1 Relatório de Estudos de Curto-Circuito e Seletividade
Transcrição
1 Relatório de Estudos de Curto-Circuito e Seletividade
GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Relatório de Estudos de Curto-Circuito e Seletividade para a Posterior Aplicação das Proteções Tipo G-60(Multifunção de Geradores) e F-60(Proteção da Conexão) do Fornecimento GEMULTILIN feito à PETROBRÁS-RPBC através do Contrato de Serviços 1200.00.41061.08.3 de 13/06/2008. Feito por Francisco Antonio Reis Filho (Consultor da GEMULTILIN) São Paulo, 11 de fevereiro de 2009 – REV . 5 - Draft 6. Nota 1 : Os ajustes serão adotados conforme reunião efetuada na RPBC em 10/02/2009 e informações posteriores.As respectivas alterações estão indicadas em vermelho. 1 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 1 - Introdução: O presente relatório tem por objetivo apresentar os critérios e ajustes definidos para as proteções da GE do tipo G-60 e F-60 aplicadas no sistema da PETROBRÁS/RPBC através do contrato de citado no titulo do mesmo. O mesmo está dividido nas seguintes etapas listadas abaixo : Índice : 1.1 – Definição das condições operativas. 2.1 - Estudos de Curto – Circuito. 3.1 - Estudos de Estabilidade. 4.1 - Estudos de Seletividade das Proteções. 5.1 - Tabelas de Ajustes(Referência). 6.1 - Conclusões Finais. 1.1 – Definição das condições operativas. Para a correta interpretação dos dados e resultados subseqüentes é importante esclarecer e detalhar as principais condições operativas simuladas nas três etapas do estudo. Para tal podemos nos basear no diagrama geral da RPBC apresentado na figura 1 a seguir : Figura 1 – Diagrama Unifilar simplificado da RPBC 2 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Como principais condições temos portanto : ● A barra BT é alimentada somente pelo Transformador que interliga a mesma a barra da concessionária através da barra Light. ● Com relação as possíveis condições de geração interna foram consideradas as seguintes condições operativas : Operação em paralelo : ● TG3 + TG4. ● TG3 + TG4 + TG5. Operação Ilhada : ● TG3 + TG4. ● TG3 + TG4 + TG5. ● Operação somente com alimentação através da concessionária sem nenhum gerador. Nota 2 : Essas condições operativas foram definidas em reunião conjunta com a PETROBRÁS em 04/09/2008 nas instalações da RPBC. 3 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 2.1 - Estudos de Curto – Circuito. Caso 3 – Concessionária + TG3 + TG4: Caso 4 – Concessionária + TG3 + TG4 + TG5: 4 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Caso 5 – Ilhado + TG3 + TG4: Caso 6 – Ilhado + TG3 + TG4 + TG5: 5 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Caso 7 – Concessionária: 6 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 2.1.1 - Dados das Barras. Identificação AT – Entrada Concessionária BT Reator – TG1 Reator – TG3 Reator – TG4 Reator – TG5 Reator – Light TG1 Saída TG1 TG3 Barra do TG3 TG4 Barra do TG4 TG5 Barra do TG5 Barra Light PN – A201 PN – A101 C-2 (TG3) C-1 (TG3) C-15 (TG3) C-7 (TG3) Reserva (TG3) C-6 (TG3) C-10 (TG3) Reserva (TG3) C-25 (TG4) C-19 (TG4) C-24 (TG4) C-1 (TG4) C-26 (TG4) C-8 (TG4) C-27 (TG4) C-34 (TG4) C-29 (TG5) C-9 (TG5) C-28 (TG5) Número 1000 Tensão 88 kV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 (não entra) 23 24 25 (não entra) 26 27 28 29 30 31 32 33 34 35 36 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 7 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 C-24 (TG5) Reserva (TG5) Reserva (TG5) C-12 (TG5) Reserva (TG5) C-42 (TG5) C-32 C-18 A106 A112 37 38 (não entra) 39 (não entra) 40 41 (não entra) 42 43 44 45 46 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 4,16 kV 2.1.2 - Dados dos Reatores. De 1 1 1 1 1 Para 2 3 4 5 6 Reatância (%) 4,16 6,00 6,65 6,65 6,65 Corrente (A) 1000 1000 1000 1000 1000 8 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 2.1.3 - Dados dos Cabos. Características dos 4/0 AWG 250 MCM 350 MCM 400 MCM 500 MCM cabos isolados 3,6/6 kV 3,6/6 kV 3,6/6 kV 3,6/6 kV 3,6/6 kV N. fios 19 37 37 37 37 Cond. – Dc (mm) 11,00 12,40 13,80 15,30 17,50 Isol. – Di (mm) 12,20 13,60 15,00 16,50 18,70 Isol. – De (mm) 17,20 18,60 20,00 21,50 24,30 Isol. – Cte. Diel. Relat. 