Adolf Eugen Fick
Transcrição
Adolf Eugen Fick
Federal INSTITUTE OF HUMANITIES, ARTS University & SCIENCES ‘MILTON SANTOS’ of Bahia VITREOUS MATERIALS LAB SÃO CARLOS - BRAZIL Dynamic Processes in a Glassforming Liquid from very Low to Deep Undercoolings Vladimir Mihailovich Fokin Marcio Luis Ferreira Nascimento Edgar Dutra Zanotto [email protected] Vavilov State Optical Institute, St. Petersburg, Russia Federal University of São Carlos, Brazil Federal University of Bahia, Brazil Federal University of • Bahia MOTIVATION OUTLINE and OBJECTIVE • STRATEGY and METHODS • DATA DIGGING and ANALYSES – – – – Viscosity: data Crystal growth rates: models and data Nucleation time-lags: experiments and data Ionic Conductivity: experiments and data • RESULTS – Diffusion coefficients calculated from: crystal growth rates U , nucleation time-lags , viscosity , conductivity , direct self-diffusion measurements (for Li, O and Si) and calculated effective diffusion coefficients. • CONCLUSIONS Federal University of Bahia MOTIVATION1 • The diffusion processes controlling crystal nucleation and growth in complex glass forming liquids (e.g. oxides) have been a subject of intense debate and controversy but are still unknown. For example: Does the Stokes-Einstein or Eyring (SE) equation breakdown? i.e. is there a decoupling between D calculated by the SE equation and D at: log10 D Td = 1.1-1.2Tg? D D 1/T Tg Which moving units control crystallization? Single atoms or is it a cooperative movement of “molecules”? Federal University of Bahia MOTIVATION2 Crystallization theories typically contain a transport and a thermodynamic term: I(T) = (K/3) DI exp(W*/kBT) U(T) = (K´/) DU [1exp(G/kBT] transport thermodynamic Most authors use viscosity data and the SE / E k BT equation to estimate D DU DI D Federal University of Bahia (*) from Zanotto‘s thesis OBJECTIVE • Our objective is to shed light into the previous questions by comparing 6 types of diffusion coefficients in Li2O2SiO2 glass: • calculated from crystal growth rates, DU from nucleation time-lag, D, from viscosity, D, conductivity D, and calculated effective Deff’s; • with directly measured self-diffusion coefficients, Dcation. Federal University of Bahia GLASS DEFINITION1 M. L. F. Nascimento. J. Mat. Educ. 37 (2015) 137-154 Silicon Oxygen Crystalline Silica (Quartz, Sand) Silica Glass Federal University of Bahia Glass: non-crystalline solid that presents glass transition phenomenon M. L. F. Nascimento. J. Mat. Educ. 37 (2015) 137-154 Volume GLASS DEFINITION2 Glass transition temperature definition Tg: volume variation with temperature. T g T melt Temp. Federal University of Bahia STRATEGY We measured, collected and analyzed extensive literature data on crystal growth rates, nucleation, time-lag, viscosity and self-diffusion coefficients in a wide temperature range - between the glass transition and the melting point - of “stoichiometric” glasses that: i) nucleate in the volume: Lithium disilicate: Li2O2SiO2 ii) only nucleate at surface: Silica: SiO2 Federal University of Bahia 1. Data Digging & Analysis of 6 Kinetic Processes Crystal growth, viscous flow, conductivity, nucleation time-lag and self-diffusion coefficients, plus effective diffusion coefficient (the last