Folien 2 ohne Transparenz
Transcrição
Folien 2 ohne Transparenz
Graphiken multivariater Daten Klassische Graphiken für die Darstellung von 2 Merkmalen: 2*metrisch: Streudiagramm metrisch+kategorisch: Getrennte Boxplots (Histogramme, . . . ) 2*kategorisch: Balkendiagramm (gestapelt oder nebeneinander) Multivariate Verfahren Was passiert, wenn wir eine dritte Variable zu einem Streudiagramm dazunehmen? Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München metrisch: Streudiagramm-Matrix, Größe oder Farbe der Zeichen, 3d kategorisch: als Farbe und/oder Zeichentyp SS 2009, Visualisierung multivariater Daten Eine vierte Variable? Wir brauchen ein wenig Theorie . . . Friedrich Leisch, Multivariate Verfahren 2009 Visualisierung von Information 1 Visualisierung von Information • Das menschliche visuelle System ist hochentwickelt und kann extrem große Mengen an Information schnell verarbeiten, • Informationsvermittlung an uns selber • wurde aber nicht primär Datenanalyse entwickelt. • Informationsvermittlung an andere für die Aufgaben der • Jagd auf wilde Tiere unterscheidet sich vom wissenschaftlichen Artikels oder Geschäftsberichtes. • Verschönerung eines Berichtes modernen Lesen eines • Es ist wichtig, ein paar Schwächen des menschlichen visuellen Systems zu kennen. Friedrich Leisch, Multivariate Verfahren 2009 2 Friedrich Leisch, Multivariate Verfahren 2009 3 Codierungsmöglichkeiten Winkel und Steigung 20 • Länge, Fläche, Volumen • Position an (bündig justierten) Achsen 10 • Winkel, Steigung 5 15 • Farbe: Farbton, Sattheit, Schwärzungsgrad 0.0 0.5 1.0 1.5 2.0 2.5 3.0 x Friedrich Leisch, Multivariate Verfahren 2009 4 Winkel und Steigung Friedrich Leisch, Multivariate Verfahren 2009 5 Fläche und Volumen • problematisch für Menschen • spitze Winkel werden unterschätzt, stumpfe Winkel überschätzt • Abhängigkeit von Orientierung • Menschen tendieren dazu, Winkel zu lesen, wenn sie Steigungen schätzen → Referenzachse wichtig • der Abstand zwischen 2 Kurven wird in der Regel im rechten Winkel zur Kurve geschätzt, nicht parallel zur Achse Friedrich Leisch, Multivariate Verfahren 2009 6 Friedrich Leisch, Multivariate Verfahren 2009 7 Fläche und Volumen Längen 5 6 • auch schwer zu decodieren 3 4 • stark abhängig von Form: lang&dünn sieht größer aus als kompakt&konvex 2 • (nicht so starke) Abhängigkeit von Farbe 0 1 • Volumina sind schwer in 2-d zu visualisieren: es ist unklar, wann der Umriß (= Fläche) die Schätzung des Volumens dominiert. A Friedrich Leisch, Multivariate Verfahren 2009 8 Längen B C Friedrich Leisch, Multivariate Verfahren 2009 9 Längen A 5 4 3 2 1 • für Menschen am einfachsten zu decodieren • bündig ausgerichtete Achsen besser als frei liegende B 5 4 3 2 1 • . . . aber nur Längen machen eine Graphik auch unlesbar! C 5 4 3 2 1 0 1 Friedrich Leisch, Multivariate Verfahren 2009 2 3 4 5 6 7 10 Friedrich Leisch, Multivariate Verfahren 2009 11 Steven’s Gesetz Farbe 2 x+y Codierte wahre Werte x1 und x2 resultieren in wahrgenommenen Werten w(x1) und w(x2) im Verhältnis: !β 1 x1 x2 x mit −1 Wertebereich für β 0.9 – 1.1 0.6 – 0.9 0.5 – 0.8 −2 Attribut Länge Fläche Volumen 0 w(x1) = w(x2) −2 −1 0 1 2 x Friedrich Leisch, Multivariate Verfahren 2009 12 Farbe 13 Farbe • Wichtig bei Codierung kategorischer Information. • Kann nur wenige Intervalle quantitativer Information darstellen. • Starke Abhängigkeit vom Ausgeabemedium (Papier, Art des Monitors, . . . ) • Potentielle Probleme bei schwarz-weiß Druck und Kopien. • Großer Flächen voll saturierter Farben überlasten die Retina. • Eine Sammlung von Farbschemata ist verfügbar auf http:// colorbrewer.org (oder R Paket ColorBrewer). Friedrich Leisch, Multivariate Verfahren 2009 Friedrich Leisch, Multivariate Verfahren 2009 14 YlOrRd YlOrBr YlGnBu YlGn Reds RdPu Purples PuRd PuBuGn PuBu OrRd Oranges Greys Greens GnBu BuPu BuGn Blues Set3 Set2 Set1 Pastel2 Pastel1 Paired Dark2 Accent Spectral RdYlGn