Projeto CHUVA - Difusão do Conhecimento
Transcrição
Projeto CHUVA - Difusão do Conhecimento
Projeto CHUVA 6 [email protected] Desempenho de algoritmos estimadores de precipitação Frederico Angelis Medições de precipitação podem ser realizadas por: Pluviômetro (báscula ou totalizador), radar ou satélite. Pluviômetro a melhor medida local, mas depende do vento e de pássaros, insetos, calibração, etc...difícil extrapolar no espaço medidas pontuais. Radar – ótima cobertura e alta resolução temporal, somente em torno de 100 km do radar – problemas – altura do feixe com a distância, abertura do feixe, precisa saber a distribuição de gotas, atenuação . Z = AR Z=∫ N(D)D6dD b Satélite – medida global, baixa resolução temporal – IR – relação indireta altura do topo – precipitação, MW sobre o oceano medida direta, sobre o continente espessura da camada de gelo e precipitação. Problema, não vê chuva de nuvens quentes e relações variam em função do ciclo de vida. Modelo – Precisa melhorar a previsão de precipitação – não se conhece direito a microfísica e os modelos não descrevem as distribuições Precipitação é a variável meteorológica de maior variabilidade espacial e temporal Por outro lado a precipitação é a variável de maior interesse da meteorologia. Saber quanto choveu é algo que depende da resolução espacial e temporal . Rainfall Signatures from MW Cumulonimbus Emission – freq’s <40 GHz Scattering – freq’s >40 GHz 0C 0C Nimbostratus 0C 0C Motivação the ice content increases as well the precipitation. the increase of the ice phase as the cloud evolves to the mature stage. Sensitivity to the Cloud Properties Sensitivity to the ice content Sensitivity to the particle size => High sensitivity to the cloud, especially its ice phase Microfísica das Nuvens GV - Physical Approach – Field Campaign CHUVA Project WORKING GROUP – 1 CHARACTERISTICS OF THE PRECIPITATING SYSTEMS AS FUNCTION OF THE REGION AND LIFE STAGE Responsible : Luiz Machado WORKING GROUP – 2 PRECIPITATION ESTIMATION – DEVELOPMENT AND VALIDATION ALGORITHM Responsible : Carlos Angelis WORKING GROUP – 3 ELETRIFICATION PROCESS: MOVING FROM CLOUDS TO THUNDERSTORMS Responsible: Carlos Morales WORKING GROUP – 4 CHARACTERISTICS OF THE BOUNDARY LAYER FOR DIFFERENT CLOUD PROCESSES AND PRECIPITATION REGIMES Responsible: Gilberto Fisch WORKING GROUP – 5 MODEL IMPROVEMENTS AND VALIDATION, WITH FOCUS IN CLOUD MICROPHYSICS AND AEROSOL INTERACTIONS, FOR SATELLITE PRECIPITATION ESTIMATES IN BRAZIL Responsible: Maria Assunção Dias NASA Precipitation Measurement Missions Science Team -26-29 October 2009 - Salt Lake City CHUVA Field Campaign Schedule JAN FEB 2010 MAR APR MAY JUN JUL BELÉM BELEM AUG SEP OCT NOV DEZ SAO LUIZ SAO LUIZ PARAITINGA PARAITINGA FOZ DO IGUAÇU FOZ DO IGUAÇU FOZ DO IGUAÇU BRASÍLIA BRASÍLIA ALCANTARA 2011 CHUVA WORKSHOP#1 FORTALEZA FORTALEZA 2012 CHUVA WORKSHOP#2 2013 FOZ DO IGUAÇU 2014 MANAUS MANAUS MANAUS MANAUS The PrePre-CHUVA Experiment and the CHUVA Project Transportation from São Luiz to Alcântara Measurement Scheme for the Main line 300 meters 300 meters 300 meters 300 meters 300 meters Radios INPE onde Rain RS92 Gauge 2 INPE NASA Rain Parsive l Rain Gauge Disdro Gauge meter s Volumet $ $ JOSS Parsivel JOSS 2 NASA THIES ric RADA LIDA Disdro Disdro MP3000 and9 RHI DisdromDisdrom Rain R meter eter eter Gauge meter 9 R A 0º 0 º 1RADA R GPS INPE THIES Rain Disdrom Gauge eter GPS 3Airport 2INPE 1.80 km 3.90 km 2.00 km 2 INPE THIES Rain Disdro Gauge meter s 3 0º ADMIR ARI 4 - Delta Village 5– An em . To we r 7.50 km INPE SITE X Band dual polarization Meteorological Radar Radiosonde RS92 Instrumentation RADAR site Meteorolog ical Wheather Station INPE Rain Gauge Instrumentation INPE site GPS JOSS Disdrometer INPE Rain Gauge 2 NASA Rain Gauges THIES Disdrome ter Parsivel Disdrome ter GPS Instrumentation Airport Site 2 NASA Rain Gauges JOSS Disdromet er INPE Rain Gauge MP3000A Radiometer THIES Disdrometer Soil Moisture Parsivel