is theoretical...) Federal University of Bahia VISCOSITY DATA ANALYSIS Federal University of Bahia VISCOSITY B log10 A T Svante Arrhenius B log10 A T T0 Gordon Fulcher Gustav Tammann DIFFUSION k BT D George Stokes Albert Einstein Henry Eyring Federal University of Bahia log10 2.6234 3388.8 / T 491.05 VISCOSITY 400 600 800 o T ( C) 1000 1200 1400 14 14 Bockris et al. Fokin et al. Gonzalez-Oliver Heslin & Shelby Marcheschi Matusita & Tashiro Ota et al. Shartsis et al. Vasiliev & Lisenenkov Wright & Shelby Zanotto Zengh 12 Rikuo Ota log10 (Pa·s) 10 8 6 4 * Heslin & Shelby Izumitami Joseph * Matusita & Tashiro 2 0 600 Li2O2SiO2 800 1000 12 Carlos Gonzalez-Oliver 10 8 6 4 John Bockris 2 0 1200 T (K) 1400 1600 1800 James Shelby COMPARISON VISCOSITY MODELS Federal University of Bahia Experimental data VFTH: log10 A B/(T T0) 14 2 A 2,66234; B 3432,53748; T0 490,70698) : = 0,02515 Mauro: log10 A (12 A)[Tg/T]exp[(m/(12 A)) 1][(Tg/T) 1] 12 2 A 1,21646; m 43,58019; Tg = 724,44471: 0,02384 log10 (Pa·s) 10 8 VFTH, Dienes-MacedoLitovitz and Mauro’s proposals are very similar 6 4 2 0 800 1000 1200 T (K) 1400 1600 1800 Federal University of Bahia CRYSTAL GROWTH DATA ANALYSIS (The best fittings are shown by a red line) Federal University of Bahia CLASSICAL CRYSTAL GROWTH MODELS1 i) Normal (N) ii) Screw Dislocations (SD) iii) Surface Nucleation (2D) Federal University of Bahia i) Normal (N) CLASSICAL CRYSTAL GROWTH MODELS2 D U T U G 1 exp RT ii) Screw Dislocations (SD) G Tm T f 4Vm 2Tm iii) Surface Nucleation (2D) k BT DU D U T f DU G 1 exp RT C C N S , , G, T U T C DU Z exp 2 TG Only one adjustable parameter for all: l 2D: unknown surface energy Vm 2 Z 3k B Federal University of Bahia GROWTH o T ( C) -4 400 DU U T f 500 600 700 SD growth 800 900 = 0.35Å 1000 10 -4 10 Tg = 454oC -5 10 -5 10 This work Barker et al. Burgner & Weinberg James Matusita & Tashiro Ota et al. Schmidt & Frischat Zanotto & Leite Fokin Soares Jr. Gonzalez-Oliver et al. Deubener et al. Ogura et al. -6 10 1.1Tg -7 10 -8 U (m/s) G 1 exp RT 10 -9 10 -10 10 -11 10 -12 10 -13 Peter James -6 10 -7 10 -8 10 -9 10 -10 10 Michael Weinberg -11 10 -12 10 -13 10 10 700 Li2O2SiO2 800 900 1000 T (K) 1100 1200 1300 Joachim Deubener Federal University of Bahia TIME LAG DATA Federal University of Bahia NUCLEATION & TIME LAG1 Li2O2SiO2 • “Model” glass that shows nucleation in volume. 3tind Fixed Temperature NV tangent = NV / t = I Fokin, Zanotto, Yuritsyn & Schmelzer 352 (2006) 2681 tind time m NV t t 2 1 t 2 2 exp m 2 I tind tind 6 tind m 1 m Collins-Kashchiev 20m 40min at 455oC + 14min at 620oC I = nucleation rate [m3s1] Federal University of Bahia NUCLEATION & TIME LAG2 Classical Nucleation Theory has many problems about the pre-exponential factor N0, diffusion mechanisms (DI), the dependence of surface energy =(r,T), metastable phases (GV) etc... * DI W I N 0 2 exp k BT 3 16 * W 2 3GV • In this work we will simple assume that diffusion for crystal growth and nucleation are near the same. We fixed N0 and as feasible parameters. Josiah W. Gibbs Max Volmer Iwan Stranski Rostislav Kaischew Yakov Zeldovich Richard Becker David Turnbull Federal University of Bahia Li2O2SiO2 TIME LAG 760 750 T (K) 740 730 720 710 700 14 690 14 Peter James ln (s) ln 79.185 