Spin-offs da Spin-offs da Física de Partículas - Indico
Transcrição
Spin-offs da Spin-offs da Física de Partículas - Indico
Spin-offs da SpinFísica de Partículas Luis Peralta LIP/FCUL Ciência fundamental Contribuições de apresentações de Adérito Chaves Gonçalo Borges João Varela Mário David Patrick Sousa Sónia Rodrigues etc…. Aplicações práticas Simulando situações com aplicação clínica Braquiterapia Mamária Radiocirurgia ao cérebro Câmara Gama Electrónica e processamento Display PMTs Cristal Cintilador Colimador Descrição da Câmara Gama ¾ Siemens E.Cam Dual Head [2] ¾ 2 cabeças de detecção (colimador, Cristal cintilador, Guia de luz, Matriz de PMTs) ¾ Angulação variável (180º, 90º e 70º) ¾ Tipos de aquisição: imagem estática, imagem dinâmica, imagem Tomográfica (SPECT) [[2] http: http://www. //www.medical medical..siemens siemens..com Fantôma ¾ ¾ ¾ ¾ ¾ ¾ ¾ Fantôma da Tiróide: Fantôma Real ¾ Fantôma Simulado Acrílico Nódulos quentes e frios Distância fonte– fonte–colimador: 5 cm Centrado no FOV Simulação ¾ Medição Experimental Intensidades ¾Elipsóide#1 38.6 38 6 % ¾Elipsóide#2 54.0 % ¾Nódulo quente#2 7.4% Principio Físico do PET positrão +electrão → 2 fotões β+ Emissão do positrão Aniquilação Projecto ClearPEM Projecto desenvolvido no quadro da colaboração C Crystal t l Cl Clear C Collaboration ll b ti @ CERN Y-axis (cm m) Sensitivity@350 keV (%) 4 cm off-axis 3 cm off-axis 2 cm off-axis 1 cm off-axis ff i central slice X-axis (cm) Consortium PET-Mammography, Portugal TAGUSPARK – Parque de Ciência e Tecnologia LIP - Laboratório de Instrumentação e Partículas Hospital Garcia Orta - Serviço Medicina Nuclear IBEB - Instituto Biofisica e Engenharia Biomédica IBILI - Instituto Biomédico de Investigação da Luz e Imagem INESC - Instituto de Engenharia de Sistemas e Computadores INEGI - Instituto de Engenharia Mecânica e Gestão Industrial CERN, CERN Geneva VUB, Brussels ClearPEM Sistema de imagem Exames de mama e axila Exames de mama com paciente na posição decubito Pratos do detector rodam em torno da mama Pratos P t podem d ser rodados d d para exame da d axila il PEM Detector Plates PEM Robotic Device ClearPEM Detector ClearPEM Detector: Two detection plates 192 crystal y matrices ((8x4 crystals y each)) Front-back APD readout for DoI measurement Plate surface 14x16 cm2 6300 LYSO:Ce crystals Avalanche photodiodes Low noise electronics Optical simulation ClearPEM detector model Detector Modules LYSO:Ce Crystals 2 x 2 x 20 mm3 LYSO/BaSO4 Matrix Simulação completa do sistema Simulações Monte Carlo com GEANT4. Fantoma NCAT. “Uptake” standard de uma injecção de 370 MBq. Concentração de 2.1 kBq/cc nos tecidos moles. Geometria detalhada do detector. Inclui simulação do trigger e sistema de aquisição de dados. ClearPEM Simulation Framework Imagens Reconstruidas da lesão Actividade do fundo : actividade da lesão Actividade do fundo : actividade da lesão 1:10 1:5 1:13 1:4 1:10 1:5 1:4 10 mm Ø lesion 7 mm Ø lesion 1:13 Actividade do fundo : actividade da lesão 1:10 1:5 1:4 1:13 1:10 1:5 1:4 5 mm Ø lesion mm Ø lesionn 3m 1:13 Actividade do fundo : actividade da lesão Boa visibilidade Fraca visibilidade Não visivel (5 min aquisição total) Data Acquisition Requirements Coincidence digital trigger: Digital algorithms (time and energy) Time resolution ~ 1 ns Good G efficiency ff for f multi-hit (Compton) (C ) events Fast Data Acquisition: Data acquisition system able to cope with a single photon background rate of the order of 10 MHz The data acquisition efficiency larger than 90%. Pipeline structures for minimum dead time Arquitectura do sistema de electrónica On-Detector Frontend Boards Ampli AnalogMux 192:2 ADC 100 MHz 10 bit Off-Detector DAE crate 600 MHz Serializer Digital trigger Data reduction Data readout PC Service Boards Frontend Boards