RdYlBu RdGy RdBu PuOr PRGn PiYG BrBG Friedrich Leisch, Multivariate Verfahren 2009 15 Rangordnung Perzeptionsaufgaben Rangordnung Perzeptionsaufgaben Cleveland/McGill: Position entlang gemeinsamer Achsen Position entlang identischer, justierter Achsen Länge Winkel / Steigung Fläche Volumen Farbton — Sattheit — Schwärzungsgrad 16 17 Mache alle Daten sichtbar ● ●● 0.8 ● 0.6 • Verwende Codierungschema vom Anfang der Liste • Vermeide Flächen und Volumina (Steven’s Law zeigt Verzerrung) • Vermeide Farben für quantitative Daten (aber verwende Sie für kategorische Variablen!) • Vermeide optische Illusionen (3d, unruhige Füllmuster, . . . ). • Vermeide große Flächen saturierter Farben. • Verwende bei Panels gemeinsame Achsen und Referenzlinien als optische Anker. • Sortiere Werte nach Werten statt einem externen Kriterium (wie dem Alphabet), dieses kann in Tabellen benutzt werden. • Überlade die Daten nicht zu stark mit Annotation (Text, Pfeile, . . . ). x[,2] Tipps für effektive Graphiken Friedrich Leisch, Multivariate Verfahren 2009 0.4 Friedrich Leisch, Multivariate Verfahren 2009 0.2 1. 2. 3. 4. 5. 6. 7. ● ●● ● ● ● ● ● ●● ● ● ● ●● ●●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ●● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ●● ● ● ● ● ●● ● ●● ●● ●● ● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ●● ● ●● ● ●● ●●● ● ● ● ● ●● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ●● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ●● ● ●● ●●● ●● ● ● ●● ●● ● ● ●● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ● ● ● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●● ● ● ●●● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ●● 0.2 0.4 0.6 0.8 x[,1] Friedrich Leisch, Multivariate Verfahren 2009 18 Friedrich Leisch, Multivariate Verfahren 2009 19 Mache alle Daten sichtbar 1.0 1.0 Mache alle Daten sichtbar ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ●● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ●● ●● ●● ● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ●● ● ●● ●● ● ●● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ●● ● ● ● ●● ●● ● ●● ● ● ●● ● ● ● ● ● ●●● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ● ● ● ● ●●● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ●● ● ● ● ●●● ● ●●● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ●● ● ● ● ● ●● ●● ●●● ● ● ● ●● ● ● ● ● ●● ● ● ●● ●● ● ● ● ● ●● ● ●● ●● ●● ● ●● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ●● ● ●● ●● ● ●● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ●● ● ● ● ●● ●● ● ●● ● ● ●● ● ● ● ● ● ●●● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ●● ● ● ● ●●● ● ●●● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ●● 0.0 0.2 0.4 0.6 0.8 0.8 0.6 x[,2] 0.4 0.2 0.0 0.0 0.2 0.4 x[,2] 0.6 0.8 ● 0.0 1.0 0.2 0.4 0.6 0.8 1.0 x[,1] x[,1] Friedrich Leisch, Multivariate Verfahren 2009 20 Sortiere nach Werten Friedrich Leisch, Multivariate Verfahren 2009 21 Sortiere nach Werten driving_properties character ● ● power clarity ● ● quality comfort ● ● technology concept ● ● consumption reliability ● sporty ● ● driving_properties ● safety economy ● ● comfort handling ● ● handling interior ● ● economy model_continuity ● ● consumption power ● ● styling quality ● ● interior reliability ● ● resale_value reputation ● ● service resale_value ● ● concept safety ● ● model_continuity service ● ● space reputation ● clarity ● ● sporty ● space styling ● ● character technology ● ● 0.1 0.2 Friedrich Leisch, Multivariate Verfahren 2009 0.3 0.4 0.5 0.6 0.1 0.7 22 0.2 Friedrich Leisch, Multivariate Verfahren 2009 0.3 0.4 0.5 0.6 0.7 23 Bsp: Zweitstimmen Bundestagswahl 2005 Streudiagramm-Matrix ● ● > summary(btw05) SPD Min. :0.1885 1st Qu.:0.2959 Median :0.3361 Mean :0.3427 3rd Qu.:0.3883 Max. :0.5586 LINKE Min. :0.02275 1st Qu.:0.03866 Median :0.04888 Mean :0.08870 3rd Qu.:0.07176 Max. :0.35536 UNION Min. :0.1104 1st Qu.:0.2881 Median :0.3432 Mean :0.3507 