63602.287 / T 12 12 10 10 Fokin et al. James Zanotto Tuzzeo 8 6 Vladimir Fokin 1.30x10 8 6 -3 1.35x10 -3 1.40x10 1 1/T (K ) -3 1.45x10 -3 D W* G DI U T f U 1 exp I N 0 2 exp RT k BT NUCLEATION & G ROWTH T (K) 700 10 800 900 1000 1100 1200 1300 9 3 1 I (m s ) 1.1Tg 10 10 SD growth 10 -3 10 -4 10 -5 10 -6 10 -7 10 -8 10 -9 10 -10 10 -11 10 -12 10 -13 8 Li2O2SiO2 7 Tg 700 800 900 1000 T (K) 1100 1200 Tm 1300 = 0.35Å Fokin James Tuzzeo Zanotto Zeng U (m/s) Federal University of Bahia This work Barker et al. Burgner & Weinberg Deubener et al Fokin Gonzalez-Oliver et al. James Matusita & Tashiro Ogura et al. Ota et al. Schmidt & Frischat Soares Jr. Zanotto & Leite Federal University of Bahia CONDUCTIVITY DATA ANALYSIS Federal University of Bahia CONDUCTIVITY Ana Candida Rodrigues 20001500 1 1000 T (K) Jean Louis Souquet 500 1 Tg 0 Li2O2SiO2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 log10 ( cm ) -2 1 -1 1 -1 0 -9 5.0x10 -9 -4 1.0x10 -3 1.5x10 -3 2.0x10 -3 1 1/T (K ) 2.5x10 -3 3.0x10 -3 3.5x10 -3 John Bockris Bockris et al. Dale et al. Hahnert et al. Higby & Shelby Kone et al. Konstanyan & Erznkyan Leko Mazurin & Borisovskii Mazurin & Tsekhomskii Pronkin Souquet et al. Vakhrameev Yoshiyagawa & Tomozawa S D C IFFERENT Federal IX University of BahiaOEFFICIENTS DIFFUSION k BT D D from viscous flow: Eyring Equation U (for normal or screw DU f 1 exp G / RT dislocation growth) D from growth: D from conductivity: k BT D N Li e 2 D from time- lag: Nernst-Einstein Equation 80 k BTVm2 D 3 G 22 Dcation : measured self-diffusion coefficients D ‘effective’: Deffective 1 1 xi xLi xO xSi D D D D i Li O Si Federal University of Bahia 2. Results for Li2O2SiO2 M. L. F. Nascimento, V. M. Fokin, E. D. Zanotto, A. S. Abyzov. Dynamic processes in a silicate liquid from above melting to below the glass transition. J. Chem. Phys. 135 (2011) 194703 Federal University of Bahia DIFFUSIVITY1 Li2O2SiO2 T (K) 2000 -8 1500 1000 500 Tg D -10 ONLY DU DU -14 2 log10 D (m /s) -12 -16 -18 -20 -22 Tm 6.0x10 -4 8.0x10 -4 1.0x10 -3 1.2x10 -3 1.4x10 1 1/T (K ) -3 1.6x10 -3 1.8x10 -3 2.0x10 -3 Federal University of Bahia Li2O2SiO2 DIFFUSIVITY2 DU D for T > 1.1Tg D < DU low T T (K) 2000 -8 1500 1000 500 Tg -10 DU & D DU D=kBT/ -14 2 log10 D (m /s) -12 -16 -18 Breakdown at 1.1Tg ? -20 -22 Tm 6.0x10 -4 8.0x10 -4 1.0x10 -3 1.2x10 -3 1.4x10 1 1/T (K ) -3 1.6x10 -3 1.8x10 -3 2.0x10 -3 Federal University of Bahia DIFFUSIVITY3 T (K) 2000 -8 1500 Li2O2SiO2 DU D D* for T > 1.1Tg DLi > DO > DU > D low T 1000 500 Tg -10 D * DU, D & D’s DLi DU D=kBT/ -14 DLi: Beier & Frischat 2 log10 D (m /s) -12 DO: Takizawa et al. -16 DO: Sakai et al. -18 * D : Kawakami et al. DO: Takizawa et al. -20 -22 DO: Sakai et al. Tm 6.0x10 -4 8.0x10 -4 1.0x10 -3 1.2x10 -3 1.4x10 1 1/T (K ) -3 1.6x10 -3 1.8x10 -3 2.0x10 -3 Federal University of Bahia Li2O2SiO2 DIFFUSIVITY4 n = 51028 m3 T (K) 2000 -8 -10 1500 1000 500 Tg D D * DU, D, D’s & D DLi DU -12 D=kBT/ -14 D 2 log10 D (m /s) k BT D 2 ne DLi: Beier & Frischat DO: Takizawa et al. -16 DO: Sakai et al. -18 * D : Kawakami et al. D DO: Takizawa et al. -20 -22 DO: Sakai et al. Tm 6.0x10 -4 8.0x10 -4 1.0x10 -3 1.2x10 -3 1.4x10 1 1/T (K ) -3 1.6x10 -3 1.8x10 -3 2.0x10 -3 Federal University of Bahia Li2O2SiO2 