3,50 3,50 3,50 3,50 3,50 Isol. – Permeab. Relat. 1,00 1,00 1,00 1,00 1,00 BMet. – Di (mm) 18,40 19,80 21,20 22,70 25,50 BMet. – De (mm) 18,91 20,31 21,71 23,21 26,01 2 0,25 0,25 0,25 0,25 0,25 BMet. – ρ (Ω Ω.mm /m) CExt. – Di (mm) 19,42 20,82 22,22 23,72 26,52 CExt. – De (mm) 22,42 23,82 25,42 26,92 29,92 CExt. – Cte. Diel. 2,30 2,30 2,30 2,30 2,30 Relat. CExt. – Permeab. 1,00 1,00 1,00 1,00 1,00 Relat. Parâmetros dos cabos calculados a partir das características acima1 0,2503 0,1972 0,1595 0,1301 0,1002 R1 (Ω Ω/km) 0,2458 0,2385 0,2310 0,2237 0,2134 X1 (Ω Ω/km) 0,4289 0,3753 0,3376 0,3082 0,2785 R0 (Ω Ω/km) 2,2394 2,2325 2,2250 2,2177 2,2069 X0 (Ω Ω/km) 22,3220 23,0433 23,7816 24,5151 25,7788 C1 (η ηF/km) 4,3091 4,3707 4,3898 4,3966 4,4225 C0 (η ηF/km) Obs : A seguinte compatibilidade (AWG/MCM) X (mm2) foi utilizada: 4/0 AWG 250 MCM 350 MCM 400 MCM 500 MCM 95 mm2 120 mm2 150 mm2 185 mm2 240 mm2 1 Através do módulo do cálculo de cabos isolados do programa WASP 6, desenvolvido pela Powerhouse. 9 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Para as várias disposições de cabos da planta, têm-se os seguintes parâmetros: Cabos 1 X 350 MCM 1 X 4/0 AWG 1 X 400 MCM 1 X 500 MCM 2 X 240 mm2 2 X 250 MCM 2 X 350 MCM 2 X 4/0 AWG 2 X 500 MCM 3 X 250 MCM 3 X 350 MCM 3 X 4/0 AWG 3 X 500 MCM R1 (Ω Ω/km) 0,1595 0,2503 0,1301 0,1002 0,0501 0,0986 0,0798 0,1252 0,0501 0,0657 0,0532 0,0834 0,0334 X1 (Ω Ω/km) 0,2310 0,2458 0,2237 0,2134 0,1067 0,1193 0,1155 0,1229 0,1067 0,0795 0,0770 0,0819 0,0711 R0 (Ω Ω/km) 0,3376 0,4289 0,3082 0,2785 0,1393 0,1877 0,1688 0,2145 0,1393 0,1251 0,1125 0,1430 0,0928 X0 (Ω Ω/km) 2,2250 2,2394 2,2177 2,2069 1,1035 1,1163 1,1125 1,1197 1,1035 0,7442 0,7417 0,7465 0,7356 10 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 2.1.4 – Dados dos Circuitos. De 2 7 3 9 4 11 5 13 6 15 15 10 10 10 10 10 10 12 12 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 15 Para 8 8 10 10 12 12 14 14 15 16 17 18 19 20 21 23 24 26 27 28 29 30 31 32 33 34 35 36 37 40 42 43 44 45 46 Descrição BT – TG1/G2 TG1 BT TG3 TG3 BT TG4 TG4 BT TG5 TG5 BT Barra Light Barra Light PN-A201 Barra Light PN-A101 C-2 CUB C – 208 C-1 C-15 C-7 BARRA A C-6 C-10 C-25 BARRA A C-19-II C-24 BARRA A C-1 C-26 C-8 C-27 A C-34 BARRA A C-29 C-9 – II C-28 C-34 C-12 – I C-42 C-32 – I C-16 TG5 – A106 Light – A112 Cabos 9 x 500 MCM 9 x 500 MCM 9 x 500 MCM 9 x 500 MCM 9 x 500 MCM 9 x 500 MCM 9 x 500 MCM 9 x 500 MCM 9 x 500 MCM 9 x 350 MCM 6 x 350 MCM 3 x 350 MCM 3 x 350 MCM 6 x 500 MCM 2 x 3 x 240 MM2 9 x 4/0 AWG 3 x 350 MCM 6 x 250 MCM 3 x 500 MCM 9 x 250 MCM 3 x 500 MCM 3 x 4/0 AWG 9 x 4/0 AWG 6 x 4/0 AWG 3 x 400 MCM 6 x 350 MCM 3 x 350 MCM 9 x 250 MCM 9 x 250 MCM 9 x 250 MCM 2 x 3 x 4/0 AWG 3 x 350 MCM 3 x 350 MCM 3 x 350 MCM 3 x 350 MCM L (m) 85 10 60 10 50 10 48 10 55 210 480 550 30 450 170 82 330 450 1170 400 45 600 30 425 615 550 340 455 595 116 30 480 500 100 100 11 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 2.1.5 – Dados dos Geradores. Descrição TG3 TG4 TG5 Barra 9 11 13 Sn (kVA) 7500 7500 9375 cos φ 0,8 0,8 0,8 Vn (kV) 4,16 4,16 4,16 Xd (%) 275 275 275 X´d (%) 19,5 19,5 17,9 X´´d (%) 10,2 10,2 15,1 X0 (%) 5,0 5,0 5,0 2.1.6 – Dados dos Transformadores. Primário 1000 (Yat) 1000 (∆ ∆) 1000 (∆ ∆) Secundário 16 (Yat) 17 (∆ ∆) 15 (Zat) kVA 4690 11000 20000 Vp (kV) 88 88 88 Vs (kV) 4,16 4,16 4,16 X (%) 7 7,56 9,92 Zater (Ω Ω) 11,58 5,32 3,84 2.1.7 - Dados de Potência de Curto – Circuito na Entrada. Barra 1000 Z1 (%) 0,22923+ j 2,28855 Z0 (%) 0,713875+ j 5,75590 2.1.8 – Dados Gerais. Potência base Tempo de análise do Curto Circuito 100 MVA 7 ciclos 12 RAT (Ω) 8,0 8,0 8,0 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 2.1.9 - Resultados. Os resultados estão nas planilhas EXCEL em anexo, onde a identificação de cada caso é descrita por: CX_Y_Z Onde: X Y Z = = = Número do caso; Número da barra na qual o curto circuito é aplicado; Número de fases envolvidas no curto. Exemplo : Curto circuito rodado para o caso 1, barra 12 e falha monofásica C1_12_1 Barras consideradas: 1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 45, 46 e 1000. As demais barras não foram consideradas em função dos valores de curto circuito serem iguais aos valores das barras nas quais as mesmas se conectavam. 13 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 4.1 - Estudos de Seletividade das Proteções. Nota 3 : Serão tomados como referência para os ajustes das temporizações das proteções apresentadas, ata de reunião de 16/10/2008. Para defeitos entre fases : Na condição de operação ilhada dos geradores TG03 e TG04 com um tempo de referência de 200 ms. Para defeitos fase – terra : Em qualquer condição com um tempo maior do que 15s. 4.1.1 – Proteção dos Geradores TG3,TG4,TG5 e do Paralelo através do cubículo BL-02. 4.1.1.1 - Proteção dos Geradores TG03 e TG04 : (Relé G-60 de fabricação GE). Esse geradores estão conectados as barra 11 e 12 do estudo de curto-circuito. A seguir são apresentadas a lista de funções de proteção a serem ajustadas : RTC de fase e de neutro = 1500/5A ou 300/1. RTP = 4800 / 120 = 40/1. Funções de Proteção Existentes : Função 87 G – Diferencial do Gerador. Função 51 V – Sobrecorrente com controle por tensão. Função 87 N – Diferencial de Falha à terra restrita no estator. Função 32 - Reversão de Potência ou motorização do gerador. Função 51 N – Sobrecorrente de Neutro. 14 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Funções de Proteção Novas a serem incorporadas nas proteções : Função 21 - Proteção contra defeitos entre fases no sistema de 4.16/88 kV da RPBC. Função 40 – Perda de Excitação do Gerador. Função 67_2 – Proteção contra Defeitos Assimétricos no sistema de 4.16/88 KV em forma de retaguarda das demais proteções. Função 81 por freqüência absoluta – Proteger os geradores TG03 e TG04 contra um degrau de energia excessivo nos mesmos. Funções de Proteção Internas : ● Stator Differential ( ANSI 87). Stator Differential PickUP : Esse ajuste será baseado na menor corrente de defeito admissível no gerador. Como o mesmo é aterrado através de resistor vamos admitir o valor de 13 % da corrente nominal do mesmo para se iniciar a medição. Logo : 7500 Ι p = 3 x KVA 4.16 KV = 1040.89 Α Ipartida = 0.13 x Ip = 1040.89 x 0.13 = 135.31 A. Iajuste = Ipartida / RTC primário(1500) = 135.31 / 1500 = 0.09 pu. 15 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Stator Diff Slope 1: Vamos supor para esse ajuste que os tc´s são de mesmo fabricante e já que a relação entre os dois é a mesma. Vamos levar em consideração também o valor da mínima corrente de defeito 1F do sistema que será de 15 % da corrente nominal do gerador. Logo esse ajuste será de 15 %. Stator Diff Break 1: Esse ajuste define o fim do primeiro slope que é baseado em erros dos tc´s e demais condições de regime permanente. Para esse primeiro ajuste vamos pegar o menor valor de corrente de defeito 1F para a operação ilhada no caso 5. Icc1F = 1317 A O ajuste fica : 1317 / 1500 = 0.878 . Como não temos esse ajuste vamos adotar o valor de 1 pu. Stator Diff Slope 2: Conforme indicação do catálogo