Ecomorfologia, performance alimentar e bioerosão de budiões da
Transcrição
Ecomorfologia, performance alimentar e bioerosão de budiões da
UNIVERSIDADE ESTADUAL DE SANTA CRUZ PÓS-GRADUAÇÃO EM ECOLOGIA E CONSERVAÇÃO DA BIODIVERSIDADE Nicole Tiburcio Lellys Ecomorfologia, performance alimentar e bioerosão de budiões da subfamília Scarinae (Actinopterygii: Labridae) no Banco dos Abrolhos, Bahia Ilhéus, Bahia 2014 ii Nicole Tiburcio Lellys Ecomorfologia, performance alimentar e bioerosão de budiões da subfamília Scarinae (Actinopterygii: Labridae) no Banco dos Abrolhos, Bahia Dissertação apresentada à Universidade Estadual de Santa Cruz para obtenção do título de Mestre em Ecologia e Conservação da Biodiversidade Área de concentração: Ecologia Orientador: Prof. Dr. Rodrigo Leão de Moura Coorientador: Prof. Dr. Fernando Zaniolo Gibran (UFABC) Ilhéus, Bahia 2014 iii L541 Lellys, Nicole Tiburcio. Ecomorfologia, performance alimentar e bioerosão de burdiões da subfamília scarinae (Actinopterygii : Labridae) no Banco dos Abrolhos, Bahia / Nicole Tiburcio Lellys. – Ilhéus : UESC, 2014. Xii, 58f. : il. Orientador : Rodrigo Leão de Moura. Coorientador : Fernando Zaniolo Gibran. Dissertação (mestrado) – Universidade Estadual de Santa Cruz. Programa de Pós-graduação em Ecologia e Conservação, da Biodiversidade Inclui referências. 1. Peixes recifais – Alimentação - Abrolhos, Arquipélogo de. 2.Ecossistemas recifais – Abrolhos, Arquipélogo de. (BA). 3. Peixes – Espécies. I. Moura, Rodrigo Leão de. II. Gibran, FerNando Zaniolo. III. Título. CDD – 639.32 iv NICOLE TIBURCIO LELLYS Ecomorfologia, performance alimentar e bioerosão de budiões da subfamília Scarinae (Actinopterygii: Labridae) no Banco dos Abrolhos, Bahia Comissão examinadora: __________________________ Profª Drª Roberta Martini Bonaldo (USP) __________________________ Prof. Dr. Ronaldo Bastos Francini-Filho (UFPB) __________________________ Prof. Dr. Rodrigo Leão de Moura (Orientador – UESC) v AGRADECIMENTOS Muitas pessoas e instituições foram essenciais para a concepção e realização desse trabalho e deixo aqui a minha profunda gratidão em forma de palavras. Agradeço à CAPES pela bolsa de mestrado. A Conservação Internacional do Brasil pelo financiamento do projeto “Subsídios para conservação do budião-azul, Scarus trispinosus Valenciennes, 1840, no maior complexo coralíneo do Atlântico Sul”. Agradeço ao Prof. Dr. Rodrigo Leão de Moura pela orientação, dedicação, confiança, amizade e pela oportunidade tão desejada por mim de trabalhar em Abrolhos e me envolver com um grupo multidisciplinar que se empenha pela conservação dessa belíssima e diversa região. Ao Prof. Dr. Fernando Zaniolo Gibran pela valiosa coorientação, atenção e ensinamentos. Ao Prof. Dr. Ronaldo Francini-Filho pela parceria, amizade, aprendizados e insights recifais, e pelas contribuições como membro avaliador da dissertação. À Dr. Roberta Martini Bonaldo pelas enriquecedoras contribuições como avaliadora da dissertação, e por toda atenção e inspiração. À Coral Fortunato e Fernanda Cervi pela participação nas coletas dos budiões e todo importante apoio em Caravelas. À Jemilli e Clarinha pela ajuda no Laboratório de Oceanografia Geológica da UESC. A toda equipe do Projeto Rede Abrolhos/SISBIOTA pelas valiosas ajudas e experiências vivenciadas nas expedições à Abrolhos. Agradeço especialmente a Leila, Diego Bola, Ericka Guigui, Melina, Cynthia, Tiago Tigrão, Jomar, Arthur, Linda, Pedro, Guilherme, Patrícia, Aline, Daniel, Rafael... É imensurável como nossas saídas de campo foram enriquecedoras. A toda tripulação do Titan, Horizonte Aberto, Sanuk e Boto Cinza pelo incrível e incansável apoio (atenção apoio apoio!) e pelos tantos aprendizados em alto mar. Agradeço especialmente a Zá, Maurício Mau Mau e Carlinhos, aprendi muito com vocês. vi A toda equipe da Conservação Internacional da Base Marinha de Caravelas, pelo fundamental apoio. Especialmente a Eduardo Camargo, Danilo Araújo e Renata Pereira. Ao Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, especialmente à Deborah Faria, Fernanda Gaioto, Eliana Cazetta e Leandro Loguercio pelo empenho e dedicação ao programa, que inspiram a fazermos o que acreditamos; e a Iky e Amábile pelo apoio e carinhosa atenção de sempre. À Universidade Estadual de Santa Cruz pela infraestrutura e pessoal, em nome do Prof. Gil Marcelo Reuss e Prof. Ana Amélia do Laboratório de Oceanografia Geológica, e a Tiago, Gerson e Osmar, pelas tantas ajudas nos laboratórios e equipamentos. À minha turma de mestrado, Let, Mari, Iara, Lais, Leiza e Vini, pelas vivências, sufocos e alegrias compartilhadas, que se estendem a outros amigos do PPGECB, SAT e ZOO. À Olivença e toda equipe que me acolheu e tanto acrescentou na temporada de mestrado, muito especial conhecer e ter vocês como família, Renatinha, Narita, Nani, Suzane, Milena, Paul, Sassá, Tiagão, Siamens, João, Caio, Lucas, Ju, Gastón, Kena, Vini e vários outros queridos da eco-surf-comunidade. À Gab, minha incrível companhia diária, pelo amor, ajuda, paciência, força e tanto mais. À minha amada família, mainha, painho, Marcel e Lara, o apoio e carinho de vocês refletem em tudo que eu faço e em quem eu sou. Muita gratidão, respeito e amor. À Pernambuco por me fazer valorizar ainda mais o que está longe e me fortalecer. À Bahia por tudo que aprendo em suas terras e águas. À Abrolhos por me permitir mergulhar no seu incrível mundo recifal. Aos budiões pelo privilégio da conexão e conhecimentos. À Floresta de Iroko por me acalmar e encaminhar. E à natureza e todos os seus devas, por me fazerem parte dela. vii “Não somos metades que se encaixam, somos inteiros que se completam.” Fabricio Carpinejar viii RESUMO Os budiões (Perciformes: Labridae) formam um grupo diverso em ambientes recifais e podem representar a maior parte da biomassa de peixes nesses sistemas. Alimentam-se principalmente de algas e detritos e também podem incluir corais em suas dietas. As espécies são geralmente divididas em três grupos funcionais (podadores, raspadores e escavadores), com diversificação na morfologia bucal relacionada às diferentes formas de forrageio. Os budiões são considerados um grupo funcional crítico em ecossistemas recifais, atuando como controladores das macroalgas e como bioerosores. O objetivo deste trabalho foi comparar, do ponto de vista ecomorfológico, três espécies de budiões, Scarus trispinosus, Scarus zelindae e Sparisoma amplum, com ênfase na ecomorfologia, performance alimentar e bioerosão exercida por Sc. trispinosus, a maior espécie de budião e o peixe recifal mais abundante em Abrolhos, região que concentra os maiores recifes coralíneos do Atlântico Sul. A pré-maxila, o dentário e configuração da boca discriminaram as três espécies e as diferentes categorias de tamanho de Sc. trispinosus. O aparato bucal mais fraco e móvel de Sc. zelindae e de indivíduos menores das demais espécies indicaram que estes são predominantemente raspadores. Por outro lado, indivíduos maiores de Sc. trispinosus e Sp. amplum, com aparato bucal robusto e articulações simples, são predominantemente escavadores. Em Sc. trispinosus foi evidenciada uma forte relação entre o tamanho dos indivíduos, sua taxa de alimentação e o volume de substrato removido pelas mordidas, demonstrando um aumento progressivo em sua capacidade de escavação. Dependendo principalmente da frequência de consumo dos diferentes itens alimentares e de suas abundâncias relativas, as espécies terão papéis diferentes no sistema recifal. Em Abrolhos, por exemplo, a bioerosão é exercida apenas por indivíduos grandes de duas espécies de budiões (Sc. trispinosus e Sp. amplum). Para Sc. trispinosus, a principal delas, o volume de substrato recifal removido por indivíduos foi estimado em 206,94 cm³ por dia e 75.534,14 cm³ por ano. O cenário de sobrepesca, em intensificação, pode levar a reestruturações impactantes no funcionamento do ecossistema recifal, especialmente em sistemas com baixa diversidade e reduzida redundância funcional, tais como os recifes do Atlântico Sul. A supressão das maiores classes de tamanho, um dos primeiros efeitos da pesca, pode acarretar em tais reestruturações, com consequências ainda mal compreendidas. Palavras chave: ambientes recifais, herbivoria, morfologia funcional. ix ABSTRACT Parrotfishes (Perciformes: Labridae) form a diverse group in reef environments, and represent the majority of fish biomass in many ecosystems. They feed mainly on algae and detritus, but also include corals in their diet. The species are generally divided into three functional groups (grazer, scrapers and excavators), with diversification in mouth morphology related to different forms of foraging. Parrotfish are considered a critical functional group in reef ecosystems, acting as controllers of macroalgae and contributing to bioerosion. The objectives of this study were to compare the ecomorphology of three species of parrotfish, Scarus trispinosus, Scarus zelindae and Sparisoma amplum, with an emphasis on eco-morphology, feeding performance and bioerosion of Sc. trispinosus, the largest species of parrotfish and the most abundant in the Abrolhos Bank, a region with the highest coral reef diversity of the Southern Atlantic Ocean. Premaxilla, dentary and mouth configurations distinguish the three species and the different size categories of Sc. trispinosus. The weakest and most mobile oral apparatus of Sc. zelindae and the smaller individuals from the other species can be predominantly classified as scrapers. Contrastingly, individuals from the large category of Sc. trispinosus and Sp. amplum exhibit a robust oral jaw apparatus with simple joints and are predominantly classified as excavators. In Sc. trispinosus, a strong relationship was found between the size of the individuals, their feeding rate and volume of substrate removed from the bites, showing a progressive increase in their ability to excavate. Depending on the frequency of consumption of different food items, as well as the means of obtaining food and their relative abundances, species will have different roles in the reef system. In Abrolhos, bioerosion is exercised only by large individuals of the two parrotfish species (Sc. trispinosus and Sp. amplum). For Sc. trispinosus, the principal specie, the volume of reef substrate removed per individual per day was estimated to be 206.94 cm³ and erosion rates of 75,534.14 cm³ per year. The scenario of overfishing is intensifying and can lead to profound restructuring in the functioning of reef ecosystems, especially in systems with low diversity and low functional redundancy, such as South Atlantic reefs. The removal of the largest size classes of these species, one of the first effects of overfishing, may result in such restructurings, with consequences still poorly understood. Key words: coral reefs, herbivory, jaw morphology. x LISTA DE TABELAS Table 1. Eigenvalues, variance, eigenvectors and r values extracted for the two Principal Components of the ordination with the morphometric and osteological attributes of the three species (Scarus trispinosus, Sc. zelindae and Sparisoma amplum)…………………..…….15 Table 2. One-way ANOVA for ecomorphological attributes for Scarus trispinosus, Sc. zelindae and Sparisoma amplum in the two size categories…..........................………..……..18 Table 3. Mean for the morphometric attributes and osteological attributes calculated for small and large category of Sc. trispinosus, Sc. zelindae and Sp. amplum...................……..19 Table 4. Eigenvalues, variance, eigenvectors and r values extracted for the two Principal Components of the ordination with the morphometric and osteological attributes of the six size categories of Sc. trispinosus……………………………………………………............………..……..22 Table 5. One-way ANOVA for the 11 ecomorphological attributes of the six size categories of Scarus trispinosus..…………….…..............…………………………………....................…….…..……..25 Table 6. Mean values of the morphometric and osteological attributes of Scarus trispinosus…………………….……............………..……..…………………………………............………..……..26 Table 7. Feeding rates, proportion of significant bites, bite volume and daily feeding rates for each size-category of Sc. trispinosus studied in the Abrolhos Bank, Brazil..………..……..27 Table 8. One-way ANOVA performed on feeding rates, proportion of significant bites, bite volume and feeding periods comparing the six size categories of Sc. trispinosus…....……..27 Table 9. Parameters used for estimating bioerosion rates of Sc. trispinosus.……..…...……..29 xi LISTA DE FIGURAS Figura 1. Indivíduos adultos (40-60 cm) das três espécies de budiões estudadas: Scarus trispinosus, Scarus zelindae e Sparisoma amplum...……………………………………...........….........4 Figure 1. Map of the study region showing the Abrolhos National Marine Park boundaries and sampling sites…………………………………………………………………...........………………………….…11 Figure 2. Distribution of the three parrotfish species and sizes in a two-dimensional morphospace based on scores from the first two principal components from morphometric attributes.................................…......................……........….........……..………..16 Figure 3. Distribution of the three parrotfish species and sizes in a two-dimensional morphospace based on scores from the first two principal components from osteological attributes ……..