Mathematical Modeling and Numerical Simulation
Transcrição
Mathematical Modeling and Numerical Simulation
Mathematical Modeling and Numerical Simulations of Fluid-Structure Interaction and Two-Phase Flows Using the Immersed Boundary Method Elie Luis M. Padilla, Alice R. da Silva, Ana Lúcia F. Lima e Silva, Millena M. Villar, Alexandre M. Roma e Aristeu da Silveira Neto Federal University of Uberlandia 1. Examples of Industrials Flows 1. Examples of Industrials Flows 2. Methodology Immersed boundary methodology Domain Eulerian Domain Lagrangean 2. Methodology being developed Immersed boundary methodology ∂(u i ) ∂ (ui u j ) ∂p ∂ + + ρ =− ∂x j ∂xi ∂x j ∂t ∂u ∂u j + Fi µ i + ∂x j ∂xi r r r r r r 2 r F ( x ) = ∑ Dij ( x − xk ) f ( xk )∆s ( xk ) k 2. Methodology Physical Virtual Model - PVM PVM Partícula de fluido r r f (x k , t ) interface r xk r r r r r r r r r ∂V ( xk , t ) f ( xk , t ) = ρ + ρ∇ . V ( xk , t )V ( xk , t ) − ∂t ( [( ) )] r r r r r r T ∇ . µ ∇V ( x k , t ) + ∇ V ( x k , t ) + ∇p ( x k , t ) 3. Numerical Simulations IB with PVM Poiseuille Flow 0.2 Eulerian force field Re=250 0.175 0.15 Analítico Numérico 0.125 f -5.00 -7.86 -10.71 -13.57 -16.43 -19.29 -22.14 -25.00 -27.86 -30.71 -33.57 -36.43 -39.29 -42.14 -45.00 0.1 0.075 0.6 0.05 parede virtual 0.5 0.025 0.4 y (m) 0 Numérico Analítico 0.3 parede virtual 1 2 3 400 600 Velocity – analytique – erreur max = 0,1 % 0.1 0 200 Re 0.2 0 0 4 u (m/s) 5 6 7 Re=250 800 1000 3. Numerical Simulations Immersed bodies flows 10.0 7.5 Cd 17.0 30 1.0 d Lima e Silva et al. (2003) 16.5 Sucker (White, 1991) 16.5 0 y d Tomtika (White, 1991) Roshko (1961) 16.0 Sampaio (2000) x d 0.1 1.0E+0 7.0 15 7.5 8.0 1.0E+1 1.0E+2 1.0E+3 Re 1.0E+4 1.0E+5 1.0E+6 3. Numerical Simulations Immersed bodies flows 2 1 0 -1 Cd1 Cd2 -2 0 50 100 150 tU/d 200 250 3. Numerical Simulations Fluid-Structure Interaction – 3D 3. Numerical Simulations Taylor-Couette Flow Ta=100, 42x42x24, 3. Numerical Simulations Taylor-Couette Flow – Eccentric Mov. Ta=100, 42x42x24, 3. Numerical Simulations Taylor-Couette Flow – Eccentric Mov. 3. Numerical Simulations Taylor-Couette Flow – Eccentric Mov. 3. Numerical Simulations Taylor-Couette Flow – Eccentric Mov. 4. Two phase flows 4. Two phase flows 4. Two phase flows 4. Two phase flows Eo=10 e M=10-9 64 x 192 L5 4. Two phase flows Eo=10 M=10-9 64 x 192 L5 4. Two phase flows Multi bubbles Eo=1 e M=10-2 64x128 L5 4. Two phase flows Multi bubbles 4. Two phase flows
Documentos relacionados
Institution(s) Title Chairperson 08:30 10:00 10:00 10:10
Rodriguez Fábio Suguimoto and Ricardo
Leia mais