vamos adotar o ajuste mínimo de 80 %. Stator Diff Break 2: Esse ajuste define o fim do segundo slope que é baseado nas correntes de defeito no gerador. Para esse segundo ajuste vamos adotar a corrente de defeito 2F para o caso 5 na barra 12 do gerador. Icc2F(Contribuição do gerador TG4 ) = 7448 A. Ajuste = 7448 / 1500 = 4.96 Função ANSI - 87 SETTING PARAMETER PickUP 0.09 pu SLOPE 1 15% BREAK1 1 pu SLOPE 2 80 % BREAK2 4.96 16 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 ● Restricted Ground Fault (ANSI 87G) Para o ajuste dessa função adota-se a corrente tipica de um defeito 1F no gerador : A máxima corrente de defeito fase-terra no lado de 4.16 KV é : 4.16 Ι ng = 3 KV x 8 = 300.22 Α Onde RN1 = 8 Ω. Supõe-se um defeito a 10 % do enrolamento do gerador : Idef = 0.1 x Ing = 0.1 x 300.22 = 30.02 A Ajuste = 30.02 / 1500 = 0.02 pu. Para o slope adota-se o valor indicado de catálogo que é de 40 %. Vamos adotar aqui também uma temporização típica de 100 ms para a atuação dessa função. Função ANSI 87 G SETTING PARAMETER Restd GND FT1 PickUP 0.02 pu Restd GND FT1 SLOPE 40% Restd GND FT1 Delay 0.1 s 17 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 ● Sensitive Directional Power : ( ANSI 32). Essa função deverá enxergar a motorização do gerador em caso de perda da máquina motriz do mesmo. Para geradores desse porte e tipo a Norma IEEE C37.102 – 1987 indica que para turbinas a vapor se use um range de 0.5 a 3 % da potência nominal da máquina. Para um ajuste típico de 1,5 % (alarme) e 3 %(trip) adotam-se os seguintes procedimentos : f.p = 0.8 P = 0.8 x 7500 KVA = 6 MW. Ajuste = 0.015 x 6 = 0.09 MW. Adota-se aqui que RTP = 4800/raiz(3) e RTC(Primário) = 1500 A. Pb = 2771,28 V x 1500 A = 4.156 MW. Logo o ajuste será : STG1 min = 0.09/ 4.156 = 0.021 pu para um ângulo de 180 graus conforme a figura abaixo, com uma temporização típica de 4s. O ajuste STG2 min de trip será de 0.042 pu com uma temporização de 2s. 18 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Função ANSI 32 SETTING PARAMETER DIR POWER 1 RCA 180 graus DIR POWER 1 STG1 MIN 0.021 pu DIR POWER 1 STG1 DELAY 20 s DIR POWER 1 STG2 MIN 0.042 pu DIR POWER 1 STG2 DELAY 10 s Nota 4 : Adotam-se aqui as temporizações de 10 e 20s respectivamente para se ficar de acordo com os ajustes expostos no relatório ET-RPBC/100-70-01 ● Loss of Excitation : (ANSI 40). Para essa função adotam-se os parâmetros apresentados na tabela 5.3 e toma-se como referência a figura abaixo. Dados : Zbase da máquina em valores secundários = 17,3 Ω ( Adotando-se Vb = 4.16 KV e Pb = 7.5 MVA). 19 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Xd (%) = 275 primários ou 47,57 Ω(sec). X´d(%) = 19,5 primários ou 3,37 Ω(sec). Centro 2 = ´ Xd + Xd 2 Centro 1 = Zb+ X d 2 Radius 2 = X d (sec) 2 = 25 .47 ohms. ´ = = 10 .33 23.78 ohms. ohms. Adota-se para o diametro 1 uma temporização típica de 40 ms para acomodar uma provável perda de potencial e para a unidade com o diâmetro 2 uma temporização de 45 ciclos ou 750 ms. Com relação ao evento em si a perda de excitação é uma ocorrência tipicamente equilibrada e para tal verificam-se as tensões de bloqueio da função para as condições apresentadas no estudo de estabilidade. O ajuste de subtensão será feito com o objetivo de bloquear a unidade ou por perda de potencial(Falha de fusível) ou para um defeito próximo ao gerador. Dos estudos de estabillidade para o caso 5 temos para um defeito na barra de 4.16 KV: U << = 0.15 pu Ajuste = 0.15 x 120 V = 18 V. Função ANSI 40 SETTING PARAMETER Loss of Excitation Center 1 10.33 Ω Loss of Excitation Radius 1 8.65 Ω Loss of Excitation PKP Delay 1 40 ms Loss of Excitation Center 2 25.47 Ω Loss of Excitation Radius 2 23.78 Ω Loss of Excitation PKP Delay 2 750 ms Loss of