Disdrome ter LIDAR Instrumentation Delta Village Site THIES Disdrometer ADMIRARI 2 INPE Rain Gauges Instrumentation UECE Airplane OAP200X Hydrometeors 30-450um FSSP – Raindrops Distribution 2-47um Equipments Installation warm Ice cloud warm cold DSD (Joss) Accumulated Rain Gauge (mm) cold warm 250 200 150 100 50 0 radar vila2 inpe aero vila1 slz Rain Gauge No. Of Days With Rain 14 12 10 8 6 4 2 0 radar vila2 inpe aero vila1 slz Warm Events MP3000 ADMIRARI March 21th Thies Disdrometers (inpe and Village sites) Fortaleza Campaign Main Target Study: Warm Clouds and MCSs organized by Easterly Waves From 21 March to 29 April 2011 – The GPM Planning Meeting and the CEOS – PC will be held during this period in Fortaleza Additional Data: Aircraft for microphysical measurements (if the airplane will be OK) and S and X Band radar. Fundação Cearense de Meteorologia e Recursos Hídricos Secretaria de Ciência, Tecnologia e Ensino Superior Governo do Estado do Ceará Radar de Fortaleza (Banda X) Radar de Quixeramobim (Banda S) Sítios Experimentais da Região Metropolitana de Fortaleza Lidar Container de química Disdrometro Radar móvel(Parsivel) Radiômetro microondas Disdrometrode (Thies) Pluviômetro NASA GPS Central na FUNCEME com Estação meteorológica Pluviômetro Disdrômetro (Parsivel) Disdrômetro (Thies) Radiossondagem Pluviômetro conexão internet, Equipamentos de bancada fluxos Estação meteorológica Pluviômetro NASA Disdrômetros (Thies) para trabalho e dois ePCs. Disdrômetros (Joss Parsivel) Radar banda X Pluviômetros GPS Micro- radar Sítios Experimentais Mossoró Quixeramobim Fortaleza Guarda Municipal/Defesa Civil INMET Belem Campaign Main Target Study: Tropical Squall Lines and Local Convection From 30 May to 9 July 2011 Additional Data: S Band Radar Controlled Meteorological balloons are small altitude-controlled platforms with bi-directional satellite communication and long-duration flight capability _ Voss and Fitzgerald collaboration Belem Squall Lines Climatology : 2000 to 2006 Classification : CCL: Costal Convective Line ( Propagation < 170 km) SL1: Squall Line Type 1 ( 170 Km < Propagation < 400 km) SL2: Squall Line Type 2 ( Propagation > 400 km) SL2 – STM – Moved around Santarem = 56% Locais do Experimento de Belém 21 km 8 km 24 km 5.5 km Equipamentos dos sitos: Sitio#1 – UFPA: Radar X-POL, Field Mill (USP), GPS Sítio#2 – UT-Outeiro (DTCEA-BE) Radiômetro de microondas, Lidar, Micro Radar, 2 disdrômetros Joss e Parsivel, GPS, 2 pluviômetros, estação de fluxo, field mil, sensor de umidade do solo. Sítio#3 – UT-Benevides (DTCEA-BE) Disdrômetros Parsivel, GPS (UEA), 2 pluviômetros, field Mill (USP), GPS. Sítio#4 - DTCEA-BE – aeroporto: Estação de Radiosondagem - Disdrômetros Parsivel, GPS (UEA), 2 pluviômetros, field Mill (USP) e Micro Radar (USP) Sítio#5 – INMET - GPS (UEA), pluviômetro, field Mill (USP)/ GPS Meteorology in CHUVA Belem (L. Sapucci, D. Adams, R. Fernandes, L. Tanaka) Our Principal Aims in CHUVA Belem Identify wv convergence timescales and propagation of convection/squall lines in GPS PWV Estimate wv convergence in a limited region in conjunction with sondes/radiometers, etc) Test maximum temporal resolution of the GPS PWV technique (comparing GIPSY with GAMIT) Employ 3D/4D techniques for estimating mesoscale wv fields. Install 7 to 10 GPS within 70km of SIPAM Belem (See Map for Sample Configuration of 8 probable sites). Ultimate configuration depends on siting of radiosondes, etc. Sítios em Belém São Luiz do Paraitinga Campaign Main Target Study: Warm Clouds, Cold Fronts, MCSs, SACZ and Local Convection From 31 October to 22 December 2011 Additional Data: S Band Radar and “Lightning Mapping Array” (LMA) – NOAA and NASA – Steve Goodman Posição do Radar e sitios. Lightning Mapping Array (LMA) Observations in CHUVA: Overview of Plans Richard Blakeslee / NASA Marshall Space Fight Center Larry Carey / University of Alabama in Huntsville Jeff Bailey / University of Alabama in Huntsville