DIFFUSIVITY5 80 k BT D 3 GV2 2 T (K) 2000 -8 -10 1500 1000 500 Tg D D * DU, D, D’s , D & D DLi DU D=kBT/ -14 D 2 log10 D (m /s) -12 DLi: Beier & Frischat DO: Takizawa et al. -16 DO: Sakai et al. -18 * D : Kawakami et al. D DO: Takizawa et al. -20 -22 Tm 6.0x10 -4 8.0x10 D DO: Sakai et al. -4 1.0x10 -3 1.2x10 -3 1.4x10 1 1/T (K ) -3 1.6x10 -3 1.8x10 -3 2.0x10 -3 Federal University of Bahia DIFFUSIVITY6 -10 1500 1000 500 = 0.1584 J/m2 Tg D D W* I2 DI exp N0 k BT N0 = 9.781027 m3 T (K) 2000 -8 Li2O2SiO2 * DU, D, D’s , D , D & DI DLi DU D=kBT/ -14 D 2 log10 D (m /s) -12 DLi: Beier & Frischat DO: Takizawa et al. -16 DO: Sakai et al. -18 * D : Kawakami et al. D DO: Takizawa et al. -20 -22 Tm 6.0x10 -4 8.0x10 D DO: Sakai et al. -4 1.0x10 -3 1.2x10 -3 1.4x10 1 1/T (K ) -3 1.6x10 -3 1.8x10 -3 2.0x10 DI -3 Federal University of Bahia DIFFUSIVITY7 log10 DU = 5.5508 + exp(352.4 kJ/RT) 1 1/T (K ) 1.2x10 -17 -3 Li2O2SiO2 1.3x10 -3 1.4x10 -3 log10 D = 18.8486 + exp(559.5 kJ/RT) 1.5x10 -3 1.6x10 -3 -3 1.7x10 -17 o Tg = 454 C DU D DI >> D -18 -19 -19 -20 -20 2 log10 D (m /s) -18 -21 -21 DO -22 -22 1.1Tg -23 1.2x10 -23 -3 1.3x10 -3 1.4x10 -3 1.5x10 1 1/T (K ) -3 1.6x10 -3 1.7x10 -3 In the nucleation range the viscosity strongly decouples from crystal growth, nucleation and time lag experimental data. Oxygen diffusion does not follow D but DU. DU D D DI DO: Takizawa et al. DO: Sakai et al. Federal University of Bahia COMPARISON WITH SIMULATION: MD D=kBT/ : 0.3Å DLi: MD José Pedro Rino DSi: MD -8 DO: MD Deff 2 log10 D (m /s) -9 D=kBT/ : 2.7Å -10 L. G. V. Gonçalves, J. P. Rino. J. Non-Cryst. Solids 402 (2014) 91-95 -11 -12 -13 4,0x10 -4 5,0x10 -4 6,0x10 -4 7,0x10 -4 1 1/T (K ) 8,0x10 -4 9,0x10 -4 1,0x10 -3 Federal University of Bahia 3. Results for SiO2 Crystal growth, viscous flow, silicon and oxygen self-diffusion in a silicate glass that does not display nucleation in volume at laboratory time-scales M. L. F. Nascimento, E. D. Zanotto. Diffusion Processes in Vitreous Silica Revisited. Phys. Chem. Glasses 48 (2007) 201-216 Federal University of Bahia DIFFUSIVITY1 SiO2 T (K) 2200 2000 1800 1600 1400 1200 -15 Tg = 1451 K -16 DU: Wagstaff -17 2 log10 D (m /s) -18 Normal growth -19 = 2Å -20 -21 -22 -23 -24 Tm = 2007 K 5.0x10 -4 6.0x10 -4 7.0x10 -4 1 1/T (K ) 8.0x10 -4 9.0x10 -4 Federal University of Bahia DIFFUSIVITY2 SiO2 DU D at T > 1.1Tg T (K) 2200 2000 1800 1600 1400 1200 -15 Tg = 1451 K -16 DU: Wagstaff D: Brebec et al. -17 2 log10 D (m /s) -18 Normal growth -19 = 2Å -20 -21 -22 -23 -24 Tm = 2007 K 5.0x10 -4 6.0x10 -4 7.0x10 -4 1 1/T (K ) 8.0x10 -4 9.0x10 -4 Federal University of Bahia DIFFUSIVITY3 SiO2 T (K) 2200 2000 1800 1600 1400 1200 -15 Tg = 1451 K -16 DU D at T > 1.1Tg DSi Dh at T < 1.1Tg No breakdown with U till 1.1Tg and with DSi T < Tg DU: Wagstaff D: Brebec et al. -17 DSi: Brebec et al. 2 log10 D (m /s) -18 Normal growth -19 = 2Å -20 -21 -22 -23 -24 Tm = 2007 K 5.0x10 -4 6.0x10 -4 7.0x10 -4 1 1/T (K ) 8.0x10 -4 9.0x10 -4 Federal University of Bahia DIFFUSIVITY4 SiO2 T (K) 2200 2000 1800 1600 1400 1200 -15 Tg = 1451 K -16 D: Brebec et al. DSi: Brebec et al. DO: Kalen et al. -18 2 No breakdown with U till 1.1Tg and with DSi T < Tg DU: Wagstaff -17 log10 D (m /s) DU D at T > 1.1Tg DSi Dh at T < 1.1Tg Normal