Excitation UV Supv 18 V 20 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Funções de Proteção Externas : As proteções nesse caso serão divididas em dois tipos : ●● Defeitos entre fases : Terão o objetivo de enxergar defeitos até as barras de 88 KV externas a RPBC em forma de back-up das demais proteções e levando em consideração os respectivos tempos de estabilidade da planta obtidos no item 4.1 acima. Para tal serão ativadas as seguintes funções de proteção : ● Função 67_2 : Enxergar defeitos assimétricos e de alta impedância na planta de cogeração como hum todo. ● Função 21 de Distância – Enxergar defeitos 2F e 3F até o setor de 88 KV com suas três zonas de proteção. ● Função 51V – Adaptar os ajustes existentes que são : Relé COV8 – tap =4 , DT=4,25 , Curva ANSI Normal Inversa. ● Função 51N – Adaptar os ajustes da proteção existente obedecendo sua respectiva coordenação. Os ajustes atuais são : Relé C08 – tap = 0,5 A, DT =8 e Curva Normal Inversa (ANSI). ● Funções 51V e 51 N : Adaptar os ajustes existentes que são : 51V - Relé COV Relé C08 – tap = 4 A, DT =4.25 e Curva Normal Inversa (ANSI). 51 N - Relé C08 – tap = 0,5 A, DT =8 e Curva Normal Inversa (ANSI). Função ANSI – 51/V dos geradores TG03 e TG04 SETTING PARAMETER Phase TOC1 PickUP 0.8 pu Curve IAC Inverse TD Multiplier 4.25 Voltage Restraint Enabled 21 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Função ANSI – 51/N dos geradores TG03 e TG04 SETTING PARAMETER Neutral TOC1 PickUP 0.1 pu Curve IAC Inverse TD Multiplier 8 ● Função 67_2 : Essa função deverá enxergar até a barra de entrada de 88 KV da RPBC em forma de back-up das demais proteções. A primeira unidade (Negative Sequence DIR OC1) em sua unidade forward deverá enxergar esses defeitos. Já a sua unidade backward deverá enxergar um defeito 1F no gerador na forma de back-up das funções 87G e da proteção de sobrecorrente de neutro da barra de terra. A segunda unidade (Negative Sequence DIR OC2) em sua unidade forward deverá enxergar até a barra Light e sua unidade backward será também um backup da proteção 87G dos geradores. Negative Sequence DIR OC1 : Unidade Forward : PickUP ( Defeitos 1F na barra 1000 – Caso 3 ) = IccF(1F)(I_2) = 496 A / 1500 = 0.33 pu O time delay será de 1s para possibilitar a devida coordenação com as demais proteções. Unidade Backward: PickUP (Defeitos 1F na barra 9 – Caso 3 operando ilhado em paralelo com o gerador TG04) : IccF(1F)(I_2) = 148 A / 1500 A = 0.098 pu O time delay será de 600 ms para possibilitar a devida coordenação com a proteção 87 e 87 G do respectivo gerador. 22 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Negative Sequence DIR OC2 : Unidade Forward : PickUP ( Defeitos 1F na barra 15 – Caso 3 ) = IccF(1F)(I_2) = 15 A / 1500 A = 0.01 pu O time delay será de 3s para possibilitar a devida coordenação com as demais proteções. Unidade Backward: PickUP (Defeitos 1F na barra 9 – Caso 3 operando ilhado em paralelo com o gerador TG04) : IccF(1F)(I2) = 148 A / 1500 = 0.098 pu O time delay será de 600 ms para possibilitar a devida coordenação com a proteção 87 e 87 G do respectivo gerador. Função 67_2 SETTING PARAMETER NEG SEQ DIR OC1 FWD ECA _ NEG SEQ DIR OC1 FWD LIMIT ANGLE _ NEG SEQ DIR OC1 FWD PICK UP _ NEG SEQ DIR OC1 REV LIMIT ANGLE _ NEG SEQ DIR OC1 REV PICK UP 0.095 pu POSITIVE SEQUENCE RESTRAINT 0.063 NEG SEQ DIR OC2 FWD ECA - NEG SEQ DIR OC 2 FWD LIMIT ANGLE - NEG SEQ DIR OC2 FWD PICK UP - NEG SEQ DIR OC2 REV LIMIT ANGLE - NEG SEQ DIR OC2 REV PICK UP 0.095 pu POSITIVE SEQUENCE RESTRAINT 0.125 TIMER – FWD 1 UNIT (Ver Nota 3) - TIMER – REV 1 UNIT(Ver Nota 3) 0.6 s TIMER – FWD 2 UNIT (Ver Nota 3) - TIMER – REV 2 UNIT(Ver Nota 3) 0.6 s Nota 5 : Essas temporizações deverão ser implementadas via FLEX-LOGIC. 