-Oct 15-Oct 21-Oct 27-Oct 2-Nov 8-Nov 14-Nov Date 29/12/2002 22/12/2002 15/12/2002 8/12/2002 1/12/2002 24/11/2002 17/11/2002 10/11/2002 3/11/2002 27/10/2002 20/10/2002 6/10/2002 13/10/2002 0 29/9/2002 50 22/9/2002 100 15/9/2002 150 1/9/2002 Concentration (ug/m³) 200 Cacoal Gov,J,Teix, Jaru Mir,Serra NovaVida Pres,Med, RolMoura Average 8/9/2002 PM10 PM25 3-Sep Daily Rainfall (mm) SMOCC PM10 versus PM25 FNS Pasture Artaxo et al 250 Aerosol-cloud-precipitation feedbacks AEROSOLS CCN Activation Cloud/Aerosol Radiative Transfer Cloud Dynamics IN Activation Cloud Microphysics PRECIPITATION Aerosol Wet Removal Conceptual model: HAIL Graphics by Robert Simmon, NASA TRMM-PR IWC (Z-M) vs. LIS Flash Density Wet Season (1998-2000): LIS Flash Density vs. IWC (7-9 km) LIS Flash Density vs. 7-9 km IWC 4.50 5.00 y = 39.976x - 5.0843 R2 = 0.8008 4.00 Flashes/km /month 2 Flash Density (FL/km /mo) 6.00 y = 213.84x2 - 30.779x + 0.5822 R2 = 0.8164 2 3.00 2.00 1.00 4.00 =Ocean 3.50 =Ocean/Coast =Land 0.05 0.10 0.15 IWC (g/m3) 0.20 0.25 0.30 Florida 3.00 AMZ (SON) 2.50 Sub-Congo Africa 2.00 Cntrl. Brazil 1.50 0.50 Gulf Stream N. India S. India 1.00 0.00 0.00 Congo =AMZ/Monsoon AMZ WP Warm-pool 0.00 0.10 AMZ (DJF) EPIC 0.12 0.14 0.16 0.18 3 IWC (g/m ) 0.20 0.22 0.24 TRMM-LIS Estação(DJF, chuvosa Seasonal JJA, SON) 12/97 - 1/00 Transição estação seca para a chuvosa Petersen et al, 2000 Interações Aerossóis-Precipitação 1. Efeito direto da chuva em remover aerossóis no início da estação chuvosa 2. Efeito combinado dos aerossóis na microfísica de nuvem com a mudança na dinâmica e termodinâmica da grande escala e o efeito radiativo alterando a estabilidade termodinâmica Aerosol effects Longo et al, 2003 • Radiation – Colder surface, warmer lower troposphere =stabilizing effect – less clouds → less rainfall? • Cloud microphysics Rainfall accumulation – Inhibit rainfall in warm clouds – Deep clouds? Scheme of aerosol effects on precipitation Warm clouds Accumulated rain Khain et al, 2003 Maritime & moderate (wet) continental clouds (like GATE and PRESTORM) Cold clouds Dry unstable situation (like Texas clouds) Aerosol Concentration Aerosol concentration Aerosol effects on precipitation Aerosols (not including GCCN) inhibit precipitation: Aerosols can increase precipitation: Kaufman and Nakajima 1993; Borys et al, 1998; 2000; Rosenfeld and Lensky 1998; Rosenfeld 1999, 2000; Givati and Rosenfeld 2004 Ohashi and Kida 2002 Shepherd and Burian 2003 Amiranashvili et al 2004 Filho et al (2004) Khain et al (2004a,b) Khain et al (2005-QJRMS) Tao et al (1995), Ferrier et al (1996( Khain et al, 2001; Axel et al (2004); Axel and Beheng (2004) Khain and Pokrovsky (2004); Tao et al (2004) Khain et al (2004a,b) Van den Heever et al (2004) Axel et al (2004); Tao et al (2004) Lynn et al (2005a,b) Teller and Levin(2006) Lynn et al (2006) Margaritz et al (2006) Khain et al (2005, 2006) Lynn et al (2006) Jirak and Cotton (2006) Khain and Pokrovsky (2006) Observations in the Amazon (1) • Koren et al (2004): scattered cumulus