Amplifier/ Multiplexer ASIC: Sampling ADC (100 MHz) Links LVDS Service Boards APD Bias Voltage regulation T, P monitoring Power distribution Data Acquisition Electronics Crate 6U 4 DAQ boards 1 Trigger/DCC board FPGAs 4 M gates Frontend ASIC Frontend ASIC Specifications: Technology AMS 0.35 μm CMOS Input: 192 channels N i Noise: ENC ~ 1000 ePower per chip : <2 mW/channel Clock frequency : 100 MHz Shaping: Peaking time 40 ns Analog memories: 10 samples Output multiplexing: 2 highest channels ASIC V1 Layout ASIC V1: memory sampled-data memory, multiplexers, control logic OK input amplifier with unstable bias levels Layout of Test ASIC V2 16000 μm 8 channels h l + switches it h + control t l logic l i + self-test lf t t multiplexers + buffers Area – 9.44 mm2 4 channels Control Logic 5900 μm 4 channels Integração da Electrónica de Frontend Compact system inside the PEM Detector Head: ASIC ASIC OA OA OA OA OA ADC ADC AD OA FEServ HV OA LVDS OA LVDS FE Serv LV ADC ASIC FE Serv LV Detector Supermodule ASIC Frontend Board FEServ HV DAQ CONN ADC C 6000 APD channels 400 HV lines 160 high speed (600 MHz) output lines High frequency clock (100 MHz) DAQ CONN Data Acquisition System DAQ module: - pipeline data storage - hit energy and time calculation Trigger module: - performs f coincidence i id ttrigger i - random triggers - singles trigger Filter Module: - rejects out-of-time data j high g multiplicity p y events - rejects DCC module: - collects relevant data - data transfer to PC Trigger and Data Acquisition Boards DAQ Board B d Processing Control Deserializers DAQ Board tested successfully TRG/DCC Board is under test Control TRG/DCC Board Processing PCI Interface Detector Heads Detector heads Patch Panel Water distribution block Collision C lli i d detection t ti switches Adapter for source mounting Cable carrier Electromechanical safety f t switch it h Robot Robot Protótipo na fase de montagem Robot O PEM na imprensa: Correio da Manhã O PEM na imprensa: Expresso O PEM na televisão O Detector ISPA Background motivation ISPA group att CERN (Imaging Silicon Pixel Array) High-energy semiconductor particle tracking detectors Low spatial resolution ((typically yp y 3 to 8 mm)) Technology transfer Planar Imaging SPECT PET Compact, handheld and high resolution gamma camera system Anger gamma camera Low-energy imaging applications Nuclear Medicine Operation principle Photocathode Silicon pixel detector Collimator El t t ti shield Electrostatic hi ld -20 kV 0V Electrostatic tube C t l scintillator Crystal i till t Not to Scale Operation principle -20 kV 0V Not to Scale Operation principle -20 kV 0V Operation principle Analog information Valid 2D hit maps 0V Digital information Operation principle Analog information 8 mm x 6.4 mm 0V Digital information 3 holes of 1 mm separated by 2 mm Technical implementations and results ISPA-tube COLLIMATOR Type Parallel-hole (rippled foils) Material Tungsten W Area 9 mm x 10 mm Length 26 mm Septa 0.06 mm Equivalent hole diameter 0.6 0 6 mm GEANT 3 simulations (122 keV point source @ 1 cm) Collimator length [cm] Sensitivity [normalized for 1 cm] FWHM [mm] Energy Resolution [%] 1.0 1 1.050 ± 0.026 16.5 ± 1.4 2.0 0.16 0.676 ± 0.040 16.5 ± 3.4 2.6 0.10 0.585 ± 0.047 16.5 ± 4.4 5.0 0.09 0.495 ± 0.063 16.6 ± 7.1 ISPA-tube COLLIMATOR Results Good collimator for high resolution applications where the low sensitivity can be compensated by increasing the acquisition time or the radioisotope activity concentration Technical implementations and results ISPA-tube CRYSTAL SCINTILLATOR Material YAP:Ce (Yttrium-Aluminiun Perovskite doped with Cerium) Size 31 mm diameter Thickness 2 mm Light yield 10 ph/keV Decay time 27 ns Wavelength of maximum emission 370 nm Ab Absorption i efficiency ffi i 89% @ 60 kkeV V Al 95% reflectivity