………………………………………………………………………………………………………………..18 Figure 4. Premaxilla and dentary of Scarus trispinosus, Sc. zelindae and Sparisoma amplum………….………….………….………….………….………….………….………….………….………………….21 Figure 5. Maxilla and articular of Scarus trispinosus, Sc. zelindae and Sparisoma amplum…………….….………….………….………….………….………….………….………….………….…………..21 Figure 6. Distribution of the six size classes of Scarus trispinosus in a two-dimensional morphospace, based on scores from the first two morphometric principal component axes................................................................................................................……….............23 Figure 7. Distribution of the six size classes of Scarus trispinosus individuals in a twodimensional morphospace, based on scores from the first two osteological principal component axes.........................................................................................……...................24 xii Figure 8. Feeding rates of Sc. trispinosus throughout the Diurnal period...........................28 Figura 9. Daily feeding of Sc. trispinosus with a quadratic polynomial trend line fitted to the data.………......................................................................................................................28 xiii SUMÁRIO RESUMO..............................................................................................................................viii ABSTRACT............................................................................................................................ix LISTA DE TABELAS.................................................................................................................x LISTA DE FIGURAS.................................................................................................................xi INTRODUÇÃO GERAL.............................................................................................................1 ARTIGO: ECOMORPHOLOGY, FEEDING PERFORMANCE AND BIOEROSION OF PARROTFISHES (LABRIDAE: SCARINAE) IN EASTERN BRAZIL..................................................6 CONCLUSÕES.......................................................................................................................49 REFERÊNCIAS BIBLIOGRÁFICAS...........................................................................................51 1 INTRODUÇÃO GERAL Os budiões (Labridae: Scarinae) representam um dos mais importantes grupos funcionais em ambientes recifais tropicais e subtropicais (STREELMAN et al., 2002). São peixes de médio a grande porte de coloração vistosa, e possuem dentes fundidos com pré-maxila e dentário caracteristicamente em forma de bico de papagaio, o que lhes permite obter alimento aderido a substratos duros (BELLWOOD; CHOAT, 1990). O budiões se alimentam principalmente de algas filamentosas e calcárias incrustantes associadas a rochas e corais (BELLWOOD; CHOAT, 1990; CHOAT, 1991; BRUGGEMANN et al., 1994a). Algumas espécies de budiões são consideradas herbívoro-detritívoras ou detritívoras, pelo fato da maior parte de suas dietas incluir considerável quantidade de detritos (CROSSMAN et al., 2001; WILSON et al., 2003). Os recifes coralíneos são ambientes cuja estrutura é moldada por interações dinâmicas entre processos de construção e desgaste, tais como a calcificação de corais e algas e a erosão por agentes físicos e biológicos. Os budiões participam ativamente deste processo e são importantes agentes bioerosivos nos sistemas recifais (BELLWOOD et al., 2003). Hunte,W. &Wittenberg, M. Effects of eutrophication and sedimentation on juvenile corals. II. Settlement. Mar. Biol. 114, 625–631 (1992). 47. Steneck, R. S., in 6th International Coral Reef Symposium (eds Choat, J. H. C. et al.) Vol. 1 37–49 (6th International Coral Reef Symposium Executive Committee, Townsville, 1988). 48. Os budiões podem ser categorizados do ponto de vista funcional em três grupos, podadores, raspadores e escavadores, em função de sua morfologia e hábitos alimentares (BELLWOOD; CHOAT, 1990; STREELMAN et al., 2002). Os budiões podadores se alimentam de algas epilíticas e turf (i.e. associações entre diferentes tipos de microalgas, detritos e micro-organismos) que recobrem o substrato, mordendo-o superficialmente, sem causar impacto à matriz calcária do recife (BELLWOOD; CHOAT, 1990; HUGHES, 1994) Os raspadores, além de retirarem a cobertura do substrato ao se alimentar, chegam a raspar levemente a matriz calcária, abrindo espaço para o recrutamento de organismos 2 incrustantes (BELLWOOD; CHOAT, 1990; BRUGGEMANN et al., 1994b; 1996). Já os budiões escavadores possuem mordidas mais fortes, sendo capazes de remover pedaços consideráveis da matriz calcária, sendo reconhecidos como os principais agentes bioerosivos dos recifes (BELLWOOD; CHOAT, 1990; BELLWOOD et al., 2003). Os budiões raspadores e escavadores contribuem para o recrutamento de corais e algas calcárias incrustantes ao promoverem a abertura de novos espaços para recolonizações e subsequentes sucessões ecológicas, como observado no Atlântico (e.g. LEWIS, 1986; BRUGGEMANN, 1995), Pacífico (e.g. BELLWOOD, 1995a, b, 1996) e Índico (e.g. LETOURNEUR, 1996). Desta forma, a intensa atividade alimentar dos budiões atua no controle “descendente” (top-down) na cadeia alimentar, interferindo no balanço competitivo entre algas frondosas, corais e algas calcárias incrustantes, sendo fundamentais para a resiliência e saúde dos recifes com corais (BELLWOOD; CHOAT, 1990; HUGHES, 1994; BELLWOOD et al., 2004; HOEGH-GULDBERG et al., 2007; BONALDO et al., 2014). Embora os budiões escavadores possuam maior força no aparato bucal para retirar pedaços do substrato, eles não deixam marcas visíveis em todas as investidas contra o substrato (BRUGGEMANN et al., 1996), pois estas marcas dependem da dureza do substrato e da investida do budião. Quantificar a proporção de mordidas que deixam marcas evidentes na matriz calcária (i.e. são significativas para a bioerosão) e mensurar o volume retirado por tais investidas permite compreender melhor o impacto desses escavadores no saldo de crescimento e desgaste dos recifes coralíneos. O potencial de escavação do substrato varia também de acordo com a espécie e o tamanho dos budiões, e estes aspectos irão influenciar o grau de bioerosão causada pelas suas populações e como elas atuam na manutenção de ambientes recifais coralíneos (BELLWOOD; CHOAT, 1990; BRUGGEMANN et al., 1996; BONALDO; BELLWOOD, 2008). Durante o crescimento, os budiões podem apresentar mudanças morfológicas e comportamentais marcantes e, dessa forma, desempenhar papéis funcionais diferentes. 3 Além disso, a maior parte das espécies possui duas fases adultas distintas, com transição rápida e relacionada ao hermafroditismo protogínico, social e demograficamente controlado. Indivíduos na fase “terminal” (machos adultos) geralmente apresentam cores mais conspícuas do que indivíduos na fase “inicial” (jovens, fêmeas ou, mais raramente, machos maduros) (CHOAT; ROBERTSON, 1975; HAWKINS; ROBERTS, 2003). Devido a tais mudanças ontogenéticas, a taxonomia dos budiões é complexa (e.g. MOURA et al. 2001). Além disso, estudos filogenéticos recentes concluíram que a tradicional família Scaridae deveria ser incluída como uma tribo de Labridae (CLEMENTS et al., 2004; WESTNEAT; ALFARO, 2005; COWMAN et al., 2009). Essa tribo, Scarini, é composta por 10 gêneros e cerca de 100 espécies (PARENTI; RANDALL, 2011). Em grupos monofiléticos, espécies morfologicamente similares frequentemente ocorrem em simpatria (SCHMITT; COYER, 1982). A coexistência de tais competidores em potencial é possível em função de divergências morfológicas e/ou comportamentais que resultam em partilha de recursos ou compressão dos nichos realizados (SCHOENER, 1974). Uma das formas de avaliar o desempenho das espécies envolve a utilização do complexo formafunção e, consequentemente, da relação entre morfologia e papel ecológico (MOTTA; KOTRSCHAL, 1992; MOTTA et al., 1995). Essa abordagem envolve a utilização de atributos ecomorfológicos (e.g. índices morfométricos e osteologia) como indicadores de hábitos e adaptações para o uso de determinados hábitats (GATZ, 1979; WINEMILLER, 1991), sendo útil para explorar convergências e divergências adaptativas (e.g. GIBRAN, 2007, 2010). Estudos ecomorfológicos sobre peixes recifais do Atlântico Sul são relativamente recentes (e.g. STREELMAN et al., 2002; GIBRAN, 2007), e não há estudos sobre budiões na região. Das aproximadamente 100 espécies de budiões (PARENTI; RANDALL, 2011), 10 são endêmicas do Atlântico Sul e ocorrem nos recifes de Abrolhos, sendo duas do gênero Scarus, cinco do gênero Sparisoma, uma do gênero Nicholsina e uma do gênero Cryptotomus. Dentre estas, três destacam-se pela sua frequência de ocorrência, abundância e funcionalidade: o budião-azul, Scarus trispinosus Valenciennes, 1984; o 4 budião-de-Zelinda Scarus zelindae (Moura, Figueiredo & Sazima, 2001) e o budiãovermelho Sparisoma amplum (Ranzani, 1842) (Fig. 1). Scarus trispinosus, a espécie de budião mais abundante em Abrolhos, tem sido uma das mais pescadas, com significativa redução populacional ao longo dos últimos anos (FRANCINI-FILHO; MOURA, 2008a, b). Essa é a única espécie de budião do Atlântico Sul incluída na categoria “em perigo de extinção” na Lista Vermelha de Espécies da IUCN (COMEROS-RAYNAL et al., 2012). Figura 1. Indivíduos adultos (40-60 cm) das três espécies de budiões estudadas: Scarus trispinosus (A), Scarus zelindae (B) e Sparisoma amplum (C). Fotos: A e C: Daniel Sartor; B: Ronaldo B. Francini-Filho. Em ambientes recifais brasileiros, estudos sobre budiões têm sido focados em aspectos relacionados à sua alimentação, com ênfase no forrageamento (e.g. BONALDO et al., 2006, FRANCINI-FILHO et al., 2010), dieta (e.g. FERREIRA; GONÇALVES, 2006) e predação de corais (FRANCINI-FILHO et al., 2008), não havendo trabalhos voltados a explorar as conexões entre design e performance. O alto nível de degradação nos recifes brasileiros (MOURA et al., 2010), que apresentam baixa riqueza e reduzida redundância funcional, demanda uma melhor compreensão dos processos ecológicos e evolutivos relacionados à resiliência e à manutenção de propriedades funcionais desses sistemas. Assim, a identificação de espécies-chave e dos papéis que elas desempenham é uma prioridade para o delineamento de medidas de conservação, uma vez que mudanças nas abundâncias e/ou frequências de ocorrência de determinadas classes de tamanho, podem trazer consequências para toda a comunidade recifal. O presente trabalho explorou relações entre forma e função de estruturas relacionadas à alimentação em três espécies de budiões comuns no Banco dos Abrolhos, Sc. trispinosus, 5 Sc. zelindae e Sp. amplum. O estudo teve ênfase na ontogenia, performance alimentar e bioerosão de Sc. trispinosus, buscando contribuir para elucidar o papel funcional dos budiões desempenham nos recifes do Atlântico Sul. OBJETIVO GERAL Explorar, dentro da abordagem ecomorfológica comparativa, estruturas relacionadas à alimentação de três espécies de budiões comuns no Banco dos Abrolhos, Sc. trispinosus, Sc. zelindae e Sp. amplum, com ênfase na ontogenia, na performance alimentar e na bioerosão desempenhada por Sc. trispinosus, a maior espécie de budião e o peixe recifal mais abundante nessa região. OBJETIVOS ESPECÍFICOS Descrever e quantificar semelhanças ecomorfológicas entre as três espécies estudadas; Avaliar variações ontogenéticas relacionadas à ecomorfologia de Sc. trispinosus; Avaliar as taxas de alimentação de Sc. trispinosus, a fração e os volumes de mordidas que deixam marcas evidentes no substrato; Estimar as taxas de bioerosão diária e anual por Sc. trispinosus. 