growth -19 = 2Å -20 -21 -22 -23 -24 Tm = 2007 K 5.0x10 -4 6.0x10 -4 7.0x10 -4 1 1/T (K ) 8.0x10 -4 -4 M. L. F. Nascimento, E. D. Zanotto Phys. Rev. B 73 (2006) 9.0x10 Federal University of Bahia 4. Conclusions Federal University of Bahia INITIAL QUESTIONS i) Does the SE/ E equation breakdown at some low enough T? log10 D Td ~ 1.1-1.2Tg? D D Tg 1/T ii) Which moving units control crystallization? Single atoms or is it a cooperative movement of molecules (Deff)? Federal University of Bahia log10 D SKETCH Td ~ 1.2-1.1Tg DO? DSi DLi D DO 1/T Tg Federal University of Bahia log10 D CONCLUSION: SKETCH DU (surface) > Deff (volume) Td ~ 1.2-1.1Tg? DO? DSi DLi Deffective D ( = 2.7Å) D Time lag DO 1/T Tg Federal University of Bahia CONCLUSIONS1 Which ions control I and U in oxide glasses? As expected, at low T the alkalis diffuse much faster than silicon, oxygen and whatever “molecules” control viscous flow, crystal nucleation and growth. However, near Tm the diffusivities of all ions are similar. For SiO2 glass, silicon diffusivity controls crystal growth in the whole T range! There is no data for the other glass studied here… Is there a breakdown for SE/E or not? DU showed departures from D starting at T1.1Tg for some systems, but there are few exceptions (not shown). Therefore, these departures for some systems could be a sign of a possible breakdown of the SE / E equation. Federal University of Bahia CONCLUSIONS2 For silica glass there is a remarkable decoupling of (possible non-bridging) oxygen with D, but not silicon above Tg!!! The temperature dependence of diffusivity calculated from time-lag (D) do not agree with D even below 1.1Tg. The diffusivities calculated from the Nernst-Einstein relationship for ionic conductivity (considering fixed the number of diffusing ions ~1028m3) agree with directly measured diffusivity data. The VFTH equation fits well the viscosity data of most authors for all glasses from Tm to Tg! This study validates the use of viscosity (through the SE/E equation) to account for the kinetic term of the crystal growth expression in a wide range of temperatures above 1.1Tg. Acknowledgments THANK YOU!!!! FROM LAMAV BASIS AT SALVADOR, BAHIA Boipeba Salvador Maraú Federal University of Bahia Federal University of Bahia Dedução das Leis de Fick A. E. Fick, Federal Phil. Mag. 10 (1855) 30 A. E. Fick, Ann. Phys. 170 (1855) 59 University of Bahia Adolf Eugen Fick (1829-1901), médico e fisiologista alemão Federal University of Bahia Difusão em Sólidos1 Difusão atômica: transporte de átomos ou moléculas Suponha um gás G1 numa caixa em equilíbrio térmico e introduzindo uma pequena quantidade de um outro gás G2 dentro desta caixa, este gás se espalha aos poucos devido às colisões que sofre entre suas partículas e entre o gás G1. Este processo é chamado de DIFUSÃO. Considere o fluxo de gás na direção x e um plano A perpendicular a x : área A n n vt vt x área A Federal University of Bahia n vt n vt Difusão em Sólidos2 é possível contar o número de x partículas que atravessam A : Para tanto, é necessário calcular o fluxo total (J) e considerar como fluxo positivo aquelas partículas que cruzam na direção positiva de x e subtraímos o número das que cruzam a mesma superfície na direção