Final evaluation 60 keV point source S t A (without Setup ( ith t collimator) lli t ) S t B (with Setup ( ith collimator) lli t ) Final evaluation 6.4 4 mm Images of a 60 keV γ-source through a 2-holes (0.35 mm ∅) lead collimator 8 mm 8 mm Setup A (without collimator) Setup B (with collimator) Results The intrinsic resolution of the ISPA-tube ISPA tube has been estimated to be ~0.2 ~0 2 mm The extrinsic (with the tungsten collimator) has been estimated to be ~0.7 mm The energy resolution of the ISPA-tube has been estimated to be 23% FWHM at 60keV Final evaluation SPECT camera 140 keV point source ISPA-tube 122 keV point source Final evaluation After a normalization of both test condition setups (time-activity concentration and energy sensitivity) SPECT camera 14000 counts FWHM ~4.3 4 3 mm ISPA-tube ISPA tube 5 minutes equivalent i l t 2800 counts FWHM ~0.6 0 6 mm The timing RPC detector techonology -HV Particle E Resistive material, glass Main features • Timing resolution ~ 50 ps σ. • Efficiency 75% for a 300 μm gap • No energy resolution. • Possibility to measure the position. Sensitive Area Conductive material, Aluminum MIPS Gas gap Precise gas gap with few 100 μm Th converter-plate The t l t principle Use the electrode plates as a γ converter, taking advantage of the natural layered construction of the RPCs. Stacked RPC RPCs e+ e - .......... e e - - e- Time resolution for 511 keV photons: (our routine lab lab-test test tool) 90 ps σ for 1 photon 300 ps FWHM for the photon pair Very small gas gap to minimize intrinsic internal error A previous work on PET with gaseous detectors (21 lead plates + 20 MWPCs = 7% efficiency) “The The Rutherford Appleton Laboratory´s Laboratory s Mark I Multiwire Proportional Counter Positron Camera” J.E. Bateman et al. NIM 225 (1984) 209-231 [Blanco 2002 2] The basic idea for RPC-based TOF-PET Comparison with the standard PET technology Disadvantages Certainly a much smaller efficiency: 20 to 50% as compared to 70 to 80%. No energy resolution, resolution but there is an equivalent energy sensitivity sensitivity... more later. later Possible specialized PET applications Advantages Ad antages Increasing system sensitivity Inexpensive ⇒ large areas possible ⇒ large solid angle coverage Excelent timing ⇒ TOF-PET possible+optimum randoms rejection Increasing position accuracy Gaseous detectors routinely deliver 0.1 mm resolution Full 3D localization possible ⇒ no gross parallax error The very y small gap g p minimizes intrinsic errors Whole-body Human PET 1 mm Simulation: Other 0.51mm FWHM Compatible with the magnetic field ⇒ PET PET-MRI MRI possible Small Animal PET Small animal PET - a first prototype Aimed at verifying the concept and show the viability of a sub-millimetric b illi t i spatial ti l resolution. l ti Charge-sensitive g electronics allowingg interstrip position interpolation 32 strips ....... 16 stacked RPCs C Depth of interaction Z X Transaxial 2D measurement of the photon interaction point 16 plates ....... System y Standard PET Whole-body FOV PET 2m 15 cm Made with crystal “blocks” 5x5 cm SIEMENS Comercial value=1.5M€ Extremely expensive if based on crystals ⇒ RPC-PET [D D.B.Croseetto 2000 IEEE NS SS] Full-body human PET
Documentos relacionados
Soviet Poster Art Pet Bandana – Art Dog Bandana – Poster Pet Scarf
https://wishcapital.shop/soviet-poster-art-pet-bandana-art-dog-bandana-poster-pet-scarf/
Do you want your pet to be the coolest one on your block? Let them rock in Art Pet Bandana! When you are dressing for a party or picnic, let your dog have the same vibes in fabulous clothes. Whether you are going to attend a party or just casually taking a stroll around the neighborhood, your pet will surely make every person stop for a minute and appreciate them.
Soviet Poster Art Pet Bandana