6 ECOMORPHOLOGY, FEEDING PERFORMANCE AND BIOEROSION OF PARROTFISHES (LABRIDAE: SCARINAE) IN EASTERN BRAZIL Nicole Tiburcio Lellys Parrotfishes from the Scarine tribe (Perciformes: Labridae) form a diverse group in reef environments, and represent the majority of fish biomass in many of these ecosystems. These fishes feed mainly on algae and detritus, but can also include corals in their diet. The species are generally divided into three functional groups (grazer, scrapers and excavators), with diversification in jaw apparatus related to different forms of foraging. Parrotfish are considered a critical functional group in reef ecosystems, acting as controllers of macroalgae and contributing to bioerosion. The objectives of this study were to compare the ecomorphology of three species of parrotfish, Scarus trispinosus, Sc. zelindae and Sparisoma amplum, with an emphasis on ecomorphology, feeding performance and bioerosion of Sc. trispinosus, the largest species of parrotfish and the most abundant in the Abrolhos Bank, a region with the highest coral reef diversity of the Southern Atlantic Ocean. Premaxilla, dentary and mouth configurations distinguish the three species and the different size categories of Sc. trispinosus. The weakest and most mobile oral apparatus of Sc. zelindae and the smaller category from the other species can be predominantly classified as scrapers. Contrastingly, individuals from the large category of Sc. trispinosus and Sp. amplum exhibit a robust oral jaw apparatus with simple joints and are predominantly classified as excavators. In Sc. trispinosus, a strong relationship was found between the size of the individuals, their feeding rate and volume of substrate removed from the bites, showing a progressive increase in their ability to excavate. Depending on the frequency of consumption of different food items, as well as their relative abundances, species will have different roles in the reef system. In Abrolhos, bioerosion is exercised only by large individuals of the two parrotfish species (Sc. trispinosus and Sp. amplum). For Sc. trispinosus, the principal specie, the volume of reef substrate removed per individual per day was estimated to be 206.94 cm³ and erosion rates of 75,534.14 cm³ per year. The scenario of overfishing is intensifying and can lead to profound restructuring in the functioning of reef ecosystems, especially in systems with low diversity and low functional redundancy, such as South Atlantic reefs. The removal of the largest ones of these species, one of the first effects of overfishing, may result in such restructurings, with consequences still poorly understood. Key words: coral reefs, herbivory, jaw morphology, Abrolhos Bank. 7 INTRODUCTION Parrotfishes (Labridae: Scarinae) are a speciose clade (~100 species in ten genera) that is considered one of the most important functional groups in reef ecosystems (Streelman et al. 2002). In tropical regions they may be the dominant group in terms of fish biomass (up to 50% of fish biomass) and consumption of the benthic primary production, controlling algal blooms (Horn 1989; Bellwood et al 2004). Parrotfishes are characterized by unique beak-like fused teeth within a specialized jaw apparatus that allows highly effective feeding on algae attached to hard substrates (Bellwood & Choat 1990). Although generally categorized as herbivores, parrotfishes might be more appropriately placed into an herbivore-detritivore guild of large-bodied roving and schooling fishes (Wilson et al. 2003), as their diet may include large amounts of detritus (Crossman et al. 2001; Wilson et al. 2003). Corallivory is also frequent among parrotfishes and may partially counterbalance their positive effects over corals (Mumby 2009). Indeed, diet and feeding behavior commonly change during development, and can also differ among species and areas (Bellwood 1988, Choat et al. 2002). Therefore, parrotfishes’ role in reef systems may be variable, depending on the regional species pool and on their density and body-size distribution, besides context-dependent availability of food resources (Bonaldo & Bellwood, 2008, 2014). Globally, reefs are facing increasing impacts from climate change, eutrophication and overfishing (Harvell et al. 2002; Hughes et al. 2003; Bellwood et al 2004). Therefore, it is increasingly important recognize the functional traits of these highly diverse and productive ecosystems. In the last two decades, following the widespread demise of carnivorous fish from overfishing, parrotfishes became a preferred target in reef fisheries (Jackson et al. 2001; Comeros-Raynal et al. 2012), leading to decreasing densities and extirpation of larger size-classes. Understanding the different functional performances of parrotfishes allows for the identification of their specific roles in ecosystem functioning, 8 and their potential contribution to reef health under such restructured parrotfish assemblages (Wainwright et al 2002). Based on functional morphology, ecology and size, parrotfishes are grouped into three functional groups (Bellwood & Choat 1990). Browsers feed mainly on algae and detrital material overlying the substrate, without exerting significant impacts on the reef matrix, but significantly reducing algal growth (Hughes 1994; McCook et al. 2001). Scrapers remove thin substrate pieces while feeding, potentially facilitating the settlement and survival of coral and coralline algae recruits (Hunte & Wittenberg 1992; Steneck 1988; McCook et al. 2001). Excavators are those that can leave large and well-evident scars on the carbonatic framework (Bellwood & Choat 1990; Bellwood et al. 2003), and this feeding mode is considered one of the main bioerosion pathways in tropical reefs (Bellwood & Choat 1990; Bruckner et al. 2000; Streelman et al. 2002). Excavators remove crustose calcareous algae, turf and/or epilithic algae, exposing new areas of the reef matrix for colonization (Bellwood et al. 2003, 2004). This latter feeding mode is considered one of the main bioerosion pathways in tropical reefs (Bellwood & Choat 1990; Bruckner et al. 2000; Streelman et al. 2002), but detailed information about jaw morphology, feeding behavior and actual bioerosion capabilities are lacking for most species, impeding a thorough recognition of the roles of parrotfishes in reef ecosystems across the globe. The tropical Southwestern Atlantic (Brazil) encompasses some of the world’s least known reef systems, with low species diversity (~20 species of reef building corals, 50% endemic) and high levels of endemism and threat (deforestation, pollution, urban sprawl, overfishing) concentrated in a small reef area (5% of Atlantic reefs) (Moura 2000). The region’s largest and richest biogenic reefs occur across the 45,000 km 2 of relatively shallow waters in the Abrolhos Bank (Moura et al. 2013), where six Brazilian-endemic parrotfishes are known to occur (Moura et al. 2001; Moura & Francini-Filho 2006). Three of those species are remarkable for their large size, abundance and potential disproportionate role in ecosystem functioning: the greenbeack parrotfish, Sc. trispinosus, 9 the zelinda’s parrotfish, Sc. zelindae, and the red parrotfish, Sp. amplum; all recognized as potential excavators depending on body size (Ferreira & Gonçalves 2006; Francini-Filho & Moura 2008a; Francini-Filho et al. 2008). These three sympatric species occurring in a low diversity system which provide a relevant context to explore different functional roles, once just few parrotfishes species perform important functions (Francini-Filho et al. 2008, 2010). In addition, although the greenbeack parrotfish is still the most abundant reef fish in the Abrolhos Bank (Francini-Filho & Moura 2008a,b), it is already red-listed as an Endangered Species, as its abundance has fallen dramatically along most of its distribution range (Padovani-Ferreira et al. 2012). Previous studies in Brazilian reefs investigated selected aspects of parrotfish foraging activity (Bonaldo et al. 2006; Francini-Filho et al. 2010), diet (Ferreira & Gonçalves 2006) and corallivory (Francini-Filho et al. 2008a), but there is a lack of studies connecting design and performance (e.g. Motta & Kotrscha 1992; Wainwright et al. 2002) and addressing specific feeding and bioerosion capabilities of these species (e.g. Bellwood & Choat 1990; Bellwood 1995a; Bruggemann 1996). Ecomorphology links morphology to ecology through performance assessments (Wainwright 1994, 1996), using osteological and morphometric attributes as indicators of interactions between the organism and its habitats (Gatz 1979; Winemiller 1991, 1992; Gibran 2010). Given the high level of degradation in the low diversity Brazilian reefs, studies with key species should be particularly relevant to understand how critical functional groups, like parrotfishes, impact the whole community (Bellwood et al. 2004; Estes et al. 2011). Here, we explored functional aspects of three large-bodied sympatric parrotfishes: the Greenbeack (Sc. trispinosus), Zelinda (Sc. zelindae) and Red parrotfish (Sp. amplum), using the ecomorphological approach and accounting for ontogenetic variation. We also explored the feeding and bioerosion rates of the greenbeack parrotfish, the main excavator parrotfish in the South Atlantic, with the aim to provide a first estimate of its role as a bioeroder in this poorly know region with very specific and unique characteristics. 10 MATERIALS AND METHODS Study Area The Abrolhos Bank (16-20S, 37-39W) encompasses three main benthic megahabitats: rhodolith beds (~20,900 km²), unconsolidated sediments (~9,200 km²) and coralline reefs (~8,800 km²) (Moura et al. 2013). The four sampling sites included in this study are located within the reef megahabitat, encompassing two reef arcs: one closer to the coast (~12 km offshore) and more exposed to natural and anthropogenic impacts (e.g. sedimentation, fishing) (sites Pedra de Leste and Timbebas) and the other in the mid shelf (~60 km offshore), less impacted by land-based stressors (sites Abrolhos Archipelago and Parcel dos Abrolhos). Sites in the outer arc are included within a relatively well enforced no-take zone of the Abrolhos National Marine Park (ANMP) (Francini-Filho & Moura 2008). In the inner arc, most reefs are included in a large “paper park” and are open to intense fishing, with the exception of Timbebas, which is included in a partially protected zone of the ANMP. The sampled sites (Fig. 1) include rocky reefs with sparse corals in the Archipelago and coralline reefs in the inner and outer arc, these latter formed by mushroom-shaped pinnacles that reach near the surface and may have fused tops forming larger banks (Laborel 1969; Francini-Filho et al. 2013). Soft sediments, seagrass (Halodule and Halophila) and algal bottom surround the reefs, with the largest vegetated bottoms around the Archipelago (Creed & Amado-Filho 1999). 11 Figure 1. Map of the study region showing the Abrolhos National Marine Park boundaries (gray polygons) and sampling sites: (1) Pedra de Leste (inner arc, unprotected reef), (2) Timbebas (inner arc, partially protected reef), (3) Abrolhos Archipelago (enforced no-take zone; Marine Protected Area), (4) Parcel dos Abrolhos (outer arc, enforced no-take zone; Marine Protected Area). Ecomorphology For intraespecific and interespecific comparisons of the ecomorphology of the three studied parrotfishes, we have analysed the structure of jaw apparatus of specimens collected across the study region (n=29). At least three individuals of each species, for each of the two size categories (small and large, see below), were used for interspecific comparisons. Only similar-sized specimens (less than 20% of variation) were included in each size class, to avoid allometric growth effects (Wikramanayake 1990). While the three species are protogynous hermaphrodites, only Sc. zelindae and Sp. amplum have remarkable dichromatism (Moura et al. 2001). Therefore, for Sc. zelindae we used initial phase (IP) individuals 20cm of total length (TL) (small size class) and terminal phase (TP) 12 individuals 35cm TL (large size class), while for Sp. amplum we used IP individuals 25cm TL (small size class) and TP individuals 60cm TL (large size class). For Sc. trispinosus, individuals 25cm TL were included in the small size class, and individuals 55cm TL in the large size class. For the intraspecific analysis of Sc. trispinosus we used 3-7 individuals in each of the following sizes (also with less than 20% of variation): 15, 20, 30, 40, 50, 60 cm TL (n=28). Structures associated to feeding were measured in fresh specimens that were further preserved in 10% formalin. To reduce the weight of one or a few variables, as well as to allow for biological and functional interpretations (Keast & Webb 1966; Winemiller 1991), five ecomorphological attributes were calculated following Gatz (1979) and Gibran (2007, 2010): (1) Head Length (HL), maximum length of the head divided by Standard Length (SL); (2) Mouth Width (MW), interior lateral dimension of the mouth (fully opened) divided by SL; (3) Mouth Height (MH), dorsal-ventral dimension of the mouth (interior) divided by SL; (4) Mouth Configuration (MC), interior dorsal-ventral dimension of the mouth divided by its lateral dimension (interior); (5) Head Configuration (HC), dorsal-ventral dimension of the head divided by its lateral dimension at the eyes’ level. The five principal structures of the jaw apparatus were extracted by boiling and were subsequently dried and weighted (Bellwood & Choat 1990): (1) Premaxilla (P); (2) Maxilla (M); (3) Dentary (D); (4) Articular (A) and (5) Suspensorium (S). The operculum (O) was also analyzed and was included as a control, representing a structure that is unrelated to feeding (Bellwood & Choat 1990). Osteological attributes were calculated using the weight of the bones relative to the weight of eviscerated specimens, to reduce bias related to the repletion level of the digestive tube and/or maturity stage. To assess morphological similarity, rectangular data matrices with the mean values of morphometric and osteological attributes were transformed into variance/covariance matrices and submitted to Principal Component Analyses (PCA) using the Past Software 13 ver. 2.16 (Hammer et al. 2001). The use of ratios allows for the interpretation of the first PCA orthogonal axis as a shape-related axis, rather than size-related, also reducing the chance of bias due to dominance of a single variable, such as body size (Winemiller 1991). One-way analysis of variance (ANOVA) and the Student-Newman-Keuls (SNK) post hoc test (Zar 1999) were employed to compare the morphometric and osteological attributes among the six morphotypes (three species, each one with two size classes). Feeding activity and bioerosion (performance) of Sc. trispinosus Feeding activity and bioerosion estimates were conducted by four divers in February 2012 and 2013, at four sites (Fig. 1). Observations were evenly distributed along the day and started just after sunrise, before initiation of feeding, lasting until 18:00, when all parrotfish feeding had ceased. Feeding