negativa de x. Considere ainda o número que atravessa uma superfície A em um tempo t dado pelo número de partículas que estão a uma distância vt de A. (onde v é a velocidade molecular real ) nvt número de partículas que atravessam a superfície da esquerda para direita: n número de partículas por unidade de volume à esquerda do plano A. n número de partículas por unidade de volume à direita do plano A. nvt número de partículas que atravessam da direita para a esquerda: área A Federal University of Bahia n vt Difusão em Sólidos3 n vt x Definindo J como uma corrente molecular, ou a densidade de corrente que atravessa o J n vt n vt n n v plano A, então J corresponde ao fluxo total 2t 2 de partículas por unidade de área por unidade de tempo: Considere ainda uma distribuição espacial das n partículas por uma função contínua de x, y e z . dn dn Assim pode-se entender n(x, y , z) como a densidade de partículas em um pequeno n n dx x dx 2l elemento de volume xyz centrado em (x , y , z). Em termos de n podemos expressar (onde l é o livre caminho médio) a diferença: dn v Substituindo:J 2l dx 2 ou dn J x lv dx Federal University of Bahia n vt Difusão em Sólidos4 n vt x Em três dimensões o resultado acima diferencia de um fator 1/3, devido à isotropia do espaço. Logo uma resposta melhor é: ou lv dn Jx 3 dx dn J x D dx Se se substitui l v (onde é o tempo entre colisões) e m (onde é a mobilidade, e m a massa da partícula) na PRIMEIRA LEI DE FICK obtém-se: 1 2 dn J x mv 3 dx mas pelo Princípio da Equipartição da Energia tem-se que: 1 3 mv 2 k BT 2 2 dn J x k BT dx Adolf Gaston Eugen Fick (1852-1937), médico oftalmologista alemão, sobrinho de Fick e inventor das lentes de contato: Eine Contactbrille, Archiv für Augenheilkunde 18 (1888) 285 PRIMEIRA LEI DE FICK área A Difusão em Sólidos5 Federal University of Bahia D k BT E se ainda for considerado um fluxo n de partículas com carga elétrica, a Equação da Continuidade diz que, em J t relação ao princípio de conservação da carga: J , , J x ,0,0 x y z n d dn Jx D t x dx dx No caso em que D não depende da concentração n, obtém-se a SEGUNDA LEI DE FICK: dn d 2n D 2 dt dx SEGUNDA LEI DE FICK Sendo: Adolf Eugen Fick (1829-1901), médico e fisiologista alemão Federal University of Bahia Resumo das Leis de Fick Federal University of Bahia Primeira Lei de Fick1 O fluxo da impureza na direção x é proporcional ao gradiente de concentração n nesta direção. A n dn dx dn J x D dx Jx : Fluxo de átomos através da área A [átomos/m2s] D : coeficiente de difusão x ou difusividade [m2/s] Federal University of Bahia Primeira Lei de Fick2 Estado estacionário J constante no tempo Ex: Difusão de átomos de um gás através de uma placa metálica, com a concentração dos dois lados mantida constante. na nb na dn J x D D dx xb xa J nb na nb xa xb posição x Federal University of Bahia Segunda Lei de Fick A taxa de variação da concentração com o tempo, é igual ao gradiente do fluxo: dn d dn D dt dx dx Exemplo de difusão: oscilações próximas de posições de equilíbrio permitem saltos eventuais e aleatórios para as vacâncias vizinhas Se a difusividade não depende de x: dn d 2n D 2 dt dx Esta equação diferencial de segunda ordem só pode ser resolvida se forem fornecidas as condições de fronteira.