3rd Qu.:0.4045 Max. :0.6048 GRUENE Min. :0.02619 1st Qu.:0.05664 Median :0.07195 Mean :0.08060 3rd Qu.:0.09818 Max. :0.22769 ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ●● ● ● ● ● ●● ●● ● ●● ●● ● ● ● ●● ● ● ● ● ● ● ● ● FDP Min. :0.04565 1st Qu.:0.08095 Median :0.09679 Mean :0.09769 3rd Qu.:0.11241 Max. :0.16630 ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●●●●● ●● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ●●●●● ● ●● ●●●● ● ●●●● ● ●●● ●●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● ● ● ●● ●● ● ● ● ●●● ●● ● ● ● ●● ● ●● ●● ● ●● ● ● ● ● ● 0.20 0.150.20 ● ● ● ● ●● ● ● ● ●● ●● ● ● ● ●●●●●●● ● ●●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●●● ● ● ●● ●● ● ●●●● ●● ● ● ● ● ●●● ●● ● ● ● ●● ● ●● ● ● ●●●● ● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●●● ●● ● ● ● ●● ● ● ● ● ●● ●● ●● ●●●● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●●●● ● ● ● ● ● ● ●● ●●●● ● ● ● ● ● ●● ● ●● ● ● ● ●●● ●●●● ●● ●● ●● ●● ● ● ● ● ●● ●●● ● ● ● ● ●●● ●● ● ●● ●● ● ●● ● ●● ● ● ● ● ● ● ●● ●●●● ● ● ●● ● ● ●●●●●●● ● ● ●● ●●●● ●●● ●● ● ● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ● ● ●● ● ● ● 0.4 0.5 0.5 0.4 SPD 0.3 0.2 0.3 0.2 0.2 0.6 0.2 0.4 0.5 0.6 0.5 0.4 UNION 0.3 0.2 ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●●●● ● ●● ● ●●● ●● ● ●● ●● ●● ● ● ●● ● ●● ●● ● ● ● ● ● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ● ●●● 0.1 ● ● ●●●● ● ●●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●●●● ● ● ●●● ● ● ●● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ●●● ● ● ● ●● ● ●● ● ● ● ● ●● ● 25 0.1 ● ● ●● ●●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.0 ● ● ● ● ● ●●● ● ● ●●● ● ●● ●●●● ● ●● ●● ● ●● ● ● ●● ● ●● ●● ●●● ● ●● ●●● ● ● ●●●● ● ● ● ●● ●● ● ●●●● ●● ● ● ● ● ●●● ●● ● ● ● ●● ● ●● ● ● ●●●● ● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●●● ●● ● ● ● ●● ● ● ● ● ●● ●● ●● ●●●● ● ●● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ● ●● ●●●● ● ● ● ● ●● ●●●● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ●●● ● ●● ●● ● ●● ● ● ● ● ●●● ●●● ● ● ● ● ●●●●●● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ●● ●●●● ● ● ●● ● ●● ●●●●●●● ● ● ●● ●●●● ●●● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● 0.4 0.5 0.5 ● ● ●● ●● ● ●● ● ● ● ● ● ● ●● ●● ●● ●● ● ● ●● ● ●● ●● ●● ● ● ●● ● ●● ● ● ● ● ●●●● ●●● ● ● ●● ● ● ● ● ● 0.4 SPD ●● 0.3 0.2 0.3 0.2 0.2 0.2 ●● ●● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● 0.0 ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ●● ● ● 0.6 0.4 0.5 0.6 0.5 0.4 0.3 0.3 ●● ● ● ●● ●● ● ●●● ● ● ●● ● ●● ● ●●●● ● ● ● ● ●● ●●●● ●● ● ● ●●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●● ●● ●● ● ● ●●●●●●● ● ●●● ● ● ●●●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●●●● ● ● 0.1 ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ●● ●●● ● ● ● ●● ●●● ●● ● ● ●● ● ● ●● ● ● ● ● ●● ●● ● ● ●● ● ●●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● LINKE 0.1 0.2 0.3 ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●●● ●●● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ●● ●● ● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ●● ●● ● ● ●● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ●●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●●●● ●● ● ● ● ● ● ●● ● ●●● ● ● ●● ●● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ●●● ●● ● ● ● ● ●●● ● ● ●● ●● ●●● ●● ● ● ● ● ●● ● ●● ● ●● ●● ● ● ●● ● ●●●●● ●● ●● ● ●●● ●● ● ● ● ●●● ●● ● ●● ●● ● ●● ● ● ● ●● ● ●● ●●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.050.10 0.05 ● Friedrich Leisch, Multivariate Verfahren 2009 0.3 0.3 ●● ●● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● 0.0 ●● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ●● ● ● ●● ●● ● ● ●● ● ● ● ● ●●● ●● ● ●● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ●● ● ●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ●●●● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●● ●●● ● ●●● ● ● ● ● ● ● ●● ● ●●● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ●●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ●●● ● ●●● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ●●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ●● ●● ● ●● ● ●●● ● ●● ●● ●●● ●● ● ●● ● ● ● ● ● ● ●● ●●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● ● ● 0.10 Streudiagramm-Matrix ● ● ●● ● ● ●● ●● ● ●●● ● ● ●● ● ●● ● ●●●● ● ● ● ● ●● ●●●● ●● ● ● ●●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● GRUENE SPD ● ● ●● ● ●● ●●● ● ● ● ●● ●●● ●● ● ● ●● ● ● ●● ● ● ● ● ●● ●● ● ●●● ●● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●●●●● ● ● ●● ●● ●● ● ●● ●● ● ● ● ● ● ● ●● ●●● ●●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●●● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ●● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●●● ● ● ● ● ● ● ● ● ● ● ● ● 0.15 UNION Streudiagramm-Matrix 0.2LINKE FDP ● ● ●● ● ● ●● ● ● ● ●● ●● ●●● ● ● ●● ● ● ● ● ● ● ●● ● ●● ●● ●●●● ●● ● ●●● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●●● ● ● ● ●● ● ●● ●● ● ● ● ● ●● ● ●● ●● ●● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ●●● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●●●● ● ●● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ●● ● ●● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●●●● ● ●● ● ● ● ●● ●● ●● ● ● ●● ● ● ●●●● ● ●●●● ● ● ●● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ●●● ● ● ● ●● ●● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ●● ●● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ●● ● 24 ● 0.1 ● ●●● ● ● ●● ●●● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ●●● ●● ● ● ● ● 0.0 0.1 ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●●●● ● ● ● ● ● ● ● ● ●● ●● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ●●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.0 ● ● ● ● ● ● 0.16 ● ● ● ● ● 0.10 0.12 0.14 0.16 ●●●●●●●● ● ●●●● ● ●●●● ●● ● ● ● 0.14 ● ● ● ●● ● ●●● ●●● ●● ● ● ●●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.12 ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ●●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.10 0.10 ●●● ● ● ● ● ●●●●● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ●● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● 0.08 ●●●● ●● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ●●●● ● ●● ● ●● ● ● ● ● ●● ●●● ● ●● 0.04 0.06 0.08 0.10 ● ● ● ● ● ● ● 0.06 ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● 0.04 ● ● ● ● ● ● ● ●● ● ● ● 0.6 ● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ●● ● ● 0.5 0.40.50.6 ●●●●● ● ● ● ●● ● ●● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● 0.4 ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● ● ● ●● ● ● ● ● ●● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ●●● ●● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ● ●●● ● ● ● ● ● ●● ● ●●● ●● ● ● ●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● 0.3 ● ●● ● ● ● ● ● ● ● ●●●● ● ●● ● ● ● ● ● ● ● ●●● ●● ●● ● ● ● ● ● ● ●● ●● ● ● ● ● ●● ●● ● ● ● ● ●●● ● ●●●●●●● ● ● ● ● ●●●●●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● 0.2 ●● ● ● ● ●● 0.10.20.3 ● ● ● ● ● ●● ●● 0.1 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● 0.5 0.4 0.5 ●● ● ● ● ●●●●● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●●●● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● 0.4 ●● ● ●● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● ● ●●● ●●● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●●●● ● ● ● ● ● ● ● ● ● ● 0.3 ● ● ●● ● ●●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ●●●●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ● ● ●●● ● ● 0.2 0.3 ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ●●● 0.2 ●●● ● Friedrich Leisch, Multivariate Verfahren 2009 0.3 0.2 0.3 ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● UNION 0.3 0.2 LINKE 0.1 0.1 ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ● ● ●● 0.1 0.2 0.3 0.1 ● ● ● ● ●● ● ● ● ● ●● ● ● ● ●●● ●●● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ●● ●● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ●● ●● ●● ● ● ● ● ●● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ●●●● ●● ● ● ● ● ● ●● ● ●●● ● ● ●● ●● ●● ● ● ● ●● ● ● ● ● ● ● ●● ●●●● ● ● ●● ●● ●●● ● ● ● ●●● ● ● ● ● ● ● ● ● ●●● ● ● ●● ●●● ●● ● ●●● ● ● ●● ● ● ●● ●● ●● ● ● ●● ● ●●●●● ●● ●● ● ●●● ●● ● ● ● ●●● ●● ● ●● ●● ● ●● ● ● ● ●● ● ●● ●●● ●● ●● ● ● ●● ●●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.0 ● ● ● ● ● ●●● ● ● ●●● ● ●● ●●●● ● ●● ●● ● ●● ● ● ●● ● ●● ●● ●●● ● ●● ●●● ● ● ●●●● ● ● ● ● ● ●● ●● ● ●● ● ● ● ● ● ● ●● ●● ●● ●● ● ● ●● ● ●● ●● ●● ● ● ●● ● ●● ● ● ● ● ●●●● ● ● ● ●● ●● ● ● ●● ● OST WEST ● ● ● ● ●● Scatter Plot Matrix Friedrich Leisch, Multivariate Verfahren 2009 26 Friedrich Leisch, Multivariate Verfahren 2009 27 3d-Punktwolke 3d-Punktwolke ● LINKE ● ● ● ● ●● ● ●● ●● ●●●● ● ●●●● ● ●● ●●● ● ● ● ●● ●● ●● ●● ● ● ● ● ● ● ● ●● ● ● ●● ●● ● ●● ● ● ● ● ● ● LINKE OST WEST ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ● ● ● ● ●● ●●● ●● ● ● ● ● ● ●● ●●● ● ● ● ● ●● ●● ● ● ● ● ●● ● ●● ● ● ●● ● ● ● ●● ●● ●● ● ● ● ● ●● ● ● ● ● ●● ● ● ●●● ●● ● ●● ● ●●● ● ●● ●●●● ●● ● ● ●● ● ● ● ● ●●● ● ●● ●●● ● ●● ● ● ● ● ●●● ● ● ● ●● ● ● ●●●● ● ● ● ●●● ● ● ● ● ● ● ● ●● ● ● ●●● ● ● ● ● ● ● ● ● ●●● ● ●●●● ●●● ●● ● ●●● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● UNION UNION SPD Friedrich Leisch, Multivariate Verfahren 2009 28 3d-Punktwolke SPD Friedrich Leisch, Multivariate Verfahren 2009 29 Parallele Koordinaten Ein mächtiges Werkzeug um mehr als 3 Variablen darzustellen: OST WEST • parallele Achsen für jede Variable • einzelne Variablen entweder mit gemeinsamer Skalierung oder jede normalisiert LINKE LINKE • Vorteil: mit etwas Übung auch bei höherer Dimension gut lesbar UNION SPD UNION • Nachteil: Abhängigkeit von Reihenfolge der Variablen, Korrelationen nur zwischen benachbarten Variablen ablesbar. SPD Bei vielen Datenpunkten ist Transparenz oder Aufteilung auf mehrere Panels hilfreich. Friedrich Leisch, Multivariate Verfahren 2009 30 Friedrich Leisch, Multivariate Verfahren 2009 31 Parallele Koordinaten 1.0 ● ● PK: Geraden Max 1.0 ● Max ● ● ● 0.8 0.8 ● ● ● ● 0.6 0.6 ● y y ● ● ● 0.4 0.4 ● ● ● ● 0.2 0.2 ● ● ● ● 0.0 ● 0.0 ● ● Min 0.0 0.2 0.4 0.6 0.8 1.0 Min x 0.0 y 0.2 0.4 0.6 x 1.0 x y x Friedrich Leisch, Multivariate Verfahren 2009 32 PK: Geraden 1.0 0.8 Friedrich Leisch, Multivariate Verfahren 2009 33 PK: Geraden Max ● 1.0 Max ● ● ● ● ● ● ● ● ● ● ● 0.8 0.8 ● ● ● ● ● ● ● ● ● ● ● ● 0.6 0.6 ● ● ● ● ● ● ● y y ● ● 0.4 0.4 ● ● ● ● 0.2 0.2 ● ● ● ● 0.0 0.0 ● Min 0.0 0.2 0.4 0.6 0.8 1.0 Min x 0.0 y x Friedrich Leisch, Multivariate Verfahren 2009 0.2 0.4 0.6 0.8 1.0 x y x 34 Friedrich Leisch, Multivariate Verfahren 2009 35 PK: Geraden 1.0 PK: Geraden Max ● Max 1.0 ● ● ● ● ● 0.8 ● 0.8 ● ● ● ● ● ● ● ● ● 0.6 ● 0.6 ● ● ● ● y y ● ● 0.4 0.4 ● ● ● ● ● ● ● ● 0.2 0.2 ● ● ● ● ● ● ● ● ● 0.0 ● 0.0 ● Min 0.0 0.2 0.4 0.6 0.8 1.0 Min x 0.0 y 0.2 0.4 0.6 x 36 PK: Geraden Max 1.0 ● ● ● ● ● 37 Max ● ● ● ● ● ● ● ● ● ● ● ● y Friedrich Leisch, Multivariate Verfahren 2009 ● ● x PK: Kreis 1.0 ● 1.0 x Friedrich Leisch, Multivariate Verfahren 2009 ● ● 0.8 ● 0.8 0.8 ● ● ● ● ●● ● ● ● ● ● ● 0.6 ● 0.6 ● ● ● ● ● ● y ● y ● ● ● ● ● 0.4 0.4 ● ● ● ● ● ● ● 0.2 0.2 ● ● ● ● ● ● ● ● ● 0.0 0.0 ● ● ● ● ● ● Min 0.0 0.2 0.4 0.6 0.8 1.0 Min x 0.0 y x Friedrich Leisch, Multivariate Verfahren 2009 0.2 0.4 0.6 0.8 1.0 x y x 38 Friedrich Leisch, Multivariate Verfahren 2009 39 PK: Halbkreis 1.0 ● ● ● ● PK: Halbkreis Max ● Max 1.0 ● ● ● ● ● ● ● ● ● 0.8 0.8 ● ● ● ● ● ● ● 0.6 0.6 ● ● ● ● ● y y ● ● ● 0.4 0.4 ● ● ● ● ● ● ● 0.2 0.2 ● ● ● ● ● ● ● ● ● ● 0.0 ● 0.0 ● ● ● ● Min 0.0 0.2 0.4 0.6 0.8 1.0 Min x 0.0 y 0.2 0.4 0.6 x 0.8 1.0 x y x Friedrich Leisch, Multivariate Verfahren 2009 40 PK: Unkorreliert Friedrich Leisch, Multivariate Verfahren 2009 41 PK: Cluster ● Max 1.0 Max 1.0 ● ● ● 0.8 ● ● ● ● ● ● ● 0.6 ● ● ●● 0.4 ● 