Novos aspectos da atividade solar em ondas submilimétricas
Transcrição
Novos aspectos da atividade solar em ondas submilimétricas
Novos aspectos da atividade solar em ondas submilimétricas e banda THz 4th El Leoncito Solar Physics School – CASLEO & Universidad de La Punta – San Juan & San Luis, Argentina 1 Radiação eletromagnética Energia de um fóton E = hν = hc/λ erg h: cste. Planck c: velocidade da onda e.m. (luz, rádio, etc.) λ: comprimento de onda; ν: freqüência Estado da radiação e.m. descrito pelo vetor de Poynting instantâneo: P = E x H (W m-2 = V m-1 x A m-1) Função da direção e grau de polarização 2 Sensoriamento passivo Objeto no espaço compreendendo ângulo sólido Ω (sr), a temperatura aparente de ruido equivalente T (K) Outros parâmetros da radiação recebida derivados da aproximação de Rayleigh-Jeans para a lei de Planck descrevendo radiação de corpo negro: hBrilhância radioelétrica B(θ,ϕ) = 2 k T(θ,ϕ)/ λ2 W. m-2 Hz-1 sr-1 iDensidade de fluxo S = (2 k/λ2) ∫∫ T(θ,ϕ) dΩ W. m-2 .Hz-1 Rayleigh-Jeans k : cste. Boltzmann 3 DEFINIÇÕES Radiometria: detecção de radiação eletromagnética na forma de ruído randômico cuja potência é definida em termos de temperatura equivalente, numa frequência f, banda passante B. Outros parâmetros: direção no espaço; polarização; espectro 4 “Janelas” da atmosfera terrestre para ondas eletromagnéticas A rádio-astronomia explora o espaço exterior a partir do solo nas faixas de freqüência para as quais a é baixa a opacidade da ionosfera (ondas decamétricas-microondas) e da troposfera (micro-ondas-submilimétrico) Mid-IR SST 5 Planetas Nebulosas. estrelas em formação Supernovas Galáxias Cometas Ruídos radioelétricos do Universo próximo e distante Meio extragalático Sol RADIÔMETRO Sensor radiométrico Filtro Potência de ruido Diagnóstico remoto de fenômenos astrofísicos através das ondas de rádio que emitem 6 SOLAR BURSTS SPECTRA AT HIGHER FREQUENCIES AS KNOWN IN PAST MILLENIUM Unusual DIFFERENT FLARE EMISSION MECHANISMS MAY FIT INTO THIS UNKNOWN SPECTRAL RANGE First tries: (Single beam slow scans) Typical 250 GHz brightnings on AR, Clark & Park 1968, 250 GHz and 15 THz raster scans and tracking ARs, Hudson 1975 7 To observe solar burst emission at f> 100 GHz: SOLAR SUBMILLIMETER-WAVE TELESCOPE El Leoncito Astronomical Complex, San Juan, Argentina Altitude 2550 m 1.5 m Cassegrain reflector, 3 m radome, 4 radiometers at 212 GHz, 2 radiometers at 405 GHz 8 SST six beams projected on the solar disk (for April 6, 2001) SOHO Magnetogram Upgraded pointing model (2006) 1-4: 212 GHz 5,6: 405 GHz Absolute pointing accuracy: 10” r.m.s 9 Active Centers Emission Simultaneous solar images for May 20, 2002, beams 1 (212 GHz) and 5 (405 GHz) Active centers spectra distinct submm-w component Silva et al., 2005 10 New Terahertz Solar Burst Source – Evidence 4 November 2003 OVSA SST SOHO EIT previous to the flare Kaufmann et al 2004 Source size < 10” Brigthness at peak P1 Tb > 3-5 107 K (405 and 212 GHz) 11 PULSE REPETITION RATES ARE LINEARLY PROPORTIONAL TO FLUXES November 4, 2003 - FLUXES = ∆E/∆t = R (s-1) 〈ε〉 watts - FLARE ACCELERATOR PRODUCE DISCRETE REPETITIVE ENERGETIC INJECTIONS ε≈ 2-8 1013 J at 212 and 405 GHz ε≈ 4-9 1014 J at 1.3-4.0 to 0.15-0.5 MeV 12 “U-spectra” (Castelli 1972) T-rays Complete solar burst spectrum “W-shaped” in the MHz – THz range 13 Submillimeter bursts emission with superimposed rapid pulsations 5 sec sample on March 22, 2000 April 6, 2001 solar burst 212 GHz 5 ms Owens Valley 212 GHz time profile Pulse occurrence rates Sub-second pulses are common to all solar bursts observed with or without observable impulsive bulk emission 405 GHz 5 ms Kaufmann et al. (2002) Suggested spectral trend for the sub-second spikes (α ≈ 2) 1000 log flux (SFU) YOHKOH Gamma rays 2 100 May 21, 1984 10 March 22, 2000 August 25, 2001 1 10 100 1000 log f (GHz) 14 Ejeção de massa coronal (CME) é o mais energético transiente solar. Provoca grandes perturbações no meio interplanetário e impacto no meio ambiente espacial e campo geomagnético da Terra Energia ≈ 1032 ergs, igual a produzida pelas maiores explosões solares, às quais nem sempre os CMEs estão associados 15 Pulsating Bursts association to CME launch times PULSATING BURST OF APRIL 6, 2001 LASCO C2 BULK EMISSION WAVELET DECOMPOSITION LASCO C3 CME POSITION ABOVE SURFACE VS. TIME 16 August 25, 2001 flare, CME and submm-w pulses Scalograms 405 GHz GOES-10 212 GHz 405 GHz LASCO C2 Coronagraph 212 GHz 405 GHz CME positions With time (Raulin et al. 2002) Zoom The repetition rate of submm-w pulses is proportional to flux 17 Solar observations in the THz range are essential to understand the initial flare emission processes! 