cloud cover decrease with increase in biomass burning derived aerosols • Andreae et al (2004): biomass burning aerosol reduce cloud droplet size and reduce rainfall in low levels. Flight region: SW Amazon RACCI/LBA & SMOCC/LBA Microphysics measurements with aircraft: CCN spectrum, cloud and rain drop spectra, cloud liquid water content, temperature, dew point temperature, pressure and GPS positioning. Flights from Sept 21 to Oct 13, 2002 Day 21 23 24 26 27 28 30a 30b 01a 01b 04a 04b Time (LT) 13:24 15:30 14:07 16:16 14:43 17:04 14:02 16:18 14:27 16:03 13:37 15:38 11:14 12:17 13:49 16:40 10:16 12:25 16:47 17:20 11:06 12:25 13:54 15:49 Day 04c 05a 05b 06a 06b 08 09 11a 11b 12 13 Time (LT) 16:48 18:36 12:13 14:18 15:24 17:01 11:12 13:15 14:19 16:45 14:53 16:30 13:32 15:27 10:43 12:10 13:21 14:46 11:45 13:38 13:20 15:50 Andreae et al 2004 Smoking rain clouds over the Amazon Science Equatorial Atlantic Ocean Pristine Western Amazon Smoky Thailand Clean NW Thai Monsoon Smoky Amazon Pyro Cu Amazon Pyro Cb Amazon Height above cloud base, m 8000 7000 6000 Andreae, M. O., D. Rosenfeld, P. Artaxo et al., 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342. 5000 4000 3000 2000 1000 0 5 10 15 20 25 30 Drop size of modal LWC, mm 35 40 Aircraft measured Modal LWC cloud drop diameter as a function of height above cloud base, for the various aerosol regimes in Brazil [Thailand]. Observations in the Amazon (2) • Lin et al (2006): high values of aerosol optical thickness in the Amazon (September-October 2000, 2003) are associated with – Increase in rainfall rate – change in PDF – Increase in Water Path (liquid + ice) – Increase in high level cloud cover – Lower values of cloud top temperatures liquid +ice Lin et al 2006 TRMM Precipitation Radar vs MODIS AOT CWF ~ CAPE • Martins, Silva Dias, Gonçalves (2007):Modeling the impacts of biomass burning aerosols on precipitation in the Amazonian region using BRAMS: a case study for 23 September 2002 – To be submitted • Martins et al 2007 : Cloud condensation nuclei from biomass burning during the Amazonian dry-to-wet transition season – Meteo. Atmos . Phys. (submitted) • Gonçalves, Martins, Silva Dias, 2007 – Shape parameter analysis usning cloud spectra and gamma functions in numerical modelling during LBA in Amazon – accepted with minor revisions Atmos Research. Shape parameter in cloud droplet diameter distribution n( D ) Nt D ( ) Dn 1 D 1 exp Dn Dn Frequency of shape parameters for all flights 50 LIMPO CLEAN POLUÍDO POLLUTED FREQUÊNCIA (%) 40 30 20 10 0 1 2 3 4 5 6 7 PARÂMETRO DE FORMA 8 9 10 Visible images from GOES satellite showing the daily evolution of cloud cover on 23 September 2002 Grid specifications for the numerical experiments with BRAMS (Brazilian modifications to RAMS – Freitas et al 2007) The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System. 