National Space Science and Technology Center (NSSTC) Geostationary Lightning Mapper (GLM) Science Team Meeting, NSSTC, Huntsville, Alabama 2 December 2010 39 GOES-R Geostationary Lightning Mapper (GLM): Pre-Launch Algorithm Validation-CHUVA Campaign Report 1 Steven Goodman Program Senior Scientist NOAA/NESDIS/ GOES-R Program Office http://www.goes-r.gov 2Richard Blakeslee, 2William Koshak, 2Walter Petersen, 3Larry Carey, 3Douglas Mach, 3Dennis Buechler, 4Monte Bateman, 4Eugene McCaul, 5Eric Bruning, 5Rachel Albrecht, 6Donald MacGorman 1GOES-R Program, NOAA/NESDIS, Greenbelt, MD2NASA Marshall Space Flight Center, Huntsville, AL,3UAHuntsville, Huntsville, AL,4Universities Space Research Association,5University of Maryland, College Park, MD,6NOAA/National Severe Storms Laboratory, Norman, OK Fall AGU Meeting of the Committee on Atmospheric and Space Electricity 14 December 2010 EUMETSAT Contribution to the CHUVA Campaign Jochen Grandell, Hartmut Höller, Rolf Stuhlmann EUM/MTG/VWG/10/05 EUM/ 67 Issue <No.> AGU Fall meeting 2010 <Date> Slid e: 50 km 100 km 30 km radius 40 km radius LMA - Lightning Mapping Array o The LMA system: o o o locates the peak source of impulsive VHF radio signals from lightning uses unused television channel by measuring the time-of-arrival of the magnetic peak signals at different receiving stations in successive 80 ms intervals hundreds of sources per flash can be detected in space and time (GPS), allowing a threedimensional (3-D) lightning map to be constructed Foz do Iguaçu Campaign Brazil Paraguay Argentina Main Target Study: MCC and Cold Fronts From 9 November to 13 January 2012 Additional Data: La Plata Basin Campaign Goal: Measure MCCs to accomplish the GPM and La Plata Basin Regional Hydroclimate Project (LPB) goals. Foz do Iguaçu is located on the border of three countries: Brazil, Argentina and Paraguay, where MCSs produce a large impact. More than the 80% of the precipitation is explained by those systems Hailstorm climo derived from AMSR-E CHUVA - Foz do Iguacu (Nov 2012 - Jan 2013) is along edge of the region with possibly the world’s most frequent severe thunderstorms Paraitinga Foz do Iguacu Rachel Albrecht Foz do Iguaçu Campaign The deployment of a dual frequency and polarization radar like NASA's N-Pol would contribute with other observations to better understand the microphysics processes and their evolution associated with MCS. Also airplane measurements will be facilitate by the geographical position. Results from Paola Salio Percentage of surface rain from 2A25 explained by MCSs over La Plata Basin Partiticipation: Zipser, Houze, Ceci, Palio,...... This experiment will focus on these set of questions: What are the main surface and boundary layer processes in the formation and maintenance of large and long live MCS? How cloud microphysics and electrification processes evolves during the cloud life cycle? What is the contribution of the aerosol in the process of formation of MCC precipitation? How to improve both space and time precipitation estimation of rainfall over the continent for the GPM constellation over the region? How to improve quantitative precipitation forecast over MCS? How models do represents the evolution of the PBL and the microphysics of these complex convective systems? Manaus Campaign Main Target Study: Organized and Local Convection from Warm and Ice Clouds From 6 January to 4 April 2014. Additional Data: The ARM Climate Research Facility in the Amazon Basin (Scot Martin – Havard University and several partners) S Band Radar (SIPAM) Manaus Campaign Cloud-Aerosol-Precipitation Interactions Aerosol effects on scattered cumulus clouds, especially the aerosol radiative effect and with a special focus on the impact of biomass burning aerosols; Aerosol effects on deep convective clouds, precipitation, and lightning under different aerosol and synoptic regimes, including the roles of aerosols in changing regional climate and atmospheric circulation; and Improvement on parameterizations of aerosol-cloud interactions in the climate models The ARM Aerial Facility in Brazil CHUVA – Basic Set of Equipments Doppler X band dual polarization METEOR 50DX - Selex Radiometrics MP 3000 - Brightness temperature from 35 channels (22-30 and 51-59 Ghz) CHUVA – Basic Set of Equipments LIDAR – backscaterring coefficient. Lidar Raman System 2 channels: 532nm and 607nm GPS - A dual-frequency receiver - IWV CHUVA – Basic Set of Equipments 3 Ott Inc. PARSIVEL Optical Laser Disdrometer. 