0.4 ● ● ● 0.2 ● ● ● ● ● ● ●●● ● ● ● ● ● ●●● ● ● ● ● ●●● ● ● ●● ●●● ● ●● ● ● ● ●● ● ● ● ● ● ● ●● ● 0.0 ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ● 0.2 ● ● ● ● ● ● ● ● ● ● ● y y ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● 0.6 ● ●● ● ● ● ●● ● 0.8 ● ● ● ● ● ● ● ● ● ● ●● ● 0.0 ● Min 0.0 0.2 0.4 0.6 0.8● 1.0 Min x 0.0 y x Friedrich Leisch, Multivariate Verfahren 2009 0.2 0.4 0.6 0.8 1.0 x y x 42 Friedrich Leisch, Multivariate Verfahren 2009 43 PK: Cluster PK: Zusammenfassung Vorteile: • Achsen werden parallel verteilt, Platz wird effizient ausgenutzt • Viele Variablen auf einen Blick – Vergleich von Profilen • Geometrische Eigenschaften im d-dimensionalen übersetzen sich in 2-dimensionale Ansicht • Ordnung auf Variablen wird unterstützt Max 1.0 ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ●● ● ● 0.8 ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● 0.6 ● ●● ● ● ● ● y ● ● ● 0.4 ● ●● ● ● ● ●●● ● ● ● ● 0.2 ●● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● Nachteile: • Strukturen nur bei benachbarten Variablen sichtbar • Ohne interaktives Sortieren und Skalieren für explorative Analyse schlecht geeignet (nächste Woche) • Stärkeres Overplotting als bei Streudiagramm • Bei d Variablen gibt es d! Permutationen. ● ●●● ● ●●● ●● ● ● ● ● ●● ● 0.0 Min 0.0 0.2 0.4 0.6 0.8 1.0 x y x Friedrich Leisch, Multivariate Verfahren 2009 44 Bsp PK: gemeinsame Skala Friedrich Leisch, Multivariate Verfahren 2009 45 Bsp PK: getrennte Skala LINKE LINKE FDP FDP GRUENE GRUENE UNION UNION SPD SPD Min Friedrich Leisch, Multivariate Verfahren 2009 Max Min 46 Friedrich Leisch, Multivariate Verfahren 2009 Max 47 Bsp PK: Korrelationen Bsp PK: Korrelationen Min Max OST Min WEST LINKE LINKE UNION SPD SPD Max Min Friedrich Leisch, Multivariate Verfahren 2009 48 Bsp PK: Korrelationen Max Friedrich Leisch, Multivariate Verfahren 2009 Min LINKE OST ● ● WEST ●● ● ●● ● ● ●● ● ● ●● ● ● ● ● ● ●● ●●●●●● ● ●● ●● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● 0.4 0.5 0.6 0.5 0.4 ● ● ● ● ●●●● ● ● ●●● ●●● ● ● ● ●●● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ● ●●●● ● ● ●●● ● ●● ● ● ● UNION 0.1 0.2 0.3 0.3 0.2 0.1 ● ● ● ●●●●● ● ● ● ●●● ● ●● ● ● ●● ●● ●● ● ● ●● ●●● ●● ● ●●● ● ● ● ●● ● ●●● ● ● ● ●● ● ● 0.4 0.5 SPD 0.3 0.2 0.3 0.2 ●●● ● ● ●● ●● ●● ● ● ●●●● ● ●● ●● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ●● ●● ● ●● ● ●● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ● ●● ● ● ● ● ●● ● ●● ● ●● ● ● ● ● ●● ● ● ● ● ●● ● ●●●● ● ●● ● ●● ●● ●● ●● ●● ● ● ● ● ●● ● ●●● ● ●● ● ●● ● ●●●●● ● ● ● ●●●●● ●●● ● ●● ● ● ●● ● ●● ●●● ●● ●● ● ● ●● ● ● ●● ● ● ● ●●● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● 0.0 ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ●● ● ● ● ● ● UNION 0.4 SPD 0.3 0.2 0.3 0.2 Max Brandenburg Min Bremen Max Hamburg UNION 0.1 SPD 0.0 LINKE 0.3 0.2 ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● HessenMecklenburg−Vorpommern NiedersachsenNordrhein−Westfalen Rheinland−Pfalz Saarland FDP GRUENE UNION 0.1 0.4 0.5 Min Berlin GRUENE ● ● ● 0.4 0.5 0.6 ●●● ● ●● ● ● ● 0.5 0.4 0.1 ●● ● ● ●● 0.6 0.1 0.2 0.3 0.5 ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●●● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●●●● ● ● ●●● ● ● ●● ● ● ●● 0.2 0.3 0.2 LINKE 0.1 0.0 0.6 0.3 0.2 LINKE 0.0 0.1 Max Bayern FDP 0.2 0.3 0.3 ●● ● ●● ●● ● ● ●● ● ● ● ●● ●● ●● ●●● ● ●●● ● ●● ●● ● ● ●●● ● ●●● ● ● ●●● ● ●●● ● 49 Bsp PK: Sortierung alphabetisch Baden−Wuerttemberg 0.4 WEST UNION Min 0.5 Max OST SPD ● ● ● ●● ●● ● ● ● ● ● ●●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ●● ● ● ●●● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ●● ● ● ● ●● ● ●● ● ●●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● Sachsen LINKE Sachsen−AnhaltSchleswig−Holstein Thueringen FDP GRUENE UNION Scatter Plot Matrix SPD Min Friedrich Leisch, Multivariate Verfahren 2009 50 Max Min Friedrich Leisch, Multivariate Verfahren 2009 Max 51 Median pro