1: model description and evaluation .S. R. Freitas, K. M. Longo, M. A. F. Silva Dias,,R. Chatfield, P. Silva Dias, P. Artaxo, M. O. Andreae, G. Grell, L. F. Rodrigues, A. Fazenda, J. Panetta – Accepted Atmos.Chemis. Physics. Grid 1 Starting and end time Grid 2 Grid 3 Grid 4 00Z, 23 September 2002 – 00Z, 24 September 2002 Number of grid points (x, y, z) (62,62,43) (62,62,43) (122,122,43) (42,42,43) Horizontal grid spacing (x, y) (64, 64 km) (16, 16 km) (4, 4 km) Vertical grid spacing 43 levels with variable stretching factor Time step 120 Grid center (10,92 ºS 62,41ºW) 30 7,5 (1, 1 km) 1,875 Observed shape parameter x CCN concentration numerical experiments Shape parameter DE FORMA PARÂMETRO 7.00 R = 0.74 6.00 5.00 4.00 3.00 2.00 300 600 900 1200 -3 CONCENTRAÇÃO DE GOTÍCULAS Cloud droplet concentration (cm-3) (cm ) 1500 Microphysics parameters used in numerical experiments CCN300 CCN450 CCN600 CCN900 CCN900R CCN concentration 300 450 600 900 900 Shape parameter – 2 3 4 5 5 1 1 1 1 1 None None None None Absorbing cloud droplet and pristine ice Shape parameter – all remaining water categories Radiative effect and reflecting Parameterized radiative effect of aerosol from biomass burning in the Amazon Procópio et al (2004) indicate 20% extinction of solar radiation during dry season in Amazon due to aerosol - 4% reflected - 16% absorption in lower layers: adjusted according to observed CCN profile Vertical profile of CCN concentration measurements on 23 September 2003 Control simulation CCN300 Visible Satelite and Radar Total Condensate CCN300 Vertical structure of cloud and ice water mixing rate observed at the time of maximum liquid water path CCN300 CCN450 CCN600 CCN900 ccn300 ccn450 ccn600 ccn900 CCN 900 & CCN 900R MICROPHYSICS VARIABLE UNIT CCN300 CCN450 CCN600 CCN900 CCN900R MAX. CLOUD DROPLET CONC. cm-3 192.092 295.961 424.282 645.883 641.302 0.008 0.008 0.159 0.562 0.594 0.271 0.193 0.372 2.723 2.229 0.009 0.009 0.024 0.090 0.079 PRISTINE SPTA PRISTINE STA kg/m2 g/m 2 2 SNOW SPTA kg/m SNOW STA g/m2 0.282 0.354 0.529 2.018 1.345 AGGREGATES SPTA kg/m2 0.002 0.014 0.393 1.193 1.186 AGGREGATES STA g/m2 0.006 0.009 0.538 7.353 6.412 0.005 0.016 0.412 1.273 1.238 0.004 0.006 0.662 3.181 2.780 0.058 0.052 0.355 0.581 0.592 0.190 0.019 0.562 1.064 1.020 0.082 0.100 1.343 3.700 3.690 0.753 0.581 2.664 16.340 13.785 1.013 1.286 2.293 2.693 2.475 64.600 56.273 61.452 52.061 51.359 1.948 1.931 4.222 4.899 4.946 50.217 33.677 36.968 28.597 30.105 2.965 3.229 7.011 9.251 9.349 2 GRAUPEL SPTA kg/m GRAUPEL STA g/m2 HAIL SPTA kg/m 2 2 HAIL STA g/m TOTAL ICE SPTA kg/m2 TOTAL ICE STA CLOUD WATER SPTA g/m 2 kg/m 2 2 CLOUD WATER STA g/m RAIN WATER SPTA kg/m2 RAIN WATER STA g/m 2 2 TOTAL WATER SPTA kg/m TOTAL WATER STA g/m2 115.569 90.532 101.083 96.998 95.249 % 33.280 27.974 24.012 18.965 17.589 RAIN RATE SPTA mm/h 4.972 5.441 15.571 19.340 20.169 RAIN RATE STA mm/h 0.126 0.091 0.134 0.119 0.125 MAX. AC. PRECIPITATION mm 16.936 22.154 53.744 87.658 100.883 AVE. AC. PRECIPITATION mm 0.964 0.685 1.032 0.943 0.991 MAX. VERTICAL VELOCITY m/s 2.250 2.390 5.160 7.830 8.370 1.38 1.57 1.63 1.75 1.52 MAX. CLOUD COVER SURF. ENERGY GAIN MJ/m 2 STA – Space & Time Average SPTA – Space Peak & Time Average Time evolution of precipitation fields in terms of maximum and average values 10.0 120.0 100.0 120.0 60.0 4.0 40.0 2.0 20.0 0.0 0.0 300 450 600 900 900R 100.0 1.0 80.0 0.8 60.0 0.6 40.0 0.4 20.0 0.2 0.0 0.0 2 TOTAL WATER STA (g/m ) 6.0 MAX. AC. RAIN (mm) 80.0 1.2 TOTAL WATER STA AVER. AC. RAIN SCENARIO 300 450 600 SCENARIO 900 900R AVER. AC. RAIN (mm) 8.0 2 TOTAL WATER SPTA (kg/m ) TOTAL WATER SPTA MAX. AC. RAIN Partitioning of the precipitation according to the intensity of averaged rain rate – change in PDF RAIN RATE STA (mm/h) 0.16 PREC. > 5 mm/h 1 mm/h < PREC. < 5 mm/h PREC. < 1 mm/h 0.12 0.08 0.04 0 CCN300 CCN450 CCN600 SCENARIO CCN900 CCN900R Time evolution of rain rate in terms of maximum values on grid 60.0 CCN300 RAIN RATE (mm/h) CCN450 45.0 CCN600 CCN900 CCN900R 30.0 15.0 0.0 9 11 13 15 TIME (h) 17 19 21 Time evolution of ice path in terms of maximum values on grid 16.0 MAX. ICE PATH (kg/m2) CCN300 CCN450 12.0 CCN600 CCN900 CCN900R 8.0 4.0 0.0 12 14 16 TIME (h) 18 20 Time evolution of ice path in terms of average values on grid 0.100 AVER. ICE PATH (kg/m2) CCN300 CCN450 0.075 CCN600 CCN900 CCN900R 0.050 0.025 0.000 12 14 16 TIME (h) 18 20 Time evolution of (a) max updraft (b)max downdraft 0.0 10.0 CCN450 8.0 VERT. VELOCITY (m/s) VERT. VELOCITY (m/s) CCN300 CCN600 CCN900 6.0 CCN900R 4.0 2.0 0.0 -0.4 -0.8 -1.2 -1.6 -2.0 9 12 15 TIME (h) 18 21 9 12 15 TIME (h) 18 21 Conclusions from numerical experiments Amazon aerosol from biomass burning and rainfall interactions • Enhanced CCN concentration increase maximum precipitation, maximum water content and maximum ice content but eventually reduce average precipitation (basically due to enhanced evaporation effects) • Warm rain is suppressed and ice content enhanced with increased CCN • Total cloud cover decreases with increase of CCN (dominated by shallow cumulus; increase in ice content increase high level cover • In this particular case, radiation absorption by aerosol delay precipitation but higher rainfall amounts are obtained due to decrease in low level thermodynamic stability Próximos passos (1) • Uso de constelações de satélites em combinações que permitem identificar relações empíricas entre aerossóis e precipitação Próximos passos (2) Definição de novas campanhas de medidas para obtenção de dados de validação com enfoque na microfísica de nuvens Próximos passos (3) • Modelos de alta resolução para estudo dos processos microfísicos • Parametrizações simplificadas do efeito dos aerossóis na precipitação para uso em modelos de clima Obrigada!
Documentos relacionados
Adress: Faculdade de Ciências da Universidade de Lisboa - CITA-A
McGrath, P. Miranda, T. Noije, T. Palmer, J. Parodi, T. Schmith, F. Selten, T. Storelvmo, A. Sterl, H. Tapamo, M. Vancoppenolle, P. Viterbo, U. Willén, 2010 : ECEarth: A Seamless Earth System Predi...
Leia maisLittle Pippins Newsletter - april 2014 Uvazhaemi roditeli , Bikh iskal
•T G P b - Mick Inkpen •W R - P K ŭc •T T • T Ug y D c g • Dzhordzh i drakona
Leia mais