CFD PROJECTS – Heave Response

Transcrição

CFD PROJECTS – Heave Response
2013 CAE NAVAL & OFFSHORE
Windsor Guanabara, Rio de Janeiro/RJ – Brasil
13 de Junho de 2013
SIMULATION OF FLOW AROUND FLOATING
STRUCTURES: SHIPS AND PLATFORMS
Alexandre T. P. Alho
Laboratório de Sistemas de Propulsão
DENO/POLI, UFRJ
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
INTRODUCTION

Preliminary Considerations
▪
Growing demand for high efficiency systems
▪
Demand for accurate predictions in less time and at low costs.
▪

Accurate CFD models: designers can rely on as an effective
design tool.

CFD model must be developed based on a good compromise
between the quality of the numerical result and the computational
effort.
Performance prediction of ships and offshore platforms

Experimental methods are well-established, but are usually
expensive and time-consuming.

Optimization process is virtually impossible based on experimental
methods: very high costs.
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
INTRODUCTION


Examples of CFD Projects
▪
CFD Predictions of the Hull Resistance and the Wave System of a
Catamaran.
▪
Investigate the performance of passive damping foils on heave
response of a catamaran.
▪
Develop a CFD model to study the effectiveness of passive damping
devices on heave motions of mono-column platforms.
Methodology
▪
The flow around vessel/platform hulls was simulated by means of
commercial CFD code (ANSYS CFX).
▪
Results are validated against experimental data (if available).
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Resistance & Wave Cut

Motivation
▪
Growing demand for high speed multihull vessels.


Objective
▪

Catamaran/SWATH concept has been received special attention
 good performance in terms of speed and transversal stability.
Validate a CFD model in terms of its performance on estimating hull
resistance and calculating the wave cuts generated by the hull.
Main Particulars
▪
Length (BP):
27.6 m
▪
Beam (each hull):
2.97 m
▪
Draft (design load): 1.5 m
▪
Block coefficient:
0.653
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Resistance & Wave Cut

Main Particulars
▪
Length (BP):
27.6 m
▪
Beam (each hull):
2.97 m
▪
Draft (design load): 1.5 m
▪
Block coefficient:
0.653
IF. Sep 22
IF. Sep.42
IF. Sep.62
0,55

0,45
Demihull separation
▪
2.75 m (22), 5.25 m (42)
and 7.75 m (62):
  0.9..2.6 B.
IF
0,35
0,25
0,15
0,05
-0,05
Significant interference effects
-0,15
0,1
0,2
0,3
0,4
0,5
Fn
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
0,6
CFD PROJECTS – Resistance & Wave Cut

Hull Resistance
▪
In most cases, numerical errors are lower than 5.0% (max. 7.2%).
9000
8000
Resistance (gf)
7000
Exp.
Hump & hollow
behavior well
described.
CFD
6000
5000
4000
3000
2000
Unable to resolve
wave-breaking.
1000
0
0,25
0,3
0,35
0,4
0,45
Fn
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Resistance & Wave Cut

Free surface elevations
FN = 0.332
0,03
Exp.
0,02
CFD
Wave Elevation
0,01
0
FN = 0.389
0,03
-0,01
Exp.
CFD
0,02
-0,02
0,01
-1
-0,5
0
0,5
1
1,5
x-position
Wave Elevation
-0,03
2 0
2,5
3
3,5
-0,01
0,04
-0,02
0,03
FN = 0.430
Exp.
CFD
0,02
-0,03
-1
-0,5
0
0,5
1
1,5
x-position
Wave Elevation
0,01
-0,04
2 0
2,5
3
3,5
-0,01
-0,02
Good correlation upstream
and along the hull.
-0,03
-0,04
-1
-0,5
0
0,5
1
1,5
2
2,5
x-position
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
3
3,5
CFD PROJECTS – Heave Response

Objective
▪

Investigate the performance of passive damping foils on heave
response of a catamaran  viscous damping coefficient.
Main Particulars
▪
Length (BP):
27.6 m
▪
Beam (each hull):
2.97 m
▪
Draft (design load): 1.5 m
▪
Block coefficient:
0.653
Passive damping foil.
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Heave Response

Heave Response
Without Damping Foil
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
With Damping Foil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Heave Response

Heave Response
Without Damping Foil
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
With Damping Foil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Heave Response

Objective
▪

Develop a CFD model to study the effectiveness of passive damping
devices on heave motions of mono-column platforms.
Vertical Circular Cylinder

External dia.:
 Moonpool dia.:

110 m
50 m
Central Moonpool

Devised to improve response
in waves.
External skirt: damping device
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Heave Response

Free Decay Simulation: Original Skirt
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Heave Response
Validation: Original Skirt
Decay period: good correlation!
Vertical displacement [Norm.]

Over-estimated amplitude: numerical
simulation did not include the damping
effect of mooring lines, risers, etc.
Numerical (CFD)
Experimental
Time [s]
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Heave Response

Free Decay Simulation: Alternative Skirt Geometry
Alternative B
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Seft-propulsion Test

Objective
▪

Focus
▪

Develop a CFD model dedicated to estimate the propulsion factors and
to simulate the self-propulsion test of a hull.
Design applications.
Main Particulars:
▪
Length (Loa):
73.4 m
▪
Length (Lpp):
70.6 m
▪
Breath (B):
14.8 m
▪
Design draught (T):
2.6 m
▪
Service Speed (VS):
9.5 knt
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Seft-propulsion Test

Hull Performance
▪ Test speed (VS):
9.5 knt
▪ Total resistance (RT):
50.6 kN
▪ Wake coefficient (w):
0.153
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Seft-propulsion Test

Test Results
▪ Propeller revolutions (N):
433 rpm
▪ Propeller thrust (Treq):
65.3 kN
N = 420 rpm
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
CFD PROJECTS – Seft-propulsion Test

Results Evaluation
▪ Comparison against statistical estimation.
▪ Wake fraction, thrust deduction fraction and relative-rotative efficiency
predictions based on Holtrop & Mennen (1984).
Statistical
Numerical
Dif.
Propeller Revolutions
456
433
-5.2%
rpm
Propeller Thrust
70.4
65.3
-7.8%
kN
Wake Fraction
0.181
0.153
-16.7%
---
Thrust Deduction Fraction
Relative-rotative Efficiency
0.243
1.028
0.184
1.024
-32.3%
-0.4%
-----
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ
FINAL REMARKS

The overall performance achieved suggests that the CFD
numerical models were able to resolve the physics of the
flow around vessel/platform hulls.

The comparison against experimental results showed that
the numerical models were able to provide reasonable
performance predictions, suggesting that designers can rely
on CFD models as an effective design tool.
2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil
Engenharia Naval e Oceânica
COPPE/UFRJ & EP/UFRJ