1 Joss Waldvogel Acoustic Impact Disdrometer. (NASA) 5 Raingauge (NASA) CHUVA – Basic Set of Equipments Radiosonde RS92 HFP01 – soil heat plates (2) for the soil heat flux measurement STP01 – soil temperature profile (5 sensors 2,5,10,20,50 cm) Soil Mositure - EnviroSCAN Probe Soil moisture profile (up to 0.5 m) continous measurements CHUVA – Basic Set of Equipments Vertical pointing micro Doppler rain radar Keplel – 24.1 Ghz CS110 - Electric Field Sensor Measuring the local electric field CHUVA – Basic Set of Equipments Surface Weather Measurements Values of air temperature, humidity, atmospheric pressure, windspeed and direction, radiation measurements EC150 open path gas analyser and the sonic (CSAT3) coupled for the surface momentum, energy, water vapour and CO2 fluxes Radiation components: solar (shortwave) and terrestrial (longwave) radiation upward and downward fluxes Classificação de Hidrometeoros: Coeficiente de correlação transversal Alan Calheiros mudança de fase diferencial A physically-based identification of Vertical Profile of Reflectivity altitude Solid zone Melting phase Liquid phase distance Goal: use radar measurements to retrieve a physically-based representation of the Vertical Profile of Reflectrivity and characterize links between physical processes of rainfall at ground and aloft. Pierre Emmanuel Kirstetter 41/52 Diffusion model Physically-based model (Mie) Distribution N(D,h) (gamma) Phase & Composition ( « matrice-inclusion » h h scheme) S h Nt Vertical profile of Reflectivity Do Dg H M Ntm Zm N(D, Z, h) = Z(h)α Z g Z ( sol Nts D Z −βZ ) Dos Zo est fixé Zo Pierre Emmanuel Kirstetter Dom Z/Zo 43/52 High resolution - BRAMS 1 km. mm BRAMS 1 km BRAMS 1 km : NX, NY = 500, 500 300 processos –> 2 ½ h de processamento 24 horas de previsão. Modelo – Radar – Satélite : Banco de Dados Microfísicos Radar X-POL Modelo c/ microfísica Radar e a técnica VPR Disdro metros Modelo radiativo Satélite IR Microondas Simulações com BRAMS e RTTOV 1. Simulação com BRAMS: Entrada Saída Processamento Estudos de casos BRAMS Profiles: Rain, Snow, Graupel, Aggregates, Cloud-Water, Cloud-Ice 2. Simulação com RTTOVS: INPUT DATA Profiles: Rain, Snow, Graupel, Aggregates, Cloud-Water, Cloud-Ice RTTOV 3. Avaliação das Simulações: Temp. de Brilho do RTTOV Temp. de Brilho do Satélite Temp. Brilho Simulações – Modelo de alta resolução e Modelo radiativo – Base de Dados Resultados do Renato Galante 3. Avaliação das Simulações: Sensor TMI/TRMM Temperatura de Brilho Simulada Temperatura de Brilho Observada CHUVA WEB Curso – Processos Físicos da Nuvens – 28/3 a 1/4 Segunda Micrometeorologi a conceitos básicos (Gilberto) Terça Microfísica da nuvens (Morales) Modelagem em alta resolução – conceitos básicos (Assunção) Micrometeorologi a e a formação de nuvens (Gilberto) Quarta Modelagem de nuvens – interação aerosol-nuvens (Assunção) Satélites e Modelagem Radiativa (Luiz) Quinta Radar Princípios básicos (Frederico) Sexta Estimativa de precipitação satélite e radar (Frederico) Ferramentas para Previsão imediata (Luiz) Eletrificação das nuvens (Morales) Obrigado Todos que desejarem participar do CHUVA São Bem vindos. 6
Documentos relacionados
Projeto CHUVA
NOAA/NESDIS/ GOES-R Program Office http://www.goes-r.gov 2Richard Blakeslee, 2William Koshak, 2Walter Petersen, 3Larry Carey, 3Douglas Mach, 3Dennis Buechler, 4Monte Bateman, 4Eugene McCaul, 5Eric ...
Leia mais