rates were quantified in replicate 1-minute observation periods (cf. Francini-Filho et al. 2008a) during which we recorded the number of bites for fishes in six size categories (total lenght, TL): 10-15, 20-25, 30-35, 40-45, 50-55 and 60-70 cm (n=298). Observations were discarded if the individual was lost from sight or showed disturbance signs. Four periods were further used to analyze daily feeding patterns: morning (06:00-09:00), late morning (09:01-12:00), afternoon (12:01-15:00) and late afternoon (15:01-18:00). Additional observations were done by following individuals (15-60 cm TL) until a visible bite was located. Total number of bites was noted, with forays used as replicas (n=225). A foray consisted in a series of bites with no visible interval between them (cf. Bellwood & Choat, 1990). The observer also checked how many bites left visible marks, assessing the number of significant bites (i.e. those leaving grazing scars) in a foray event (Bruggemann 1996). For bioerosion estimates, grazing scars (n=39, individuals >30 cm TL) were collected with hammer and chisel, always on a same substratum type: calcareous matrix covered by crustose calcareous algae (CCA) turf and epilithic algae. The size of the individual that left the scar was noted and the sample was brought to the surface, labeled, photographed, fixed in 4% formalin and subsequently stored in 10% alcohol. In the laboratory, scars were 14 analyzed for bite volume using alginate impressions with chlorhexidine (cf. Bellwood 1995a). Five molds of each bite were made to minimize filling errors. After drying, molds were removed and weighed, and the volumes of the bites were estimated based on mean weight of the five molds and alginate density. For estimating daily feeding rates, time was standardized to minutes after midnight and day length (DL) was taken as the time from sunrise to sunset (Bellwood 1995a). Feeding day length (FDL) is defined as the time from the first recorded bite to the last recorded bite on a given day (recorded in minutes). The proportion of the day spent feeding equals to FDL x 100/DL (Bellwood 1995a). To calculate the total number of bites taken in a day, feeding rate (adjusted to bites/min) was plotted against time. As feeding initiation and termination was abrupt, all zero values were removed. A quadratic polynomial line was then fitted to the data and the area under the curve was calculated, representing the total number of bites taken on that day (cf. Bellwood 1995a). To ensure a representative sample size, calculations were made for two pooled size categories (<29 and > 30 cm TL). Erosion rates were estimated using bite volumes, significant bites and daily feeding rates from fish >30 cm TL (i.e. those leaving significant bites and consistently contributing to bioerosion). Erosion rates estimates follow Bellwood (1995a), with the modification proposed by Bruggemann (1996), as follows: Erosion rate per bite (m³ x bite¯¹) = mean bite volume x proportion of significant bites. Erosion rate per day (m³ x ind¯¹ x d¯¹) = erosion rate per bite x mean daily bite rate. Annual erosion rates were calculated by multiplying daily rates by 365, with overall error terms calculated using the Goodman's estimator (Travis 1982). A regional extrapolation of total bioerosion by Sc. trispinosus was done from mean density data collected during five subsequent summers (2005-2009) in eight sites within the inner arc, five in the outer arc 15 and five in the Archipelago. Fish counts were performed using a stationary visual census technique (Minte-Vera et al. 2008), with individuals recorded in the following size classes: <10, 10-20, 21-30, 31-40, >40cm TL. Fifteen to 20 samples were obtained per site/year, totaling 1,999 samples. Mean density of Sc. trispinosus (indiv./m2) for fishes > 30cm were estimated for each of the three areas (inner arc, outer arc and Archipelago) and were extrapolated to their respective areas, obtained from remote sensing (Moura et al. 2013). Abundance of Sc. trispinosus individuals >30 cm TL were further multiplied by the individual bioerosion rates. RESULTS Ecomorphology In the PCA ordination with morphometric attributes of the three species most of the variance (99.98%) was explained by the two principal components (PC), with the first axis (PC1) accounting for 61.3% of the variation, and the second (PC2) accounting for 38.7% (Tab. 1). These two PC were largely influenced by mouth and head configurations (Tab. 1 and Fig. 2), with a clear discrimination of small and large specimens (negative and positive values on PC 2, respectively), for all species (Fig. 2). Table 1. Eigenvalues, variance, eigenvectors and r values of the two Principal Components of the ordination with morphometric and osteological attributes from Scarus trispinosus, Sc. zelindae and Sparisoma amplum. Eigenvalues % variance total variance Morphometrics attributes Axis 1 Axis 2 0,141 0,089 61,29 38,69 99,98 Eigenvectors r Eigenvectors r 16 Mouth configuration Head configuration Mouth height Mouth width Head length Eigenvalues % variance total variance Dentary Premaxilla Suspensorium Maxilla Operculum Articular 0,7732 0,8384 -0,6326 -0,545 0,6331 0,7173 0,774 0,6968 0,02676 0,885 -0,01321 -0,3473 -0,02379 -0,7688 0,02319 0,5953 -0,003325 -0,2931 -0,002449 -0,1715 Osteological attributes Axis 1 Axis 2 1,27E-06 1,34E-07 89,759 9,5245 99,28 r r Eigenvectors Eigenvectors 0,6878 0,9535 -0,6641 -0,2999 0,6711 0,9437 0,722 0,3307 0,2536 0,9406 -0,1509 -0,1823 0,08577 0,92 0,07489 0,2617 0,05549 0,8293 0,09369 0,4561 0,04269 0,93 -0,02385 -0,1692 17 Figure 2. Distribution of the three parrotfish species and two size classes (S = small; L = large) in a two-dimensional morphospace based on scores from the first two principal components from morphometric attributes (cumulative % of variance = 99.98%; see Table 1). MW = Mouth Width; HL = Head Length; MH = Mouth Height. In the ordination with osteological attributes, most of the variance (99.28%) was explained by the two first principal components (PC1 accounting for 89.8% and PC2 for 9.52% of the total variation), with dentary, premaxilla and suspensorium representing the most influential attributes (Tab. 1; Fig. 3). Considering the relative weight of bony structures as an indicative of their relative strength, PC1 discriminated the size classes with the greatest excavating potential (right side) (Fig. 3), while PC2 corresponds to osteological discrimination between the two genera, with Sc. trispinosus presenting the strongest premaxilla and large individuals of Sp. amplum the strongest dentary. The Oneway Analysis of Variance (ANOVA) showed significant differences (p<0.05) among all ecomorphological attributes (morphometric and osteological) with the exception of head length (HL; p=0.95) (Tab. 2). 18 Figure 3. Distribution of the three parrotfish species and sizes (S = small; L = large) in a two-dimensional morphospace based on scores from the first two principal components from osteological attributes (cumulative % of variance = 99.28; see Table 1). MA = maxilla; OP = operculum; AR = articular. Table 2. One-way ANOVA with the 11 ecomorphological attributes for Scarus trispinosus, Sc. zelindae and Sparisoma amplum in the two size categories (small and large). Highest F values are highlighted in bold. df = degrees of freedom; SS = sum of squares. Source Mouth width df SS F P 5 0.003 6.00 0.0011 19 Mouth height 5 0.004 3.86 0.0110 Mouth configuration 5 3.374 4.05 0.0088 Head configuration 5 2.308 5.33 0.0021 Head length 5 0.000 0.21 0.9536 Premaxilla 5 0.000 36.12 0.0000 Dentary 5 0.000 28.30 0.0000 Maxilla 5 0.000 6.49 0.0007 Articular 5 0.000 7.58 0.0002 Suspensorium 5 0.000 9.22 0.0001 Operculum 5 0.000 10.18 0.0000 The SNK post hoc test evidenced four groups aggregated by similarities in the mean values of the premaxilla (Tab. 3) and three groups by similarities in the mean value of the dentary (Tab. 3) of the small and large categories of Sc. trispinosus, Sc. zelindae and Sp. amplum. The premaxilla of small Sc. zelindae and small Sp. amplum had the lowest mean values, while small Sp. amplum were similar to small Sc. trispinosus and large Sc. zelindae, and just this last one had equal statistics to large Sp. amplum. Large Sc. trispinosus had the highest premaxilla values, significantly different from all other entities. Analyzing the dentary, Small Sc. zelindae had the lowest mean values. Small Sc. trispinosus and Sc. zelindae, together with large Sc. zelindae presented similar values, while large Sc. trispinosus and large Sp. amplum had the higher dentary means, and those are significantly similar to each other. In the case of the morphometric means, attributes with highest F values were mouth width and head configuration (Tab. 3). Large Sp. amplum had the highest mouth width values, differing significantly from others species and sizes. On the other hand, small Sp. amplum showed the lowest head configuration value, which was significantly different from all others entities. Table 3. Mean values (±SE) for the five morphometric and six osteological attributes calculated for small (S) and large (L) individuals of Scarus trispinosus (Sca tri), Sc. zelindae (Sca zel) and Sparisoma amplum (Spa amp). MW = mouth width; MH = mouth height; MC = mouth configuration; HC = head configuration; HL = head length; PM = premaxilla; D = dentary; MA = maxilla; AR = articular; SU = suspensorium; OP = operculum. Means followed by the same lowercase letters indicate homogeneous groups (SNK test p>0.05). Morphometric attributes MW MH MC HC HL Sca tri (S) 0.06 (0.01) a 0.08 (0.02) a 1.59 (0.85) b 1.91 (0.11) a 0.33 (0.01) a Sca tri (L) 0.08 (0.01) b 0.05 (0.01) b 0.64 (0.17) a 1.80 (0.4) a 0.33 (0.01) a Sca zel (S) 0.06 (0.01) a 0.08 (0.01) a 1.36 (0.34) ab 1.72 (0.28) a 0.33 (0.03) a Sca zel (L) 0.06 (0) a 0.09 (0) ab 1.22 (0.03) ab 1.69 (0.05) a 0.34 (0.01) a Spa amp (S) 0.06 (0.01) a 0.08 (0.02) a 1.33 (0.23) ab 2.58 (0.38) b 0.33 (0.02) a Spa amp (L) 0.08 (0.01) b 0.07 (0.01) ab 0.89 (0.13) ab 1.88 (0.3) a 0.34 (0) a SU OP Osteological attributes PM D MA AR Sca tri (S) 0.0019 (±0.0001) a 0.0017 (±0.0004) a 0.0003 (±0.0001) ab 0.0002 (0) ab 0.0014 (±0.0002) a 0.0006 (±0.0001) a Sca tri (L) 0.0036 (±0.0006) d 0.0030 (±0.0004) b 0.0005 (±0.0001) b 0.0003 (0) c 0.0017 (±0.0002) b 0.0007 (±0.0001) a Sca zel (S) 0.0013 (±0.0002) b 0.0012 (±0.0001) c 0.0002 (0) a 0.0002 (0) a 0.0009 (±0.0001) a 0.0005 (0) b Sca zel (L) 0.0022 (±0.0001) ac 0.0018 (0) a 0.0004 (0) ab 0.0002 (0) 0.0013 (±0.0001) a 0.0006 (0) a Spa amp (S) 0.0017 (±0.0003) ab 0.0020 (±0.0003) a 0.0003 (±0.0001) a 0.0002 (0) a 0.0012 (±0.0003) a 0.0005 (0) b Spa amp (L) 0.0025 (±0.0003) c 0.0033 (±0.0006) b 0.0004 (0) ab 0.0003 (0) bc 0.0018 (±0.0004) b 0.0006 (±0.0002) a Morphology of jaws bones of the three studied species is shown in Figs 4 and 5. In Scarus, mouth closes with the premaxilla in front of the dentary, with an opposite situation in Sparisoma. The premaxilla of the two Scarus species exhibited a long ascending process (short in Sp. amplum) and the alveolar process lacks a maxillary fossa (present in Sp. amplum). Dental plates in both Scarus species are large and deep (small and shallow in Sp. amplum) and they present a large number of overlapped small teeth (one row of larger teeth in Sp. amplum). The maxillary facet of Sc. trispinosus is long and narrow and its cutting edges are crenate (relatively even in Sc. zelindae and Sp. amplum). Scarus trispinosus presented a relatively thick layer of blue-green cement (white in Sc. zelindae) and Sc. zelindae (L) has three lateral canines on the premaxilla at the end of the teeth row in the anterior part of the alveolar process. Two lateral canines are also present in Sp. amplum (absent from Sc. trispinosus). The dentary of the two Scarus species have coronoid process with rounded cutting edges (crenate in Sp. amplum) and a poorly developed articular socket (more extensive and well developed in Sp. amplum). The maxilla of Sp. amplum showed an unusual grooved process, where the maxillary arm abuts the premaxilla and the maxillary arm is limited to the alveolar process of premaxilla. Its premaxilla process is broad and elongate, extending vertically up to the middle of the bone. The articular of Sp. amplum is triangular, with a medial flange on the descending process extending up to the anterior ascending process (flange reduced to an articular medial spine in the two Scarus species). 22 Figure 4. Premaxilla (upper row) and dentary (lower row) of Scarus trispinosus (A), Sc. zelindae (B) and Sparisoma amplum (C). ASP = ascending process; DP = dental plates; ALP = alveolar process; LC = lateral canines; AP = articular process; AS = articular socket; CP = coronoid process. Figure 5. Maxilla (upper row) and articular (lower row) of Scarus trispinosus (A), Sc. zelindae (B) and Sparisoma amplum (C). PMP = premaxilla process; GP = grooved process; S = spine; F = flange. 