23 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 ● Função 21 – Distância : Essa função deverá enxergar defeitos entre fases até o setor de 88 KV da RPBC em forma de retaguarda das demais proteções. Para a Zona 1 : Enxergar até a barra BT . Do estudo de estabilidade e para a condição operativa do TG03 em conjunto com o TG04 na forma ilhada têm-se para um defeito 3F na barra BT um tempo de estabilidade de 300 ms. Dá-se uma folga de 10 % nesse valor e adota-se um tempo típico de abertura de disjuntor de 4.16 kV de aproximadamente 70 ms. Adotam-se aqui a Pb = 7500 KVA e Vb = 4.16 KV o que nos leva a Zb = 2.307 Ω. Impedâncias : Cabos(Trecho da barra 11 até a barra 1) Cabos : Trecho 11-12 = (0.000334 + j.(0.000711)) Ω Trecho 4-12 = (0.00167 Trecho 1-4(Reator) = j(0.153) Ω +j.(0.00355)) Ω Zona1(Total ) = (0.002004 + j.(0.157)) Ω = 0.157 Ω ângulo de 89.26graus. Zsec = Ztotal x RTC/RTP = 0.157 x 300/40 = 1.17 Ω Nota 6 : Do estudo de estabilidade e para a condição operativa do TG03 em conjunto com o TG04 na forma ilhada têm-se para um defeito 3F na barra BT um tempo de estabilidade de 300 ms. Dá-se uma folga de 10 % nesse valor e adota-se um tempo típico de abertura de disjuntor de 4.16 kV de aproximadamente 70 ms. Para a Zona 2 : Enxergar até a barra de entrada em 88 KV da RPBC. Adotam-se aqui a Pb = 7500 KVA e Vb = 4.16 KV o que nos leva a Zb = 2.307 Ω. 24 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Impedâncias : Cabos(Trecho da barra 11 até a barra 15) Cabos : Trecho 11-12 = (0.000334 + j.(0.000711)) Ω Trecho 4-12 = (0.00167 Trecho 1-4(Reator) = j(0.153) Ω Trecho 1 -15 = (0.00183 + j(0.00391))Ω +j.(0.00355)) Ω Transformador 88/4.16 KV = j.(0.0345)Ω Zona2(Total ) = (0.03834 + j.(0.195)) Ω = 0.198 Ω ângulo de 78.85 graus. Zsec = Ztotal x RTC/RTP = 0.652 x 300/40 = 1.485 Ω Nota 7 : Para um defeito entre fases na barra de entrada da RPBC em 88 KV adota-se a pior condição com os geradores TG03 e TG04 operando em paralelo com a concessionária que apresenta um tempo de estabilidade de 650 ms conforme a tabela 6.4. Para a Zona 3 : Enxergar um defeito interno reverso no gerador em forma de back-up das demais proteções pertencentes ao mesmo. Adotam-se aqui a Pb = 7500 KVA e Vb = 4.16 KV o que nos leva a Zb = 2.307 Ω. Gerador TG03/TG04 = Xd = j(3.137) Ω Zona3(Total ) = 3.137 Ω com um ângulo de 90 graus. Zsec = Ztotal x RTC/RTP = 3.137 x 300/40 = 23.53 Ω Nota 8 : Para um defeito entre fases interno no gerador adota-se a pior condição com os geradores TG03 e TG04 operando em forma ilhada que apresenta um tempo de estabilidade de 200 ms conforme a tabela 6.4. 25 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Função 21 SETTING PARAMETER SHAPE - DIRECTION(Z1) - REACH PHASE DISTANCE Z1 - RCA PHASE DISTANCE Z1 - DELAY PHASE DISTANCE Z1 - DIRECTION(Z2) - REACH PHASE DISTANCE Z2 - RCA PHASE DISTANCE Z2 - DELAY PHASE DISTANCE Z2 - DIRECTION(Z3) Backward REACH PHASE DISTANCE Z3 23.53 Ω RCA PHASE DISTANCE Z3 90 graus DELAY PHASE DISTANCE Z3 0.11 s ● Função 81 por freqüência absoluta : Através de software proprietário simulam-se as condições de operação dos geradores TG03,TG04 e TG05 em paralelo com a concessionária levando-se em consideração suas impedâncias, constantes de inércia e fator de potência operativo da planta. Todas as demais condições estariam cobertas pela condição de maior inércia do sistema descrita acima.Sugere-se aqui portanto dois ajustes distintos que seriam : Primeiro – Ajuste : Nessa condição adotam-se um degrau de energia de 17 % e um ajuste de freqüência de 59 Hz com uma temporização externa de 350 ms. Segundo – Ajuste : Nessa condição adotam-se um degrau de energia de 70 % e um ajuste de freqüência de 57.5 Hz sem temporização. No gráfico da figura a seguir são apresentadas as curvas onde se apresenta que o sistema leva aproximadamente 1.8 s para detectar essas condições operativas de ilhamento. 