Novos aspectos da atividade solar em ondas submilimétricas

Transcrição

Novos aspectos da atividade solar em ondas submilimétricas
Novos aspectos da atividade solar
em ondas submilimétricas
e banda THz
4th El Leoncito Solar Physics School – CASLEO & Universidad de La
Punta – San Juan & San Luis, Argentina
1
Radiação eletromagnética
Energia de um fóton E = hν = hc/λ erg
h: cste. Planck
c: velocidade da onda e.m. (luz, rádio, etc.)
λ: comprimento de onda; ν: freqüência
Estado da radiação e.m. descrito pelo vetor de Poynting instantâneo:
P = E x H (W m-2 = V m-1 x A m-1)
Função da direção e grau de polarização
2
Sensoriamento passivo
Objeto no espaço compreendendo ângulo
sólido Ω (sr), a temperatura aparente de ruido
equivalente T (K)
Outros parâmetros da radiação recebida derivados da
aproximação de Rayleigh-Jeans para a lei de Planck
descrevendo radiação de corpo negro:
hBrilhância radioelétrica
B(θ,ϕ) = 2 k T(θ,ϕ)/ λ2 W. m-2 Hz-1 sr-1
iDensidade de fluxo
S = (2 k/λ2) ∫∫ T(θ,ϕ) dΩ W. m-2 .Hz-1
Rayleigh-Jeans
k : cste. Boltzmann
3
DEFINIÇÕES
Radiometria: detecção de radiação eletromagnética na forma
de ruído randômico cuja potência é definida em termos de
temperatura equivalente, numa frequência f, banda
passante B.
Outros parâmetros: direção no espaço; polarização; espectro
4
“Janelas” da atmosfera terrestre para ondas eletromagnéticas
A rádio-astronomia explora o espaço exterior
a partir do solo nas faixas de freqüência para
as quais a é baixa a opacidade da ionosfera
(ondas decamétricas-microondas) e da troposfera (micro-ondas-submilimétrico)
Mid-IR
SST
5
Planetas
Nebulosas.
estrelas em
formação
Supernovas
Galáxias
Cometas
Ruídos radioelétricos do
Universo próximo e distante
Meio extragalático
Sol
RADIÔMETRO
Sensor
radiométrico
Filtro
Potência de ruido
Diagnóstico remoto de fenômenos astrofísicos através das ondas
de rádio que emitem
6
SOLAR BURSTS SPECTRA AT HIGHER FREQUENCIES AS KNOWN IN PAST MILLENIUM
Unusual
DIFFERENT FLARE
EMISSION MECHANISMS
MAY FIT INTO THIS UNKNOWN
SPECTRAL RANGE
First tries:
(Single beam slow scans)
Typical
250 GHz brightnings on AR,
Clark & Park 1968,
250 GHz and 15 THz
raster scans and
tracking ARs, Hudson 1975
7
To observe solar burst emission at f> 100 GHz:
SOLAR SUBMILLIMETER-WAVE TELESCOPE
El Leoncito Astronomical Complex, San Juan, Argentina
Altitude 2550 m
1.5 m Cassegrain reflector, 3 m
radome, 4 radiometers at 212
GHz, 2 radiometers at 405 GHz
8
SST six beams projected on the solar disk
(for April 6, 2001)
SOHO Magnetogram
Upgraded pointing model (2006)
1-4: 212 GHz
5,6: 405 GHz
Absolute pointing accuracy: 10” r.m.s
9
Active Centers Emission
Simultaneous solar images for May 20,
2002, beams 1 (212 GHz) and 5 (405 GHz)
Active centers spectra
distinct submm-w component
Silva et al., 2005
10
New Terahertz Solar Burst Source – Evidence
4 November 2003
OVSA
SST
SOHO EIT previous to the flare
Kaufmann et al 2004
Source size < 10”
Brigthness at peak P1 Tb > 3-5 107 K
(405 and 212 GHz)
11
PULSE REPETITION RATES ARE LINEARLY PROPORTIONAL TO FLUXES
November 4, 2003
- FLUXES = ∆E/∆t = R (s-1) 〈ε〉 watts
- FLARE ACCELERATOR PRODUCE DISCRETE
REPETITIVE ENERGETIC INJECTIONS
ε≈ 2-8 1013 J at 212 and 405 GHz
ε≈ 4-9 1014 J at 1.3-4.0 to 0.15-0.5 MeV
12
“U-spectra” (Castelli 1972)
T-rays
Complete solar burst spectrum “W-shaped” in the MHz – THz range
13
Submillimeter bursts emission with superimposed rapid pulsations
5 sec sample on March 22, 2000
April 6, 2001 solar burst
212 GHz
5 ms
Owens Valley
212 GHz time profile
Pulse occurrence rates
Sub-second
pulses are
common to all
solar bursts
observed
with or without
observable
impulsive
bulk emission
405 GHz
5 ms
Kaufmann et al. (2002)
Suggested spectral trend for the sub-second spikes
(α ≈ 2)
1000
log flux (SFU)
YOHKOH
Gamma rays
2
100
May 21, 1984
10
March 22, 2000
August 25, 2001
1
10
100
1000
log f (GHz)
14
Ejeção de massa coronal (CME) é o mais energético transiente solar.
Provoca grandes perturbações no meio interplanetário e impacto
no meio ambiente espacial e campo geomagnético da Terra
Energia ≈ 1032 ergs,
igual a produzida pelas
maiores explosões
solares, às quais nem
sempre os CMEs estão
associados
15
Pulsating Bursts association to CME launch times
PULSATING BURST OF APRIL 6, 2001
LASCO C2
BULK EMISSION
WAVELET
DECOMPOSITION
LASCO C3
CME POSITION ABOVE SURFACE VS. TIME
16
August 25, 2001 flare, CME
and submm-w pulses
Scalograms
405 GHz
GOES-10
212 GHz
405 GHz
LASCO C2 Coronagraph
212 GHz
405 GHz
CME positions
With time
(Raulin et al. 2002)
Zoom
The repetition rate of submm-w pulses is proportional to flux
17
Solar observations in the THz range are essential to understand the initial flare emission processes!