23 There was strong ontogenetic variation in Sc. trispinosus (Fig. 6). The first PCA component (PC1) of the ordination with morphometric attributes (six size classes) explained 82.68% of the variance, and the two PC were largely influenced by mouth and head configurations (Tab. 4; Fig. 6). Table 4. Eigenvalues, variance, eigenvectors and r values extracted for the two Principal Components of the ordination with the morphometric and osteological attributes of six size categories of Scarus trispinosus (±15; ±20; ±30; ±40; ±50 and ±60 of total length). Morphometric attributes Eigenvalues % variance total variance Mouth configuration Head configuration Mouth height Mouth width Head length Axis 1 Axis 2 0.13094 82.68 0.0267976 16.921 99.6 Eigenvectors 0.992 0.1167 0.03291 -0.03507 -0.001453 r 0.9986 0.2515 0.8441 -0.8273 -0.02271 Eigenvectors -0.1164 0.9925 0.0003533 0.0102 -0.03526 r -0.05302 0.9679 0.0041 0.1088 -0.2494 Osteological attributes Eigenvalues % variance total variance Premaxilla Dentary Maxilla Articular Suspensorium Operculum Axis 1 2.01E-06 97.873 Axis 2 2.83E-08 1.3791 99.25 Eigenvectors 0.7521 0.606 0.07605 0.03632 0.2373 0.06053 r 0.7521 0.606 0.07605 0.03632 0.2373 0.06053 Eigenvectors -0.1835 -0.1775 0.1855 0.1081 0.8603 0.3855 r -0.1835 -0.1775 0.1855 0.1081 0.8603 0.3855 24 Figure 6. Distribution of the six size classes of Scarus trispinosus in a two-dimensional morphospace, based on scores from the first two morphometrical principal component axes. MW = mouth width; HL = head length; MH = mouth height. In the ordination with osteological attributes, most of the variance (99.25%) was also explained by the two first principal components (PC1 97.9% and PC2 1.4% of the total variation), with dentary, premaxilla, suspensorium and operculum representing the most influential attributes (Tab. 4; Fig. 7) and larger Individuals (TL ≥ 40 cm) with stronger jaw apparatus at the right side or the ordination diagram. The power of the premaxilla and dentary is well evident for the largest size, as they are strongly related with the premaxilla and dentary in the PCA (Fig. 7). The One-way ANOVA showed significant differences 25 (p<0.05) among almost all ecomorphological attributes of the six size categories of Sc. trispinosus (Tab. 5), with the exception of head configuration (HC) and head length (HL). Premaxilla, mouth configuration and dentary showed the higher variation among the six size categories, as indicated by the highest F values in the ANOVA (Table 5).The SNK post hoc test evidenced five groups aggregated by similarities in the premaxilla and dentary, with a clear size-related pattern (Table 6). The operculum did not show such variation, allowing for the interpretation of results as functional differences related to feeding. Figure 7. Distribution of the six size classes of Scarus trispinosus individuals in a twodimensional morphospace, based on scores from the first two osteological principal 26 component axes (cumulative % of variance = 99.25; see Table 4). MA = maxilla; OP = operculum); AR = articular. Table 5. One-way ANOVA with the 11 ecomorphological attributes of the six size categories (±15; ±20; ±30; ±40; ±50 and ±60 cm of total length) of Scarus trispinosus. Highest F values are highlighted in bold. df = degrees of freedom; SS = sum of squares. Source df SS F p Mouth width 5 0.0041 13.011 0.0000 Mouth height 5 0.0030 4.838 0.0036 Mouth configuration 5 2.913 23.592 0.0000 Head configuration 5 0.0683 0.452 0.8072 Head length 5 0.0026 1.029 0.4241 Premaxilla 5 0.0000 29.618 0.0000 Dentary 5 0.0000 19.757 0.0000 Maxilla 5 0.0000 8.632 0.0001 Articular 5 0.0000 8.688 0.0001 Suspensorium 5 0.0000 12.103 0.0000 Operculum 5 0.0000 5.836 0.0012 Table 6. Mean values (±SE) of the five morphometric and six osteological attributes of Scarus trispinosus (size categories ±15 cm; ±20 cm; ±30 cm; ±40 cm; ±50 cm and ±60 cm TL). MW = mouth width; MH = mouth height; MC = mouth configuration; HC = head configuration, HL = head length; PM = premaxilla; D = dentary; MA = maxilla; AR = articular; SU = suspensorium; OP = operculum. Means followed by the same lowercase letters in the same column indicate homogeneous groups (SNK test p>0.05). Morphometric atributes MW MH MC HC HL ±15 cm 0.06 (±0.01) a 0.08 (±0) b 1.47 (±0.23) d 1.93 (±0.23) a 0.32 (±0.03) a ±20 cm 0.06 (±0.01) ab 0.07 (±0.01) ab 1.24 (±0.14) c 1.84 (±0.09) a 0.33 (±0.02) a ±30 cm 0.06 (±0) ab 0.06 (±0.01) ab 1.12 (±0.16) bc 1.86 (±0.22) a 0.34 (±0.02) a ±40 cm 0.07 (±0) bc 0.07 (±0) ab 0.92 (±0.1) b 1.78 (±0.07) a 0.35 (±0.01) a ±50 cm 0.08 (±0.01) cd 0.05 (±0.01) a 0.64 (±0.17) a 1.88 (±0.18) a 0.32 (±0.02) a ±60 cm 0.09 (±0.01) d 0.05 (±0.01) a 0.6 (±0.03) a 1.78 (±0.1) a 0.32 (±0.02) a Osteological attributes PM D MA AR SU OP ±15 cm 0.0014 (±0.0001) a 0.0012 (±0.0001) a 0.0002 (<0.0001) b 0.0002 (<0.0001) a 0.0011 (±0.0001) a 0.0005 (±0.0001) a ±20 cm 0.0015 (±0.0002) a 0.0012 (±0.0001) a 0.0002 (<0.0001) b 0.0002 (<0.0001) a 0.0011 (<0.0001) a 0.0005 (±0.0001) ab ±30 cm 0.0018 (±0.0001) a 0.0015 (±0.0005) a 0.0003(±0.0001) ab 0.0002 (<0.0001) a 0.0013 (±0.0002) a 0.0006 (±0.0001) ab ±40 cm 0.003 (±0.0004) b 0.0024 (±0.0004) b 0.0004 (±0.0001) a 0.0003 (±0.0001) b 0.0018 (±0.0003) b 0.0008 (±0.0001) c ±50 cm 0.0035 (±0.0007) bc 0.0028 (±0.0005) b 0.0005 (±0.0001) a 0.0003 (±0.0001) b 0.0018 (±0.0002) b 0.0007 (±0.0001) bc ±60 cm 0.0039 (±0.0005) c 0.0031 (±0.0004) b 0.0004 (<0.0001) a 0.0003 (<0.0001) b 0.0016 (±0.0001) b 0.0007 (<0.0001) abc Feeding activity and bioerosion (performance) of Scarus trispinosus Feeding rates, proportion of significant bites per foray and bite volume estimates for Sc. trispinosus in the Abrolhos Bank is summarized in Table 7. There was a significant sizerelated difference in feeding rates, with the largest category (60 cm TL) presenting the smallest rate (1.52 bites/min), and the smallest category (10 cm TL) presenting the highest (8.54 bites/min). The proportion of significant bites per foray was also related to size, and two groups presented significantly different values, one including the smaller sizes (10, 20 and 30 cm TL), ranging from 9 to 30% of significant bites per foray, and the other including the larger sizes (40, 50 and 60 cm TL), ranging from 59-75% of significant bites per foray. Bite volume also increased with size, with individuals’ 50 and 60 cm TL biting up to five times larger volumes than individuals’ 30 and 40 cm TL (0.12 ±0.09 vs. 0.04 ±0.03 cm³, respectively). Table 7. Feeding rates, proportion of significant bites, bite volume and daily feeding rates for each size-category of Scarus trispinosus in the Abrolhos Bank, Brazil. Means followed by the same lowercase letters indicate homogeneous groups (SNK test p>0.05). Size classes (cm TL) 10 20 30 40 50 60 Feeding rates Significant bites per foray (bites/min) (%) 8.54 (±3.6) a 9a 8.49 (±7.3) a 11 a 7.54 (±4.8) a 30 a 6.84 (±4.8) a 59 b 3.06 (±3.4) b 60 b Bite volumes (cm³) 0.025 (±0.03) a 0.046 (±0.03) ab 0.13 (±0.12) b 1.52 (±1.8) b 0.11 (±0.07) ab 75 b Daily feeding rates (bites/day) 5,584.86 (<30 cm) 4,995.25 (>30 cm) Table 8. One-way ANOVA performed on feeding rates, proportion of significant bites, bite volume and feeding periods comparing the six size categories of Scarus trispinosus at the Abrolhos Bank. df = degrees of freedom; SS = sum of squares. 29 Sources Feeding rates Significant bites Bite volumes Feeding periods df 5 5 3 3 SS 1659.5 9.651 0.081 1840.2 F 16.65 10.83 4.25 32.96 p 0.00 0.00 0.01 0.00 Feeding rates of Sc. trispinosus differed significantly along the day (Tab. 8), peaking during the late morning, between 09:00 and 12:00 (Fig. 8). Individuals <30 cm TL performed an estimated 5,585 bites.day-1, while individuals >30 cm TL averaged 4,995 bites.day-1 (Tab. 8; Fig. 8, 9). Bioerosion rates per bite of individuals >30 cm TL was estimated at 206.94 cm³ind¯¹.d¯¹, and annual erosion rates at 75,534.14 cm³ind¯¹.year¯¹. The overall error Feeding rate (bites/min) terms calculated with the Goodman’s estimator was 1,710.98. 14 12 10 8 6 4 2 0 0,5 1 06:00-09:00 1,5 2 09:01-12:00 2,5 3 12:01-15:00 3,5 4 4,5 15:01-18:00 Figure 8. Feeding rates (mean and standard error) of Scarus trispinosus throughout the diurnal period. 30 y = -4E-05x2 + 0.0551x - 10.141 R² = 0.1103 Feeding rate (bites/min) 30 25 20 15 10 5 0 200 300 400 500 600 700 800 900 1000 1100 Time of day (minutes after midnigth) Figura 9. Daily feeding of Scarus trispinosus (>30 cm TL) with a quadratic polynomial trend line fitted to the data. Parameters used for estimating bioerosion rates of Sc. trispinosus in the Abrolhos Bank are summarized in Table 9. Higher densities of Sc. trispinosus were recorded in the rocky reefs of the Archipelago, followed by the coralline reefs of the outer arc. Reefs in the inner arc presented the lower densities. Bioerosion rates were greater in the outer arch, followed by the inner arc and the Archipelago (Table 9). Table 9. Parameters used for estimating bioerosion rates of Sc. trispinosus in the Abrolhos Bank. Strata Reef area (m2) Mean density (ind./m2) Total abundance (individuals >30 cm) Daily bioerosion (cm³/day) Annual bioerosion (cm³/year) Inner arc 38.66 x 106 2.88 x 10-3 11.14 x 106 26.47 x 106 9.66 x 109 Outer arc 292.16 x 106 4.96 x 10-3 144.85 x 106 344.16 x 106 125.62 x 109 2.33 x 106 7.31 x 10-3 1.71 x 106 4.05 x 106 1.48 x 109 Archipelago 31 DISCUSSION Parrotfishes are viewed as a key functional group in rocky and coralline reefs (Bonaldo et al. 2014). These fishes represent some of the predominant top-down controllers of algae and turf biomass (e.g. Mumby 2006), and playing important roles in sediment production and transport (e.g. Bellwood 1995a,b; Bruggemann et al 1996), and coral predation (e.g. Francini-Filho et al 2008; Bonaldo & Bellwood 2011). However, the impact of their feeding activities in reef systems may be variable, depending on their relative abundance, presence, relative abundance of other keystone herbivores (e.g. sea-urchins), and differences in feeding modes and richness among the local parrotfish assemblage (e.g. Hoey & Bellwood 2008). Despite the recent progress in assessing the feeding ecology of parrotfishes (e.g. Bonaldo et al. 2006; Ferreira et al. 1998; Ferreira & Gonçalves 2006; Francini-Filho et al. 2010), the tropical Southwestern Atlantic still remains a significant knowledge gap in terms of their functional roles (Francini-Filho et al. 2008; Bonaldo et al. 2014). The present study provides the first ecomorphological comparison among the Brazilian-endemic parrotfishes Sc. trispinosus, Sc. zelindae and Sp. amplum (Moura et al. 2001; Robertson et al. 2006), complemented with the first direct estimate of rates of bioerosion combined with ecomorphology and feeding activity of the large-bodied and endangered Sc. trispinosus. Southwestern Atlantic reefs present an overall low diversity (Floeter et al. 2008; Bowen et al. 2013), which may also imply in a relatively low functional diversity at this region (Francini-Filho et al. 2008, 2010, 2013). For instance, while only five large-bodied parrotfish species occur in Brazil, there are 10 such species in the Caribbean and at least 16 in the Indo-Pacific (Moura et al. 2001; Bellwood 1995a; Bonaldo et al. 2014). Nine species are known to be excavators in the Indo Pacific and three in the Caribbean, while only two species excavate in the tropical Southwestern Atlantic (Sc. trispinosus and Sp. amplum) (Bonaldo et al. 2014). The three species studied herein represent 32.4% of the total biomass of visually accessible reef fishes, and 56.7% of the biomass of large roving 32 herbivorous fishes in the Abrolhos Bank (Francini-Filho & Moura 2008), South Atlantic’s largest and richest coralline complex. The loose of these parrotfishes could have a profound impact on the local coral reef dynamics with consequences to a wide range of species. Our ecomorphological analyses revealed considerable differences among the three species, and showed remarkable ontogenetic shifts involving mouth and head configuration (shape) in Sc. trispinosus, Sc. zelindae and Sp. amplum. While smaller size classes of the three species studied exhibit relatively larger mouths and slender bodies, the mouth and head configuration of larger individuals clearly discriminates the scrapper Sc. zelindae, which exhibits more mobile and complex jaw articulations, from the excavators Sc. trispinosus and Sp. amplum (Figs. 2 and 3), which presented several traits associated to this feeding mode. These include smaller gapes and simpler low-mobility jaw articulations, similar to Indo-Pacific and Caribbean excavators (Bellwood & Choat 1990; Bellwood 1994). The shape of the mouth and head can also be related with the body position during feeding (Price et al. 2010). Similar to other congeners and to Chlorurus and Hipposcarus species, the genus Scarus presents an intramandibular joint that is responsible for maintaining a constant orientation of the premaxilla, allowing for a larger opening of the mouth when the body is in a vertical position. However, for stronger bites this particular arrangement of the dentary and the articular demands a more inclined/perpendicular feeding angle. The teeth of large sized Sc. trispinosus are small and present a crenate cutting edge that decreases the contact area between the jaws and the substrate, typical of excavators (Bellwood & Choat 1990). The cutting edges exhibited by Sc. zelindae, Sp. amplum and by the small size individuals of all species are relatively even, as scrapers species, and increases the contact area of the jaw, spreading the force over the substrate (Bellwood & Choat 1990). 