Bundesland Bsp PK: Sortierung nach Median Union Min SPD UNION GRUENE FDP LINKE Baden-Wuerttemberg 0.31 0.39 0.10 0.12 0.04 Bayern 0.26 0.51 0.07 0.09 0.03 Berlin 0.35 0.23 0.14 0.08 0.12 Brandenburg 0.36 0.20 0.05 0.07 0.27 Bremen 0.43 0.23 0.14 0.08 0.08 Hamburg 0.39 0.29 0.16 0.09 0.06 Hessen 0.35 0.32 0.10 0.12 0.05 Mecklenburg-Vorpommern 0.32 0.29 0.04 0.06 0.24 Niedersachsen 0.44 0.32 0.07 0.09 0.04 Nordrhein-Westfalen 0.39 0.35 0.07 0.10 0.05 Rheinland-Pfalz 0.34 0.37 0.07 0.12 0.05 Saarland 0.33 0.30 0.06 0.08 0.18 Sachsen 0.24 0.30 0.04 0.10 0.23 Sachsen-Anhalt 0.33 0.25 0.04 0.08 0.27 Schleswig-Holstein 0.38 0.37 0.08 0.10 0.04 Thueringen 0.30 0.26 0.04 0.08 0.27 LINKE Max Min Max Brandenburg Bremen Berlin Sachsen−Anhalt Hamburg Saarland Sachsen Hessen Min Max Thueringen Mecklenburg−Vorpommern FDP GRUENE UNION SPD LINKE NiedersachsenNordrhein−Westfalen FDP GRUENE UNION SPD Schleswig−HolsteinRheinland−Pfalz Baden−Wuerttemberg LINKE Bayern FDP GRUENE UNION SPD Min Friedrich Leisch, Multivariate Verfahren 2009 52 Bsp PK: Sortierung nach Median Linke Min Bayern LINKE Max Min Max Min Max Min Max Friedrich Leisch, Multivariate Verfahren 2009 53 Sterne und Segmente Max Baden−WuerttembergNiedersachsen Schleswig−HolsteinRheinland−Pfalz Nordrhein−Westfalen FDP Sterne: Ein Polygonzug für jede Beobachtung, Radien der Eckpunkte entsprechen Werte der Variablen. GRUENE UNION SPD Hessen LINKE Hamburg Bremen Berlin Saarland Sachsen FDP Segmente: Bessere Variante des Tortendiagramms. Winkel der Segmente konstant, Radien variabel. GRUENE UNION SPD Mecklenburg−Vorpommern Thueringen LINKE Sachsen−Anhalt Brandenburg FDP GRUENE UNION SPD Min Max Min Friedrich Leisch, Multivariate Verfahren 2009 Max 54 Friedrich Leisch, Multivariate Verfahren 2009 55 Sternendiagramm Bayern Baden−Wuerttemberg Hessen Sternendiagramm: Variablen standardisiert Brandenburg Berlin Bayern Hamburg Baden−Wuerttemberg Bremen Mecklenburg−Vorpommern Nordrhein−Westfalen Niedersachsen Rheinland−Pfalz Saarland Hessen Brandenburg Berlin Hamburg Bremen Mecklenburg−Vorpommern Nordrhein−Westfalen Niedersachsen Rheinland−Pfalz UNION UNION GRUENE Sachsen−Anhalt Sachsen GRUENE SPD Thueringen Schleswig−Holstein Sachsen−Anhalt Sachsen FDP SPD Thueringen Schleswig−Holstein FDP LINKE Friedrich Leisch, Multivariate Verfahren 2009 LINKE 56 Segmentdiagramm ganzer Kreis Friedrich Leisch, Multivariate Verfahren 2009 Bayern Baden−Wuerttemberg Brandenburg Berlin Brandenburg Berlin Bremen Hessen Mecklenburg−Vorpommern Nordrhein−Westfalen Niedersachsen Rheinland−Pfalz GRUENE UNION SPD Sachsen−Anhalt Sachsen Thueringen Saarland Saarland UNION Sachsen Hamburg Bremen Hamburg Mecklenburg−Vorpommern Nordrhein−Westfalen Hessen Niedersachsen Rheinland−Pfalz Sachsen−Anhalt 57 Segmentdiagramm Halbkreis Baden−Wuerttemberg Bayern Saarland Thueringen Schleswig−Holstein SPD FDP LINKE GRUENE Schleswig−Holstein LINKE FDP Friedrich Leisch, Multivariate Verfahren 2009 58 Friedrich Leisch, Multivariate Verfahren 2009 59 Segmentdiagramm: Variablen standardisiert Bayern Baden−Wuerttemberg Hessen Brandenburg Berlin Chernoff-Gesichter Baden−Wuerttemberg Bayern Berlin Brandenburg Bremen Hamburg Hessen Mecklenburg−Vorpommern Index Index Index Index Niedersachsen Nordrhein−Westfalen Rheinland−Pfalz Saarland Index Index Index Index Sachsen Sachsen−Anhalt Schleswig−Holstein Thueringen Index Index Index Index Index Index Index Index Hamburg Bremen Mecklenburg−Vorpommern Nordrhein−Westfalen Niedersachsen Rheinland−Pfalz Saarland UNION SPD Sachsen−Anhalt Sachsen Thueringen GRUENE Schleswig−Holstein LINKE FDP Friedrich Leisch, Multivariate Verfahren 2009 60 Mosaikdiagramme 61 Bsp: Alkohol und WM 2006 • Darstellung der Interaktionen zwischen 2 oder mehr kategorischen Merkmalen. • Interessierende Nullhypothese: Unabhängigkeit • Visualisierung über Gitterlinien und Farbe nach signierten PearsonResiduen (Wurzel der Summanden im χ2-Test) Friedrich