26 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Figura 1 – Curva de Detecção por Freqüência Absoluta – TG03 e TG04. Função ANSI – 81 – Freqüência Absoluta dos geradores TG03 e TG04 SETTING PARAMETER PickUP Underfrequency 1 55 Hz Underfrequency 1 Time Delay 1s Underfrequency 1 Min Volt / Amp 0.8 pu PickUP Underfrequency 2 Underfrequency 2 Time Delay Underfrequency 2 Min Volt / Amp Obs : O ajuste acima foi definido pela Petrobrás baseado na operação da válvula garganta. O mesmo deverá ser coordenado com a proteção de freqüência absoluta da entrada em 4.16 kV (BL-02) e baseado nos estudos complementares de estabilidade apresentado a seguir. 27 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 4.1.1.2 - Proteção do Gerador TG05 : (Relé G-60 de fabricação GE). Esse gerador está conectado a barra 13 do estudo de curto-circuito. A seguir são apresentadas a lista de funções de proteção a serem ajustadas. RTC de fase e de neutro = 1500/5A ou 300/1. RTP = 4160 / 100 = 41.6/1 Funções de Proteção Existentes : Função 87 G – Diferencial do Gerador. Função 51 V – Sobrecorrente com controle por tensão com ajuste de 5A, time dial de 5 e curva ANSI Normalmente Inversa. Função 51 – Sobrecorrente de fase. Função 46 – Proteção por Sequencia Negativa com ajuste de 0,5 A sem tenporização. Função 87 N – Diferencial de Falha à terra restrita no estator. Função 32 - Reversão de Potência ou motorização do gerador. Função 51 N – Sobrecorrente de Neutro. Função 59 – Sobretensão com ajuste de 130 V sem temporização. Funções de Proteção Novas a serem incorporadas nas proteções : Função 21 - Proteção contra defeitos entre fases no sistema de 4.16/88 kV da RPBC. Função 40 – Perda de Excitação do Gerador. Função 67_2 – Proteção contra Defeitos Assimétricos no sistema de 4.16/88 KV em forma de retaguarda das demais proteções. Função 81 por freqüência absoluta – Proteger o gerador TG05 contra um degrau de energia excessivo nos mesmos. 28 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Funções de Proteção Internas : ● Stator Differential ( ANSI 87). Stator Differential PickUP : Esse ajuste será baseado na menor corrente de defeito admissível no gerador. Como o mesmo é aterrado através de resistor vamos admitir o valor de 13 % da corrente nominal do mesmo para se iniciar a medição. Logo : 9375 Ιp = 3 x KVA 4.16 KV = 1301.11 Α Ipartida = 0.13 x Ip = 1301.11 x 0.13 = 169.14 A. Iajuste = Ipartida / RTC primário(1500) = 169.14 / 1500 = 0.112 pu. Stator Diff Slope 1: Vamos supor para esse ajuste que os tc´s são de mesmo fabricante e já que a relação entre os dois é a mesma. Vamos levar em consideração também o valor da mínima corrente de defeito 1F do sistema que será de 15 % da corrente nominal do gerador. Logo esse ajuste será de 15 %. Stator Diff Break 1: Esse ajuste define o fim do primeiro slope que é baseado em erros dos tc´s e demais condições de regime permanente. Para esse primeiro ajuste vamos pegar o menor valor de corrente de defeito 1F para a operação ilhada no caso 6. Icc1F = 1577 A O ajuste fica : 1577 / 1500 = 1.051 pu. 29 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Stator Diff Slope 2: Conforme indicação do catálogo vamos adotar o ajuste mínimo de 80 %. Stator Diff Break 2: Esse ajuste define o fim do segundo slope que é baseado nas correntes de defeito no gerador. Para esse segundo ajuste vamos adotar a corrente de defeito 2F para o caso 6 na barra 14 do gerador. Icc2F(Contribuição do gerador TG5 ) = 8067 A. Ajuste = 8067 / 1500 = 5.37 Função ANSI - 87 SETTING PARAMETER PickUP 0.112 pu SLOPE 1 15% BREAK1 1.05 pu SLOPE 2 80 % BREAK2 5.37 ● Restricted