33 The discrimination of species and size categories in the ecomorphological space was largely influenced by premaxilla and dentary weight (Tab. 1, Fig. 3). The relative weights of oral structures are indicative of bite force, as heavier bones are associated to a greater ability to excavate hard substrates (Bellwood & Choat 1990). For instance, larger-bodied individuals of Sc. trispinosus (highest values for premaxilla weight) and Sp. amplum (highest values for dentary weight) exhibited strong and heavier jaw bones, corresponding to their ability to penetrate the hard carbonatic substrate and to feed on corals. Indeed, Francini-Filho et al. (2008) recorded large (> 40 cm) specimens of Sc. trispinosus and Sp. amplum feeding on the corals Mussismilia braziliensis, Montastrea cavernosa, Siderastrea spp. and Favia gravida in the Abrolhos Bank reefs. Smaller individuals of these two species presented a weaker jaw apparatus (Fig. 3), corresponding to a scrapping feeding mode in the initial life stages (Francini-Filho et al. 2008). Scarus zelindae, on the other hand, presented smaller ontogenetic variation in the premaxilla and dentary (Fig. 3), corresponding to their scrapping feeding mode throughout the life. Early life stages of all parrotfish species are browsers or scrapers, with a few larger species changing to an excavating feeding mode when they attain larger sizes and acquire stronger jaw bones. Our results confirm that, in the tropical Southwestern Atlantic, the largest Scarus (Sc. trispinosus) and the largest Sparisoma (Sp. amplum) species are the most relevant excavators in coralline reefs (Francini-Filho et al. 2008, 2010). Although some morphological characteristics indicate convergences between the excavating species (Bellwood 1994), especially in large-sized individuals, several jaw structures of the three species reflect common ancestry at the genus level, rather than convergences. These include the premaxilla with a large ascending process in the two Scarus species (short in Sparisoma), the alveolar process without a maxillary fossa (present in Sparisoma), and a narrow and elongated maxillary facet (broad and short in Sparisoma), as well as a rounded coronoid process in the dentary (crenate in Sparisoma) (Fig. 4). In Sp. amplum the articular socket (or articular fossa) is deep, presenting a remarkable broad and flat tapering groove where the articular is bound to the dentary 34 (Fig. 4), a unique derived feature of Sparisoma (Bellwood 1994). Parrotfishes are divided in two clades (Bellwood 1994, 1996; Streelman et al. 2002) that diverged ~42 million years ago, one consisting of fishes primarily associated with algal beds (Sparisoma, Cryptotomus, Nicholsina, Leptoscarus, Calotomus) and the other encompassing fishes that predominate on coral reefs (Scarus, Bolbometopon, Cetoscarus, Hipposcarus and Chlorurus), this latter including about 80% of all parrotfishes (76% of which belonging to Scarus and Chlorurus). The origin of parrotfishes is associated to browsing in algal beds, with a subsequent migration to coralline reefs, resulting in progressively stronger oral morphologies (Bellwood 1994, 1996). Indeed, genera that predominate on coral reefs, such as Scarus, have the most recent origin (Bernardi et al. 2000). The scraping feeding mode, typical of most Sparisoma species and of small individuals of Sp. amplum, is an intermediary condition between browsing algae and excavating hard bottom, this latter mode presented by large-sized Sp. amplum individuals. Although some Sparisoma species or species life phase presented feeding characteristics of both scraper and excavator feeding mode, these similarities seems associated to functional convergence (Streelman et al. 2002, Robertson et al. 2006). The level of parrotfish impact on the substrate is highly dependent on life stage (Bonaldo & Bellwood 2008; Lokrantz et al 2008; Bonaldo et al. 2014), and the relative abundance of large sized individuals has important implications in ecosystem functioning (Bonaldo & Bellwood 2008). In Australia and the Caribbean, smaller initial phase Scarus and Sparisoma exert similar impacts on the epilithic algal matrix, but large terminal phase individuals may present different behavior, function and impact (Bellwood 1995a; Bruggemann et al. 1994b). In the present study, Scarus trispinosus and Sp. amplum presented strong ontogenetic variation in jaw structures related to feeding (Figs 2 and 3). The feeding rates of Sp. amplum don’t show significantly relationship with body size, while bite rates of Sc. trispinosus were negatively correlated to body size and varied much more in relation to size than the Sparisoma species (Francini-Filho et al. 2008). Although Sp. amplum is regarded as a specialized corallivore (Francini-Filho et al. 2008; Bonaldo et al. 2014), its 35 abundance in the Abrolhos reefs is relatively low, with 10 times less biomass than Sc. trispinosus (Francini-Filho & Moura 2008). Indeed, Sp. amplum is nearly absent from the rocky reefs of the Abrolhos Archipelago, where most previous studies on parrotfish feeding were carried out within the study region (e.g. Ferreira & Gonçalves 2006). Therefore, we carried out more detailed ecomorphological analyzes, including six body size categories, only for Sc. trispinosus, aiming to provide a more detailed assessment of its bioerosion. Smaller Sc. trispinosus individuals presented the highest feeding rates, a pattern that can be associated to higher relative demand of energy by smaller individuals (Ferreira et al. 1998). Also, smaller size classes bite algal covered substrata more frequently than larger individuals, an item with low nutritional value in comparison to detritus, possibly demanding more feeding time (Francini-Filho et al. 2008, 2010). The highest feeding rates of Sc. trispinosus observed from the late morning until the middle of the day is a common pattern for herbivorous fish (Zemke-White et al. 2002; Bonaldo & Bellwood 2008), possibly related to diel nutritional quality of algae (Bellwood 1995a), which increases in the morning and peaks at midday, being maintained during the afternoon (Zemke-White et al. 2002). Frequency of significant bites was also directly related to body size (Tab. 9). The three smaller size classes (10, 20 and 30cm TL) averaged 30% of significant bites per foray, meaning that most forays only remove the superficial algal surface. On the other hand, larger individuals (> 40cm TL) left visible marks on the substrate in up to 75% of the bites, with significantly larger-volume scars (Tab. 9). Bruggemann (1996) reported large Sp. viride leaving scars in approximately 80% of the bites taken in Caribbean reefs, while most bites taken by juveniles did not left scars. Bonaldo & Bellwood (2008) also reported that removed volume is significant greater in large individuals, while small individuals graze a much larger substrate area. Our results add to the idea that small individuals control algal growth by cropping algal surface, while large individuals excavate and open space in the 36 substrate for initial succession and coral settlement. Thus, large individuals of Sc. trispinosus and Sp. amplum play a unique role as bioerosion agents in Abrolhos Bank, as there is not another species that performs an equivalent function in this region. Although the parrotfishes are able to interrupt benthic succession (Paddack et al. 2006; Hughes et al. 2007), they may be unable to reverse a phase shift once it has occurred (Bellwood et al. 2006). Thus, the absence of major macroalgal consumers in overfished reefs ‘locks down’ the ecosystem as a fleshy algal pavement (Francini-Filho et al. 2010). In the Abrolhos Bank, largest reefs are rhodolith beds (calcareous algae nodules) in the mid and outer shelf (Moura et al. 2013), which present low structural complexity and high macroalgal cover (Amado-Filho et al. 2012). While this system is within the depth range of most parrotfishes, its low structural complexity may constrain survival of juvenile fish and the establishment of a “complete” reef fish assemblage (author, unpubl. data), resulting in macroalgal cover close to 100%. Low grazing intensities can induce the development of climax communities characterized by fast growing taxa and low species diversity (Steneck & Dethier 1994). Estimates of parrotfish bite volumes may vary widely depending on substrate type, species and individuals´ sizes, ranging from 0.002cm³ (Sc. niger, Red Sea) to 0.114 (Chlorurus gibbus, Australia) (Bellwood 1995a; Alwany et al. 2009). Scarus trispinosus presents a relatively high mean bite volume, estimated at 0.0808 cm³ (all size categories pooled). This mean bite volume is indeed higher than those for the four Scarus species studied by Alwany et al. (2009), which ranged from 0.002 to 0.063cm³. Large individuals’ contribution to bioerosion is disproportionate, and the loss of these larger individuals will reduce bioerosion even if the overall parrotfish biomass remains the same (Bruggemann 1996; Bonaldo & Bellwood 2008; Ong & Holland 2010). Smaller Sc. trispinosus individuals (categories 30 and 40 cm) presented bite volumes two to five times smaller than the large ones (50 and 60 cm TL) (Fig. 9). 37 In spite of its relatively large bite volumes, individual estimates of annual bioerosion rates for Sc. trispinosus (0.076 m3.ind¯¹.year¯¹) are smaller than those for congeners such as Sc. rubroviolaceus (0.216 m³.ind¯¹.year¯¹) (Ong & Holland 2010), as it presents lower bite frequencies (4.955 versus 7,560 bites.day-1) and a smaller proportion of significant bites (51 versus 84%). However, global bioerosion rates by parrotfishes is dependent on factors such as abundance and size structure of the population, as well as on substrate type (Bellwood 1995a; Bruggemann 1996; Bonaldo & Bellwood 2008; Alwany et al. 2009; Ong & Holland 2010). For instance, bioerosion by Sc trispinosus in Abrolhos is a more significant process in the no-take outer arc reefs, as they concentrate the larger-sized specimens that are already depleted in the coastal and unprotected reefs. Influence of this pattern on the carbonates’ budget of the region remains as an open and interesting research theme. Globally, overfishing of parrotfishes is one of the most important issues in coral reef conservation (Hughes 1994; Mumby 2006), and there are no examples of long-term successful management experiences. Parrotfish fisheries in Abrolhos are relatively recent, as they were not consumed before the 1980’s for being regarded as bad-tasting or toxic by local people (author’s interviews with older fishermen). However, fishing effort has greatly increased in recent years (Francini-Filho et al. 2008a; Freitas et al. 2011), from an introduction as a recreational activity to an export-oriented commercial fishery, with clear declines in open access areas and unsuccessful management stories in multiple-use marine protected areas (Francini-Filho & Moura 2008a,b). Large specimens are now largely restricted to enforced no-take zones and deeper reefs. Moreover, as sequential hermaphrodites, they may be even more susceptible to overfishing, since individuals must reach a minimum size before changing sex (Francis, 1992; Hawkins & Roberts 2003). Although, Sc. trispinosus is IUCN red-listed as endangered category (Padovani-Ferreira et al, 2012), it is not accounted as a threatened species by Brazilian legislation, and there are no limitations to its exploitation (e.g. size or bag limits). The situation of Sp. amplum may be even worse than that Sc. trispinosus (Comeros-Raynal et al. 2012), as its biomass is ten 38 times lower at the Abrolhos Bank (Francini-Filho & Moura, 2008,a,b). Despite several socio-economic constrains, it is clear that unless a well-enforced network of no-take marine protected areas ensures is established, coupled with unpopular and hard-toenforce maximum size limitations, the Abrolhos reefs will lose an important functional component. In Brazilian conditions, where just few parrotfish species are able to perform some functional roles, losing these species that are key components within the ecosystem its critical to the coral reefs dynamics and health. REFERENCES Alwany MA, Thaler E & Stachowitsch M (2009) Parrotfish bioerosion on Egyptian Red Sea reefs. J Exp Mar Biol Ecol 371:170–176. Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M & Thompson FL (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical south west atlantic. Plos One 7: e35171. Bell JD, Galzin R (1984) Influence of live coral cover on coral reef fish communities. Mar Ecol Prog Ser 15: 265–274. Bellwood DR (1988) Ontogenetic changes in the diet of early post-settlement Scarus species. J Fish Biol 33:213–219. Bellwood DR & Choat, JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environmental Biology of Fishes 28: 189–214. Bellwood DR (1994) A phylogenetic study of the parrotfishes, family Scaridae (Pisces: 39 Labroidei), with a revision of genera. Records of the Australian Museum Supplement 20: 1–86. Bellwood DR (1995a) Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia. Mar Biol 121:419–429. Bellwood DR (1995b) Carbonate transport and within-reef patterns of bioerosion and sediment release by parrotfishes (family Scaridae) on the Great Barrier Reef. Mar Ecol Prog Ser 117, 127–136. Bellwood DR (1996) The Eocene fishes of Monte Bolca: the earliest coral reef fish assemblages. Coral Reefs 15, 11–19. Bellwood DR, Hoey AS & Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters 6: 281–285. Bellwood DR, Hughes TP, Folke C & Nÿstrom M (2004) Confronting the coral reef crisis. Nature 429: 827–833. Bellwood DR, Wainwright PC, Fulton CJ & Hoey AS (2006) Functional versatility supports coral reef biodiversity. Proc R Soc B 273, 101–107. Bernardi G, Robertson DR, Clifton KE & Azzurro E (2000) Molecular systematics, zoogeography, and evolutionary ecology of the Atlantic genus Sparisoma. Mol Phyl Evol 15:292–300. Bonaldo RM, Krajewski JP, Sazima C & Sazima I (2006) Foraging activity and resource use by three parrotfish species at Fernando de Noronha Archipelago, tropical West Atlantic. Mar Biol 149, 423–433. 