30 THz
30SST
THz
added
added
- TO IMPROVE UNDERSTANDING OF
FLARE ACCELERATOR
- TO BETTER EXPLAIN FLUXES
TIME-HISTORIES AT MICROWAVES,
THz RANGE, HARD X-RAYS
- RELATIVE IMPORTANCES OF ISR
AND BREMSSSTRAHLUNG TO
PRODUCE HARD X- AND GAMMA RAY
data
not
enough
to
fully ?
describe
physical
processes
18
Present plans for El Leoncito
SST
30 THz Camera (7-15 µ)
τ ≈ 0.15
CCS photometers
τ ≈ 0.6
H-α
τ ≈ 1.4
(Transmission for Mauna Kea, 4100 m altitude, 1.2 mm pwv, Jefferies 1993)
19
Coelostat and optical setup next to SST and 10-µ camera
El Leoncito SST facility
Jensch-Zeiss 30 cm coelostat
10 µm camera at
newtonian focus
20
10 µm D.O.T. - like setup at Bernand Lyot Solar Observatory, Campinas, Brazil
11 September 2007
Mid-IR plages
NSO magnetogram
Meudon Ca plages
10.5 cm objective
Marcon et al 2008
21
Mid-IR (10 Micro m) pulses and GOES soft X-ray
30 THz burst associated to GOES B 2.0 X-ray event, December 10, 2007
2,50E-07
Movie
Mid-IR flare fireworks!
2,00E-07
1,50E-07
Fux W m-2
Ta = 0.5-4 K; S = 10-70 SFU
1,00E-07
5,00E-08
5 frames/s
system ∆T ≈ 0.2 K rms
0,00E+00
10:30:43
10:33:36
10:36:29
10:39:22
10:42:14
10:45:07
10:48:00
10:50:53
10:53:46
10:56:38
10:59:31
-5,00E-08
Universal Time Dec 10, 2007
5 frames/second; accelerated
Short 1.5 - 4.0 A
Long 1.0 - 1.8 A
Dif ∆T K
Movie
22
December 13, 2007 (during GOES B class burst)
80 seconds, 5 fps, December 13, 2007
Excess flash brightning
in the solar disk~ 200 K
Temperature enhancement
at input of mid-IR
telescope ~0.5-1 K
Flux density ~ 20 SFU
FOV ~25”
Duration ~ few seconds
Results consistent with a
1-2” sources, intrinsic brightning
of ~ 60,000 K
Mid-IR microflashes
23
BURST SOURCE PARAMETERS DIFFICULT TO RECONCILE TO ANY
THERMAL INTERPRETATION
T-BURST COMPONENT ATTRIBUTED TO NON-THERMAL ELECTRONS
Electron energies > 10 MeV, Magnetic fields ~ 103 gauss
New interpretation possibilities
-SYNCHROTRON BY POSITRONS
-LANGMUIR WAVES
-BUNCHING OF ELECTRON BEAMS (same physics as in laboratory accelerators)
24
A SIMPLER POSSIBILITY
Same physics as in laboratory
BUNCHING OF ACCELERATED UR ELECTRON BEAMS
SUN
FLUX ∝ Po [N(incoherent) + f N2(coherent)]
CSR
ISR
Lab
THE MECHANISM IS SO EFFICIENT THAT JUST
A SMALL FRACTION OF ELECTRONS BUNCHED
WITHIN SOLAR ACCELERATED BEAM (i.e. form
factor f <<1) ARE ENOUGH TO ACCOUNT FOR
THE BROADBAND COHERENT SYNCHROTRON
EMISSION
25
Synchrotron emission power components
One bunch
N electrons (> MeV)
P = Po [N(incoherent) + f N2(coherent)]
Microbunch
length scale lb ≤ λ (e.m. wavelength)
Bunch
Power by single electron Po ∝ e2
(Ingelman and Siegbahn, 1998)
n multiple fractured bunches
P(total) = n Po [N(incoherent) + f N2(coherent)]
f ⇒ form factor, probability finding the electron in the same energy level or angular loss cone
ϕ +∆ϕ. f ≈ 0 for lb >> λ (incoherent); f ≈ 1 for lb << λ (coherent)
Ripples observed in solar burst time profiles are suggested signatures of multiple bunches being accelerated
accounting for observed [occurrence rates ∝ flux] and [total energy ∝ ∑ ∆ε] burst description
26
Simulation
Klopf, 2008
27
SIRA
SST DESIR
Mid-IR
FULL SPECTRAL COVERAGE NEEDED
SUBMM & IR
UNEXPLORED
SIRA
SST DESIR
Mid-IR
LOG FREQUENCY (Hz)
28
DESIR
Optical layout
SMESE
France-China
Platform
launch 2012
Photometer/imagers for the 25-35 µm (10 THz)
and 100-200 µm (2 THz) bands
Le 5 Mars 2002
Spectroscopie par TF
CNES(France) + CNSA(China)
29
Solar submillimeter to Infra-red Activity – SIRA (phase I)
(submitted to Brazilian funding agencies)
45 & 90 GHz
Patrol polarimeters
SST 212 &
405 GHz
DESIR
2 & 10 THz
Mid-IR
GBO
Planned SIRA (phase II) – GBO at 650 & 850 GHz, space at 3 THz
30