30 THz 30SST THz added added - TO IMPROVE UNDERSTANDING OF FLARE ACCELERATOR - TO BETTER EXPLAIN FLUXES TIME-HISTORIES AT MICROWAVES, THz RANGE, HARD X-RAYS - RELATIVE IMPORTANCES OF ISR AND BREMSSSTRAHLUNG TO PRODUCE HARD X- AND GAMMA RAY data not enough to fully ? describe physical processes 18 Present plans for El Leoncito SST 30 THz Camera (7-15 µ) τ ≈ 0.15 CCS photometers τ ≈ 0.6 H-α τ ≈ 1.4 (Transmission for Mauna Kea, 4100 m altitude, 1.2 mm pwv, Jefferies 1993) 19 Coelostat and optical setup next to SST and 10-µ camera El Leoncito SST facility Jensch-Zeiss 30 cm coelostat 10 µm camera at newtonian focus 20 10 µm D.O.T. - like setup at Bernand Lyot Solar Observatory, Campinas, Brazil 11 September 2007 Mid-IR plages NSO magnetogram Meudon Ca plages 10.5 cm objective Marcon et al 2008 21 Mid-IR (10 Micro m) pulses and GOES soft X-ray 30 THz burst associated to GOES B 2.0 X-ray event, December 10, 2007 2,50E-07 Movie Mid-IR flare fireworks! 2,00E-07 1,50E-07 Fux W m-2 Ta = 0.5-4 K; S = 10-70 SFU 1,00E-07 5,00E-08 5 frames/s system ∆T ≈ 0.2 K rms 0,00E+00 10:30:43 10:33:36 10:36:29 10:39:22 10:42:14 10:45:07 10:48:00 10:50:53 10:53:46 10:56:38 10:59:31 -5,00E-08 Universal Time Dec 10, 2007 5 frames/second; accelerated Short 1.5 - 4.0 A Long 1.0 - 1.8 A Dif ∆T K Movie 22 December 13, 2007 (during GOES B class burst) 80 seconds, 5 fps, December 13, 2007 Excess flash brightning in the solar disk~ 200 K Temperature enhancement at input of mid-IR telescope ~0.5-1 K Flux density ~ 20 SFU FOV ~25” Duration ~ few seconds Results consistent with a 1-2” sources, intrinsic brightning of ~ 60,000 K Mid-IR microflashes 23 BURST SOURCE PARAMETERS DIFFICULT TO RECONCILE TO ANY THERMAL INTERPRETATION T-BURST COMPONENT ATTRIBUTED TO NON-THERMAL ELECTRONS Electron energies > 10 MeV, Magnetic fields ~ 103 gauss New interpretation possibilities -SYNCHROTRON BY POSITRONS -LANGMUIR WAVES -BUNCHING OF ELECTRON BEAMS (same physics as in laboratory accelerators) 24 A SIMPLER POSSIBILITY Same physics as in laboratory BUNCHING OF ACCELERATED UR ELECTRON BEAMS SUN FLUX ∝ Po [N(incoherent) + f N2(coherent)] CSR ISR Lab THE MECHANISM IS SO EFFICIENT THAT JUST A SMALL FRACTION OF ELECTRONS BUNCHED WITHIN SOLAR ACCELERATED BEAM (i.e. form factor f <<1) ARE ENOUGH TO ACCOUNT FOR THE BROADBAND COHERENT SYNCHROTRON EMISSION 25 Synchrotron emission power components One bunch N electrons (> MeV) P = Po [N(incoherent) + f N2(coherent)] Microbunch length scale lb ≤ λ (e.m. wavelength) Bunch Power by single electron Po ∝ e2 (Ingelman and Siegbahn, 1998) n multiple fractured bunches P(total) = n Po [N(incoherent) + f N2(coherent)] f ⇒ form factor, probability finding the electron in the same energy level or angular loss cone ϕ +∆ϕ. f ≈ 0 for lb >> λ (incoherent); f ≈ 1 for lb << λ (coherent) Ripples observed in solar burst time profiles are suggested signatures of multiple bunches being accelerated accounting for observed [occurrence rates ∝ flux] and [total energy ∝ ∑ ∆ε] burst description 26 Simulation Klopf, 2008 27 SIRA SST DESIR Mid-IR FULL SPECTRAL COVERAGE NEEDED SUBMM & IR UNEXPLORED SIRA SST DESIR Mid-IR LOG FREQUENCY (Hz) 28 DESIR Optical layout SMESE France-China Platform launch 2012 Photometer/imagers for the 25-35 µm (10 THz) and 100-200 µm (2 THz) bands Le 5 Mars 2002 Spectroscopie par TF CNES(France) + CNSA(China) 29 Solar submillimeter to Infra-red Activity – SIRA (phase I) (submitted to Brazilian funding agencies) 45 & 90 GHz Patrol polarimeters SST 212 & 405 GHz DESIR 2 & 10 THz Mid-IR GBO Planned SIRA (phase II) – GBO at 650 & 850 GHz, space at 3 THz 30