40 Bonaldo RM & Bellwood DR (2008) Size-dependent variation in the functional role of the parrotfish Scarus rivulatus on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 360: 237–244. Bonaldo RM & Bellwood DR (2011) Parrotfish predation on massive Porites on the Great Barrier Reef. Coral Reefs 30, 259–269. Bonaldo RM, Hoey AS & Bellwood DR (2014) The ecosystem roles of parrotfishes on tropical reefs. Oceanography and Marine Biology: An Annual Review 52, 81–132. Bowen BW, Rocha LA, Toonen RJ, Karl SA, Craig MT, DiBattista JD, Eble JA, Gaither MR, Skillings D & Bird CJ (2013) The origins of tropical marine biodiversity. Trends in Ecology and Evolution 28(6): 359–366. Bruckner AW, Bruckner RJ & Sollins P (2000) Parrotfish predation on live coral ‘‘spot biting’’ and ‘‘focusing biting’’. Coral Reefs 19,50. Bruggemann JH, Begeman J, Bosma EM, Verburg P & Breeman AM (1994) Foraging by the stoplight parrotfish, Sparisoma viride. II. Intake and assimilation of food, protein and energy. Mar Ecol Prog Ser 106: 57–71. Bruggemann JH, Van Kessel AM, van Rooij JM & Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134, 59–71. Choat JH, Clements KD & Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs 1: dietary analysis. Mar Biol 140:613–623. 41 Comeros-Raynal MT, Choat JH, Polidoro BA, Clements KD, Abesamis R, Craig MT, Lazuardi ME, McIlwain J, Muljadi A, Myers RF, Nañola CL, Pardede J, Rocha LA, Russell B. Sanciangco JC, Stockwell B, Harwell H & Carpenter KE (2012) The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and surgeonfishes. PLoS One 7(7): e39825. Creed JC & Amado Filho GM (1999) Disturbance and recovery of the macroflora of a seagrass (Halodule wrightii Ascherson) meadow in the Abrolhos Marine National Park, Brazil: an experimental evaluation of anchor damage. J Exp Mar Biol Ecol 235: 285–306. Crossman DJ, Choat JH, Clements K. D., Hardy T & McConochie J (2001). Detritus as food for grazing fishes on coral reefs. Limnology and Oceanography 46, 1596–1605. Edmunds PJ & Carpenter RC (2001) Recovery of Diadema antil- larum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proceedings of the National Academy of Sciences of the United States of America 98, 5067–5071. Estes JA, Terborgh J, Brashares JS, Power ME & Berger J (2011) Trophic downgrading of planet earth. Science 333:301-306. Ferreira CEL & Gonçalves JEA (2006) Community structure and diet of roving herbivorous reef fishes in the Abrolhos Archipelago, south- western Atlantic. Journal of Fish Biology 69, 1533–1551. Ferreira CEL, Peret AC & Coutinho R (1998) Seasonal grazing rates and food processing by tropical herbivorous fishes. Journal of Fish Biology 53, 222–235 Francini-Filho RB & Moura RL (2008a) Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquatic 42 Conservation, v. 18, 1166–1179. Francini-Filho RB & Moura RL (2008b) Evidence for spillover of reef fishes from a no-take marine reserve: An evaluation using the before-after control-impact (BACI) approach. Fish Research 93:346-356. Francini-Filho RB, Moura RL, Ferreira CM & Coni EOC (2008) Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotropical Ichthyology [S. I.], v. 6, p. 191–200. Francini-Filho RB, Ferreira CM, Coni EOC, Moura RL & Kaufman L (2010) Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: influence of resource availability and interference competition. J Mar Biol Assoc U K 90, 481–492. Francini-Filho RB, Coni EOC, Meirelles PM, Amado-Filho GM, Thompson FL, Pereira-Filho GH, Bastos AC, Abrantes DP, Ferreira CM, Gibran FZ, Güth AZ, Sumida PYG, Oliveira NL, Kaufman L, Minte-Vera CV & Moura RL (2013) Dynamics of coral reef benthic assemblages of the Abrolhos Bank, eastern Brazil: inferences on natural and anthropogenic drivers. PLoS ONE 8:e54260. Francis RC (1992) Sexual lability in teleosts: developmental factors. Rev Biol 67: 1–18. Freitas MO, Moura RL, Francini-Filho RB & Minte-Vera CV (2011) Spawning patterns of commercially important reef fish (Lutjanidae and Serranidae) in the tropical western South Atlantic. Atlantic Scientia Marina 75: 135–146. Gatz AJ (1979) Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21(2): 91–124. 43 Hammer O, Harper DAT & Ryan PD (2001) PAST version 1.39: Paleoontological statistical software package for education and data analysis. Paleontoly Eletronica 4: 9–9. Harvell CD, Mitchell CE, Ward JR, Sonia A, Dobson AP, Ostfeld RS, Samuel DS (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158– 2162. Hawkins JP & Roberts CM (2003) Effects of fishing on sex-changing Caribbean parrotfishes. Biol Conserv 115:213–226. Horn MH (1989) Biology of marine herbivorous fishes. Oceanography and Marine Biology Annual Review 27,167:272. Hoey AS & Bellwood DR (2008) Cross shelf variation in the role of parrotWshes on the Great Barrier Reef. Coral Reefs 27:37–47. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265: 1547–1551. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, HoeghGuldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B & Roughgarden J (2003) Climate change, human impacts and the resilience of coral reefs (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh- Guldberg O, McCook L, Moltschaniwsky N, Pratchett MS, Steneck RS & Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365. 44 Hunte W & Wittenberg M (1992) Effects of eutrophication and sedimentation on juvenile corals. II. Settlement. Mar Biol 114, 625–631. Gibran FZ (2007) Activity, habitat use, feeding behavior, and diet of four sympatric species of Serranidae (Actinopterygii: Perciformes) in southeastern Brazil. Neotropical Ichthyology 5(3): 387-398. Gibran FZ (2010) Habitat partitioning, habits and convergence among coastal nektonic fish species from the São Sebastião Channel, southeastern Brazil. Neotropical Ichthyology 8(2):299–310. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ & Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–638. Laborel J (1969) Madreporaires et hydrocorallaires récifaux des cotes Brasiliennes. Ann Inst Océanogr. 47: 171–229. Lokrantz J, Nyström M, Thyresson M & Johansson C (2008) The non-linear relationship between body size and function in parrotfishes. Coral Reefs 150, 1145–1152. Luckhurst BE & Luckhurst K (1978) Analysis of the influence of substrate variables on coral reef fish communities. Mar Biol 49: 317–323. McClanahan TR & Arthur R (2001) The effect of marine reserves and habitat on populations of east African coral reef fishes. Ecological Applications 11: 559–569. 45 Minte-Vera CV, Moura RL & Francini-Filho RB (2008) Nested sampling: an improved visualcensus technique for studying reef fish assemblages. Mar Ecol Prog Ser 367: 283-293. Motta PJ & Kotrschal KM (1992) Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Netherlands Journal of Zoology 42(2-3): 400-415. Moura RL (2000) Brazilian reefs as priority areas for biodiversity conservation in the Atlantic Ocean. In: International Coral. Reef Symposium, 9th, 2000, Bali, Indonésia. Proceedings… [S. I.], v. 2, p. 917-920. Moura RL, Figueiredo JL & Sazima I (2001) A new parrotfish (Scaridae) from Brazil, and revalidation of Sparisoma amplum (Ranzani, 1842), Sparisoma frondosum (Agassiz, 1831), Sparisoma axillare (Steindachner, 1878) and Scarus trispinosus (Valenciennes, 1840). Bull Mar Sci 68:505–524. Moura RL & Francini-Filho RB (2006) Reef and shore fishes of the Abrolhos Region, Brazil. In: Dutra GF, Allen GR, Werner T, McKenna SA (eds) A rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil. RAP Bulletin of Biological Assessment 38, Washington, pp 45–55. Moura RL, Francini-Filho RB, Minte-Vera CV, Sumida PYG, Amado-Filho GM, Amaral J, Bastos AC, Motta FS, Thompson FL, Kruger, Ricardo H & Dutra GF (2010) Pesquisa no oceano: Desafio e oportunidades. Scientific American Brasil v. 39, p. 30–35. Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO, Minte-Vera CV, Teixeira JB, Thompson FL, Dutra GF, Sumida PYG, Guth AZ, Lopes RM & Bastos AC (2013) Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Continental Shelf Research 70: 109–117. 46 Minte-Vera CV, Moura RL & Francini-Filho RB (2008) Nested sampling: an improved visualcensus technique for studying reef fish assemblages. Mar Ecol Prog Ser 367: 283-293. Mumby PJ (2006) The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecological Applications 16: 747–796. Mumby PJ (2009) Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs? Coral Reefs 28, 683– 690. Nash KL, Graham NAJ, Januchowski-Hartley FA & Bellwood DR (2012) Influence of habitat condition and competition on foraging behaviour of parrotfish. Mar Ecol Prog Ser 457: 113–124 Ong L & Holland KN (2010) Bioerosion of coral reefs by two Hawaiian parrotfishes: species, size, differences and fishery implications. Mar Biol 157, 1313–1323. Paddack MJ, Cowen RK & Sponaugle S (2006) Grazing pressure of her- bivorous coral reef Wshes on coral reefs. Coral Reefs 25:461–472. Padovani-Ferreira B, Floeter S, Rocha LA, Ferreira CE, Francini-Filho RB, Moura RL, Gaspar A. L. & Feitosa C. (2012) Scarus trispinosus. In: IUCN Red List of Threatened Species, v. 2013.2. <www.iucnredlist.org>. Price SA, Wainwright PC, Bellwood DR, Kazancioglu E, Collar DC & Thomas JN (2010) Functional innovations and morphological diversification in parrotfish. Evolution 64(10): 3057–3068. Price SA, Holzman R, Near TJ & Wainwrigh PC (2011) Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecology Letters 14:462– 47 469. Robertson DR, Karg F, Moura RL, Victor BC & Bernardi G (2006) Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes. Mol Phyl Evol 40:795-807. Steneck RS (1988) Herbivory on coral reefs: A synthesis. Proc. 6th Int. Coral Reef Symp. 1: 37–49. Steneck RS & Dethier MN (1994) A functional group approach to the structure of algaldominated communities. Oikos 69:476–498. Streelman JT, Alfaro M, Westneat MW, Bellwood DR & Karl SA (2002) Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity. Evolution 56(5): 961–971. Travis J (1982) A method for the statistical analysis of time-energy budgets. Ecology 63:1925 Van Rooij JM, Kroon FJ & Videler JJ (1996) The social and mating system of the herbivorous reef fish Sparisoma viride: one-male versus multi-male groups. Environ Biol Fishes 47:353-378. Wainwright PC, Bellwood DR & Westneat MW (2002) Ecomorphology of locomotion in labrid fishes. Environ Biol Fishes 65, 47–62. Wilson SK, Bellwood DR, Choat JH & Furnas MJ (1988) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanography and Marine Biology: An Annual Review 41:279-309. 48 Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs 61(4): 343-365. Winemiller KO (1992) Ecomorphology of freshwater fishes. Ecological divergence and convergence in freshwater fishes. National Geographic Research & Exploration, 8(3): 308327. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River, New Jersey Zemke-White WL, Choat JH & Clements KD (2002) A re-evaluation of the diel feeding hypothesis for marine herbivorous fishes. Mar Biol 141:571–579. 