Leisch, Multivariate Verfahren 2009 Friedrich Leisch, Multivariate Verfahren 2009 62 Bevölkerungsrepräsentativ quotierte Umfrage der Größe n = 1008 von Anfang Juni 2006 zum Thema Fußball-WM und Alkoholgenuß: Wie schauen Sie sich die Spiele der deutschen Nationalmannschaft an? schaue gar nicht schaue ohne Alkohol schaue mit Alkohol keine Angabe Maenner Frauen 83 142 150 204 260 168 0 1 Quelle: innofact.com Friedrich Leisch, Multivariate Verfahren 2009 63 Bsp: Alkohol und WM 2006 250 500 Bsp: Alkohol und WM 2006 200 schaue gar nicht schaue ohne Alkohol schaue mit Alkohol keine Angabe 0 0 50 100 100 200 150 300 400 keine Angabe schaue mit Alkohol schaue ohne Alkohol schaue gar nicht Maenner Frauen Maenner Friedrich Leisch, Multivariate Verfahren 2009 64 Friedrich Leisch, Multivariate Verfahren 2009 400 65 Bsp: Alkohol und WM 2006 250 Bsp: Alkohol und WM 2006 Frauen Maenner Frauen 0 0 100 50 100 200 150 300 200 Frauen Maenner schaue gar nicht schaue gar nicht schaue ohne Alkohol schaue mit Alkohol Friedrich Leisch, Multivariate Verfahren 2009 schaue ohne Alkohol schaue mit Alkohol keine Angabe keine Angabe 66 Friedrich Leisch, Multivariate Verfahren 2009 67 Balkendiagramme Mosaikdiagramme Je nach Typ können unterschiedliche Variablen leichter miteinander verglichen werden: • Flächenproportionale Darstellung der Zeilen und Spalten einer Kontingenztafel. Gestapelt: primäre Variable • Modifikation gestapelter Balkendiagramme: Statt Höhe codiert Breite der Balken die primäre Variable. Nebeneinander: sekundäre Variable innerhalb der Gruppen der primären Variablen • Sekundäre Variable als Stapel innerhalb der Balken der primären Variablen. In jedem Fall gibt es eine Asymmetrie zwischen den beiden Variablen. • Asymmetrie zwischen Variablen weniger stark als bei Balkendiagrammen, kann auch für höherdimensionale Tafeln verwendet werden. Friedrich Leisch, Multivariate Verfahren 2009 68 Bsp: Alkohol und WM Friedrich Leisch, Multivariate Verfahren 2009 69 Bsp: Alkohol und WM schaue gar nicht 1.1 schaue ohne Alkohol schaue mit Alkohol keine Angabe 100% Friedrich Leisch, Multivariate Verfahren 2009 70 Friedrich Leisch, Multivariate Verfahren 2009 71 Bsp: Alkohol und WM schaue gar nicht schaue ohne Alkohol Bsp: Alkohol und WM schaue mit Alkohol keine Angabe schaue ohne Alkohol schaue mit Alkohol keine Angabe Frauen Frauen Maenner Maenner schaue gar nicht Friedrich Leisch, Multivariate Verfahren 2009 72 Bsp: Alkohol und WM schaue ohne Alkohol schaue mit Alkohol keine Angabe Zulassung von Studenten zur Graduate School der Universität Berkeley 1973 für die 6 größten Fakultäten: <−4 −4:−2 −2:0 0:2 2:4 Maenner Gender Male Female Standardized Residuals: Frauen Friedrich Leisch, Multivariate Verfahren 2009 73 Bsp: UCB Admissions >4 schaue gar nicht Friedrich Leisch, Multivariate Verfahren 2009 74 Admit Admitted Rejected 1198 557 1493 1278 Friedrich Leisch, Multivariate Verfahren 2009 75 Bsp: UCB Admissions Bsp: UCB Admissions Gender Dept Male A B C D E F Female A B C D E F Admit Rejected Pearson residuals: 4.78 4.00 Male Admitted Gender 2.00 0.00 Female −2.00 −4.00 Admit Admitted Rejected 512 353 120 138 53 22 89 17 202 131 94 24 313 207 205 279 138 351 19 8 391 244 299 317 −5.79 p−value = < 2.22e−16 Friedrich Leisch, Multivariate Verfahren 2009 76 Bsp: UCB Admissions Friedrich Leisch, Multivariate Verfahren 2009 77 Bsp: UCB Admissions Admit Rejected Pearson residuals: 20.2 A Dept B C D Friedrich Leisch, Multivariate Verfahren 2009 Admitted C D Rejected Admit 4.0 2.0 0.0 −2.0 −4.0 D E F Female C BA Gender F E Dept Male B A Admitted −14.0 p−value = < 2.22e−16 E F Pearson residuals: 12.6 4.0 2.0 0.0 −2.0 −4.0 −13.9 p−value = < 2.22e−16 78 Friedrich Leisch, Multivariate Verfahren 2009 79 Bsp: UCB Admissions B Dept C D E Female Gender Male A Friedrich Leisch, Multivariate Verfahren 2009 F Pearson residuals: 11.5 4.0 2.0 0.0 −2.0 −4.0 −13.9 p−value = < 2.22e−16 80