CFD PROJECTS – Heave Response
Transcrição
CFD PROJECTS – Heave Response
2013 CAE NAVAL & OFFSHORE Windsor Guanabara, Rio de Janeiro/RJ – Brasil 13 de Junho de 2013 SIMULATION OF FLOW AROUND FLOATING STRUCTURES: SHIPS AND PLATFORMS Alexandre T. P. Alho Laboratório de Sistemas de Propulsão DENO/POLI, UFRJ Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ INTRODUCTION Preliminary Considerations ▪ Growing demand for high efficiency systems ▪ Demand for accurate predictions in less time and at low costs. ▪ Accurate CFD models: designers can rely on as an effective design tool. CFD model must be developed based on a good compromise between the quality of the numerical result and the computational effort. Performance prediction of ships and offshore platforms Experimental methods are well-established, but are usually expensive and time-consuming. Optimization process is virtually impossible based on experimental methods: very high costs. 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ INTRODUCTION Examples of CFD Projects ▪ CFD Predictions of the Hull Resistance and the Wave System of a Catamaran. ▪ Investigate the performance of passive damping foils on heave response of a catamaran. ▪ Develop a CFD model to study the effectiveness of passive damping devices on heave motions of mono-column platforms. Methodology ▪ The flow around vessel/platform hulls was simulated by means of commercial CFD code (ANSYS CFX). ▪ Results are validated against experimental data (if available). 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Resistance & Wave Cut Motivation ▪ Growing demand for high speed multihull vessels. Objective ▪ Catamaran/SWATH concept has been received special attention good performance in terms of speed and transversal stability. Validate a CFD model in terms of its performance on estimating hull resistance and calculating the wave cuts generated by the hull. Main Particulars ▪ Length (BP): 27.6 m ▪ Beam (each hull): 2.97 m ▪ Draft (design load): 1.5 m ▪ Block coefficient: 0.653 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Resistance & Wave Cut Main Particulars ▪ Length (BP): 27.6 m ▪ Beam (each hull): 2.97 m ▪ Draft (design load): 1.5 m ▪ Block coefficient: 0.653 IF. Sep 22 IF. Sep.42 IF. Sep.62 0,55 0,45 Demihull separation ▪ 2.75 m (22), 5.25 m (42) and 7.75 m (62): 0.9..2.6 B. IF 0,35 0,25 0,15 0,05 -0,05 Significant interference effects -0,15 0,1 0,2 0,3 0,4 0,5 Fn 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ 0,6 CFD PROJECTS – Resistance & Wave Cut Hull Resistance ▪ In most cases, numerical errors are lower than 5.0% (max. 7.2%). 9000 8000 Resistance (gf) 7000 Exp. Hump & hollow behavior well described. CFD 6000 5000 4000 3000 2000 Unable to resolve wave-breaking. 1000 0 0,25 0,3 0,35 0,4 0,45 Fn 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Resistance & Wave Cut Free surface elevations FN = 0.332 0,03 Exp. 0,02 CFD Wave Elevation 0,01 0 FN = 0.389 0,03 -0,01 Exp. CFD 0,02 -0,02 0,01 -1 -0,5 0 0,5 1 1,5 x-position Wave Elevation -0,03 2 0 2,5 3 3,5 -0,01 0,04 -0,02 0,03 FN = 0.430 Exp. CFD 0,02 -0,03 -1 -0,5 0 0,5 1 1,5 x-position Wave Elevation 0,01 -0,04 2 0 2,5 3 3,5 -0,01 -0,02 Good correlation upstream and along the hull. -0,03 -0,04 -1 -0,5 0 0,5 1 1,5 2 2,5 x-position 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ 3 3,5 CFD PROJECTS – Heave Response Objective ▪ Investigate the performance of passive damping foils on heave response of a catamaran viscous damping coefficient. Main Particulars ▪ Length (BP): 27.6 m ▪ Beam (each hull): 2.97 m ▪ Draft (design load): 1.5 m ▪ Block coefficient: 0.653 Passive damping foil. 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Heave Response Heave Response Without Damping Foil 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil With Damping Foil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Heave Response Heave Response Without Damping Foil 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil With Damping Foil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Heave Response Objective ▪ Develop a CFD model to study the effectiveness of passive damping devices on heave motions of mono-column platforms. Vertical Circular Cylinder External dia.: Moonpool dia.: 110 m 50 m Central Moonpool Devised to improve response in waves. External skirt: damping device 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Heave Response Free Decay Simulation: Original Skirt 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Heave Response Validation: Original Skirt Decay period: good correlation! Vertical displacement [Norm.] Over-estimated amplitude: numerical simulation did not include the damping effect of mooring lines, risers, etc. Numerical (CFD) Experimental Time [s] 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Heave Response Free Decay Simulation: Alternative Skirt Geometry Alternative B 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Seft-propulsion Test Objective ▪ Focus ▪ Develop a CFD model dedicated to estimate the propulsion factors and to simulate the self-propulsion test of a hull. Design applications. Main Particulars: ▪ Length (Loa): 73.4 m ▪ Length (Lpp): 70.6 m ▪ Breath (B): 14.8 m ▪ Design draught (T): 2.6 m ▪ Service Speed (VS): 9.5 knt 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Seft-propulsion Test Hull Performance ▪ Test speed (VS): 9.5 knt ▪ Total resistance (RT): 50.6 kN ▪ Wake coefficient (w): 0.153 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Seft-propulsion Test Test Results ▪ Propeller revolutions (N): 433 rpm ▪ Propeller thrust (Treq): 65.3 kN N = 420 rpm 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ CFD PROJECTS – Seft-propulsion Test Results Evaluation ▪ Comparison against statistical estimation. ▪ Wake fraction, thrust deduction fraction and relative-rotative efficiency predictions based on Holtrop & Mennen (1984). Statistical Numerical Dif. Propeller Revolutions 456 433 -5.2% rpm Propeller Thrust 70.4 65.3 -7.8% kN Wake Fraction 0.181 0.153 -16.7% --- Thrust Deduction Fraction Relative-rotative Efficiency 0.243 1.028 0.184 1.024 -32.3% -0.4% ----- 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ FINAL REMARKS The overall performance achieved suggests that the CFD numerical models were able to resolve the physics of the flow around vessel/platform hulls. The comparison against experimental results showed that the numerical models were able to provide reasonable performance predictions, suggesting that designers can rely on CFD models as an effective design tool. 2013 CAE NAVAL & OFFSHORE – Windsor Guanabara, Rio de Janeiro/RJ – Brasil Engenharia Naval e Oceânica COPPE/UFRJ & EP/UFRJ