49 CONCLUSÕES Dentre os onze atributos ecomorfológicos analisados em Sc. trispinosus, Sc. zelindae e Sp. amplum, as principais características que distinguiram os dois gêneros, bem como as duas categorias de tamanho das três espécies, estão relacionadas à pré maxila, dentário e configuração da boca. De uma forma geral, os indivíduos menores das três espécies apresentaram pré-maxila e dentário significativamente mais leves, valores mais alto do atributo configuração da boca e menor valores de configuração da cabeça do que os indivíduos maiores. Scarus zelindae apresentou os menores valores das estruturas ósseas do aparato bucal comparados com as duas categorias de tamanhos das duas outras espécies. Os pesos relativos dos ossos do aparato bucal são indicativos da força de mordida. Quanto mais pesado for o aparato mais potência ele terá e, consequentemente, o indivíduo apresentará maior capacidade de escavação do substrato coralíneo (BELLWOOD; CHOAT, 1990). O aparato bucal mais fraco e móvel dos menores indivíduos das três espécies (e das duas categorias de tamanho de Sc. zelindae) indica que estes desempenham papel de raspadores no Banco dos Abrolhos. Por outro lado, indivíduos maiores de Sc. trispinosus e Sp. amplum possuem aparato bucal robusto, com pouca abertura e articulações simples, capaz de penetrar o substrato coralíneo, e podem ser considerados os principais peixes escavadores da região. Esses resultados adicionam dados ecomorfológicos às categorizações funcionais realizadas até o presente para essas espécies, com base em dados ecológicos alimentares (FERREIRA; GONÇALVES, 2006; FRANCINI-FILHO et al., 2008, 2010). Além disso, os resultados revelam similaridade ecomorfológica entre as espécies escavadoras endêmicas do Atlântico Sul e as congêneres do Caribe e Indo Pacífico (BELLWOOD; CHOAT, 1990; BELLWOOD, 1994). Na análise ecomorfológica ontogenética de Sc. trispinosus os atributos pré-maxila, dentário e configuração da boca diferenciaram as seis categorias de tamanho, com indivíduos <40 cm apresentando pré-maxila e dentário significativamente mais fracos, além de maior abertura da boca. Além disso, na medida em que crescem, a taxa de 50 alimentação é reduzida e o volume e proporção de mordidas aumenta. As taxas de alimentação mais altas nos indivíduos menores provavelmente estão relacionadas a fatores como maior demanda de energia (FERREIRA et al., 1998), menor valor nutricional das algas (FRANCINI-FILHO et al., 2008, 2010), maior tempo gasto para se alimentar e menos tempo gasto em interações sociais (VAN ROOIJ ET AL., 1996; BONALDO et al., 2006). A frequência de mordidas significativas aumentou em até sete vezes entre a menor e maior categoria de tamanho, e o volume das mordidas foi até cinco vezes mais alto nos indivíduos maiores, demonstrando aumento ontogenético na capacidade de escavação. Esse padrão onde indivíduos menores desempenham significativamente menos impacto para bioerosão quando comparados aos indivíduos maiores foi também encontrado para outras espécies de budiões em diferentes localidades (BELLWOOD & CHOAT 1990; BRUGGEMANN ET AL. 1994B; 1996; BONALDO & BELLWOOD 2008; LOKRANTZ ET AL 2008; ONG & HOLLAND 2010). No Banco dos Abrolhos, indivíduos de Sc. trispinosus <30 cm são predominantemente raspadores, ao passo que os indivíduos >40 cm são raspadores e escavadores. Os comportamentos ecológicos distintos exercidos pelos budião Sc. trispinosus, Sc. zelindae e Sp. amplum e suas fases de crescimento evidenciam a importância que essas espécies desempenham na dinâmica dos recifes coralíneos do Banco dos Abrolhos. A depender da composição e da estrutura etária da comunidade, os budiões irão exercer funções distintas e poderão contribuir diferentemente para a estruturação dos sistemas habitados, sendo a resiliência desses recifes altamente relacionada com os budiões de grande porte, que atuam como escavadores (BONALDO & BELLWOOD 2008; LOKRANTZ et al 2008). Os resultados aqui apresentados podem ser incorporados no manejo pesqueiro / ecossistêmico de ambientes recifais, uma vez que foi reconhecido e quantificado um papel funcional praticamente exclusivo dos indivíduos de grande porte de Sc. trispinosus em Abrolhos, a escavação do substrato (a abundância de Sp. amplum, o único outro budião escavador, é baixíssima em toda a região). Scarus trispinosus é hoje um dos mais 51 importantes alvos da pesca no Banco dos Abrolhos (FRANCINI-FILHO; MOURA, 2008a,b; FRANCINI-FILHO et al., 2008; FREITAS et al., 2011), dada a intensa diminuição das populações de grandes carnívoros na região. A espécie é categorizada como em perigo de extinção na Lista Vermelha da IUCN (PADOVANI-FERREIRA et al., 2012). No entanto, não é considerado como espécie ameaçada pela legislação brasileira e não há quaisquer limites para sua exploração (e.g. tamanho ou quantidade). Dentre as 179 espécies de budiões analisadas pela IUCN, somente três foram incluídas em categorias de ameaça, duas como vulneráveis e apenas Sc. trispinosus como em perigo de extinção (COMEROS-RAYNAL et al., 2012). A situação de Sp. amplum talvez seja ainda pior, visto que sua biomassa é dez vezes mais baixa que Sc. trispinosus (FRANCINI-FILHO & MOURA, 2008a,b). Tomadas de decisões relacionadas aos budiões envolvem questões sociais, econômicas e culturais, e é urgentemente necessário que políticos, gestores da pesca e demais atores envolvidos, realizem ações que visem a persistência e manutenção dos recifes coralíneos do Banco dos Abrolhos para manter a diversidade e os processos ecológicos da região. REFERÊNCIAS BIBLIOGRÁFICAS BELLWOOD, D. R.; CHOAT, J. H. A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environmental Biology of Fishes, v. 28, p. 189-214, 1990. BELLWOOD, D. R. A phylogenetic study of the parrotfishes, family Scaridae (Pisces: Labroidei), with a revision of genera. Records of the Australian Museum Supplement, v. 20, p. 1-86, 1994. BELLWOOD, D. R. Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia. Mar Biol, v. 121, p. 419–429, 52 1995a. BELLWOOD, D. R. Carbonate transport and within-reef patterns of bioerosion and sediment release by parrotfishes (family Scaridae) on the Great Barrier Reef. Mar. Ecol. Prog. Ser., v. 117, p. 127–136, 1995b. BELLWOOD, D.R. Production and reworking of sediment by parrotfishes (family Scaridae) on the Great Barrier Reef, Australia. Mar Biol 125, 795–800. 1996. BELLWOOD, D. R.; HOEY, A. S.; CHOAT, J. H. Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters, v. 6, p. 281-285, 2003. BELLWOOD, D. R. et al. Confronting the coral reef crisis. Nature, v. 429, p. 827-833, 2004. BONALDO, R.M. et al. Foraging activity and resource use by three parrotfish species at Fernando de Noronha Archipelago, tropical West Atlantic. Mar Biol, v. 149, p. 423–433, 2006. BONALDO, R. M.; BELLWOOD, D. R. Size-dependent variation in the functional role of the parrotfish Scarus rivulatus on the Great Barrier Reef, Australia. Marine Ecology Progress Series, v. 360, p. 237–244, 2008. BONALDO, R. M.; HOEY, A. S.; BELLWOOD, D. R. The ecosystem roles of parrotfishes on tropical reefs. Oceanography and Mar Biol: An Annual Review, 52, 81-132. 2014 BRUGGEMANN, J.H.; VAN ROOIJ, J.; VIDELER, J.; & BREEMAN, A. Dynamics and limitations of herbivore populations on a Caribbean coral reef. In Parrotfish grazing on coral reefs: a trophic novelty. PhD thesis, University of Groningen, the Netherlands, 153–178. 1995. 53 BRUGGEMANN, J. H.; VAN OPPEN, M. J. H.; BREEMAN, A. M. Foraging by the stoplight parrotfish, Sparisoma viride. 1. Food selection in different, socially determined habitats. Marine Ecology Progress Series, v. 106, p. 41-55, 1994a. BRUGGEMANN, J. H. et al. Foraging by the stoplight parrotfish, Sparisoma viride. II. Intake and assimilation of food, protein and energy. Marine Ecology Progress Series, v. 106, p. 57-71, 1994b. BRUGGEMANN, J. H. et al. Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Marine Ecology Progress Series, v. 134, p. 59–71, 1996. CHOAT, J. H.; ROBERTSON, D. R. Protogynous hermaphroditism in fishes of the family Scaridae. In: RHEINBOTH, R. (ed) Intersexuality in the animal kingdom. Springer Verlag, Heidelberg, p. 263-283, 1975. CHOAT, J. H. The biology of herbivorous fishes on coral reefs. In: SALE P. F. (ed) The ecology of fishes on coral reefs. Academic Press, p. 120-155, 1991. CLEMENTS, K. D. et al. RelationshSs of the temperate Australasian labrid fish tribe Odacini (Perciformes; Teleostei). Molecular Phylogenetics and Evolution, v. 32, p. 575–587, 2004. COMEROS-RAYNAL, M.T. et al. The likelihood of extinction of iconic and dominant components of coral reefs: the parrotfishes and surgeonfishes. PLoS ONE v. 7, p. 6, 2012. COWMAN, P.F., et. al. Dating the evolutionary origins of the wrasses (Labridae) and the rise of trophic novelty on coral reefs. Molecular Phylogenetics and Evolution, v. 52, p. 621–631, 2009. 54 CROSSMAN, D. J. et al. Detritus as food for grazing fishes on coral reefs. Limnology and Oceanography, v. 46, p. 1596–1605, 2001. FLOETER S. R.; HALPERN B. S.; FERREIRA C. E. L. Effects of fishing and protection on Brazilian reef fishes. Biol Conserv, v. 128, p. 391–402, 2006. FERREIRA, C. E. L.; GONÇALVES, J. E. A. Community structure and diet of roving herbivorous reef fishes in the Abrolhos Archipelago, southwestern Atlantic. Journal of Fish Biology, v. 69, p. 1533–1551, 2006. FERREIRA, C. E. L.; PERET, A. C.; COUTINHO, R. Seasonal grazing rates and food processing by tropical herbivorous fishes. Journal of Fish Biology, v. 53, p. 222–235, 1998. FRANCINI-FILHO, R. B.; MOURA, R. L. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquatic Conservation, v. 18, p. 1166-1179, 2008a. FRANCINI-FILHO R. B.; MOURA R. L. Evidence for spillover of reef fishes from a no-take marine reserve: An evaluation using the before-after control-impact (BACI) approach. Fish Res, v. 93, p. 346-356, 2008b. FRANCINI-FILHO, R. B. et al. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotropical Ichthyology, v. 6, p. 191-200, 2008. FRANCINI- FILHO, R. B. et al. Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: influence of resource availability and interference competition. Journal of the Marine Biological Association of the United Kingdom, v. 90, 55 p. 481–492, 2010. FREITAS, M. O. et al. Spawning patterns of commercially important reef fish (Lutjanidae and Serranidae ) in the tropical western South Atlantic. Atlantic. Scientia Marina, v. 75, n. 135-146, 2011. HAWKINS, J. P.; ROBERTS, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol Conserv, v. 115, n. 213–226, 2003. HUGHES, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, v. 265, n. 1547–1551, 1994. HUGHES, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science, v. 301, p. 929–933, 2003. HUGHES, T. P. et al. New paradigms for supporting the resilience of marine ecosystems. Trends in Ecology and Evolution, v. 20, p. 380–386, 2005. HOEGH-GULDBERG, O. et al. Coral reefs under rapid climate change and ocean acidification. Science, v. 318, n. 1737–1742, 2007. HUMANN, P.; DELOACH, N. Reef fish identification: Florida, Caribbean and Bahamas. New World Publications, Jacksonville, 2002. GATZ, A. J. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany, v. 21, n. 2, p. 91-124, 1979. GIBRAN, F. Z. Activity, habitat use, feeding behavior, and diet of four sympatric species of Serranidae (Actinopterygii: Perciformes) in southeastern Brazil. Neotropical Ichthyology, 56 v. 5, n. 3, p. 387-398, 2007. GIBRAN, F. Z. Habitat partitioning, habits and convergence among coastal nektonic fish species from the São Sebastião Channel, southeastern Brazil. Neotropical Ichthyology, v. 8, n. 2, p. 299-310, 2010. LEWIS, S.M. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecological Monographs, v. 56, p. 183–200, 1986. LETOURNEUR, Y. Dynamics of fish communities on Reunion fringing reefs, Indian Ocean. I. Patterns of spatial distribution. Journal of Experimental Marine Biology and Ecology, v. 195, p. 1-30, 1996. LOKRANTZ, J. et al. The non-linear relationship between body size and function in parrotfishes. Coral Reefs, v. 150, p. 1145–1152, 2008. MOTTA, P. J.; KOTRSCHAL, K. M. Correlative, experimental, and comparative evolutionary approaches in ecomorphology. Netherlands Journal of Zoology, v. 42, n. 2-3, p. 400-415, 1992. MOTTA, P. J.; NORTON, S. F.; LUCZKOVICH, J. J. Perspectives on the ecomorphology of bony fishes. Environmental Biology of Fishes, v. 44, n. 1-3, 11-20, 1995. MOURA, R. L. Brazilian reefs as priority areas for biodiversity conservation in the Atlantic Ocean. In: International Coral Reef Symposium, 9th, 2000, Bali, Indonésia. Proceedings… v. 2, p. 917-920, 2000. MOURA, R. L. Brazilian reefs as priority areas for biodiversity conservation in the Atlantic Ocean. Proc. Int. Coral Reef Symp., v. 9, n. 2, p. 917-920, 2002. 57 MOURA, R. L.; FRANCINI-FILHO, R. B.; MINTE-VERA, C. V.; SUMIDA, P.Y.G., AMADO-FILHO, G. M.; AMARAL, J.; BASTOS, A. C.; MOTTA, F. S.; THOMPSON, F. L.; KRUGER; RICARDO H.; DUTRA, G. F.; Pesquisa no oceano: Desafio e oportunidades. Scientific American Brasil, v. 39, p. 30-35. 2010. ONG, L.; HOLLAND, K. N. Bioerosion of coral reefs by two Hawaiian parrotfishes: species, size, differences and fishery implications. Marine Biology, v. 157, p. 1313–1323, 2010. PADOVANI-FERREIRA, B.; FLOETER, S.; ROCHA, L.A.; FERREIRA, C.E.; FRANCINI-FILHO, R.B.; MOURA, R.L.; GASPAR, A. L. & FEITOSA, C. (2012) Scarus trispinosus. In: IUCN Red List of Threatened Species, v. 2013.2. <www.iucnredlist.org>. PARENTI P.; RANDALL J. E. Checklist of the species of the families Labridae and Scaridae: an update. Smithiana Bulletin, v. 13, p. 29–44, 2011. RANDALL, J. E.; ALLEN, G. R.; STEENE, R. C. Fishes of the Great Barrier Reef and and Coral Sea. Honolulu, University of Hawaii Press, 1997. SHIN, Y-J. et al. Using size-based indicators to evaluate the ecosystem effect of fishing. ICES J. Mar Sci, v. 62, p. 384-396, 2005. SCHMITT, R. J.; COYER, J. A. The foraging ecology of sympatric marine fish in the genus Embiotoca (Embiotocidae): importance of foraging behavior in prey size selection. Oecologia, v. 55, p. 369-378, 1982. SCHOENER, T. W. Resource partitioning in ecological communities. Science, v. 185, p. 2739, 1974. 58 STREELMAN, J. T. et al. Evolutionary history of the parrotfishes: biogeography, ecomorphology and comparative diversity. Evolution, v. 56, n. 5, p. 961-971, 2002. VAN ROOIJ, J. M.; KROON, F. J.; VIDELER, J. J. The social and mating system of the herbivorous reef fish Sparisoma viride: one-male versus multi-male groups. Environ Biol Fishes, v. 47, p. 353-378, 1996. WESTNEAT, M. W.; ALFARO, M. E. Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Molecular Phylogenetics and Evolution, v. 36, p. 370–390, 2005. WILSON, S. K. et al. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanography and Marine Biology: An Annual Review, v. 41, p. 279-309, 2003. WINEMILLER, K. O. Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecological Monographs, v. 61, n. 4, p. 343-365, 1991.
Documentos relacionados
Ecological speciation in tropical reef fishes
Figure 2. Proportional abundances of five Halichoeres species in various habitat types in and around coral and rocky reefs at six
locations. Although the density of H. bivittatus and H. poeyi was l...