Ground Fault (ANSI 87G) Para o ajuste dessa função adota-se a corrente tipica de um defeito 1F no gerador : A máxima corrente de defeito fase-terra no lado de 4.16 KV é : 4.16 Ι ng = 3 KV x 8 = 300.22 Α Onde RN1 = 8 Ω. 30 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Supõe-se um defeito a 10 % do enrolamento do gerador : Idef = 0.1 x Ing = 0.1 x 300.22 = 30.02 A Ajuste = 30.02 / 1500 = 0.02 pu. Para o slope adota-se o valor indicado de catálogo que é de 40 %. Vamos adotar aqui também uma temporização típica de 100 ms para a atuação dessa função. Função ANSI 87 G SETTING PARAMETER Restd GND FT1 PickUP 0.02 pu Restd GND FT1 SLOPE 40% Restd GND FT1 Delay 0.1 s ● Sensitive Directional Power : (ANSI 32). Essa função deverá enxergar a motorização do gerador em caso de perda da máquina motriz do mesmo. Para geradores desse porte e tipo a Norma IEEE C37.102 – 1987 indica que para turbinas a vapor se use um range de 0.5 a 3 % da potência nominal da máquina. Para um ajuste típico de 1,5 % (alarme) e 3 %(trip) adotam-se os seguintes procedimentos : f.p = 0.8 P = 0.8 x 9375 KVA = 7.5 MW. Ajuste = 0.015 x 7.5 = 0.112 MW. Adota-se aqui que RTP = 4160/raiz(3) e RTC(Primário) = 1500 A. Pb = 2401.77 V x 1500 A = 3.602 MW. Logo o ajuste será : STG1 min = 0.112/ 3.602 = 0.031 pu para um ângulo de 180 graus conforme a figura abaixo, com uma temporização típica de 4s. O ajuste STG2 min de trip será de 0.0621 pu com uma temporização de 2s. 31 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Função ANSI 32 SETTING PARAMETER DIR POWER 1 RCA 180 graus DIR POWER 1 STG1 MIN 0.031 pu DIR POWER 1 STG1 DELAY 20 s DIR POWER 1 STG2 MIN 0.062 pu DIR POWER 1 STG2 DELAY 10 s Nota 10 : Adotam-se aqui as temporizações de 10 e 20s respectivamente para se ficar de acordo com os ajustes expostos no relatório ET-RPBC/100-70-01 32 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 ● Loss of Excitation : (ANSI 40). Para essa função adotam-se os parâmetros apresentados na tabela 5.3 e toma-se como referência a figura abaixo. Dados : Zbase da máquina em valores secundários = 13.31 Ω (Adotando-se Vb = 4.16 KV e Pb = 9.375 MVA). Xd (%) = 275 primários ou 36.6 Ω(sec). X´d(%) = 17.9 primários ou 2.38 Ω(sec). Centro 2 = Xd+Xd 2 Radius 2 = X d (sec) 2 Centro 1 = Zb + X d 2 ´ = 19.49 ohms. = 18.3 ohms. = 7.84 ohms. ´ 33 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Adota-se para o diametro 1 uma temporização típica de 40 ms para acomodar uma provável perda de potencial e para a unidade com o diâmetro 2 uma temporização de 45 ciclos ou 750 ms. Com relação ao evento em si a perda de excitação é uma ocorrência tipicamente equilibrada e para tal verificam-se as tensões de bloqueio da função para as condições apresentadas no estudo de estabilidade. O ajuste de subtensão será feito com o objetivo de bloquear a unidade ou por perda de potencial(Falha de fusível) ou para um defeito próximo ao gerador. Dos estudos de estabillidade para o caso 6 temos para um defeito na barra de 4.16 KV: U << = 0.15 pu Ajuste = 0.15 x 100 V = 15 V. Função ANSI 40 SETTING PARAMETER Loss of Excitation Center 1 7.84 Ω Loss of Excitation Radius 1 6.65 Ω Loss of Excitation PKP Delay 1 40 ms Loss of Excitation Center 2 19.49 Ω Loss of Excitation Radius 2 18.3 Ω Loss of Excitation PKP Delay 2 750 ms Loss of Excitation UV Supv 15 V 34 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Funções de Proteção Externas : As proteções nesse caso serão divididas em dois tipos : ●● Defeitos entre fases : Terão o objetivo de enxergar defeitos até as barras de 88 KV externas a RPBC em forma de back-up das demais proteções e levando em consideração os respectivos tempos de estabilidade da planta obtidos no item 4.1 acima. Para tal serão ativadas as seguintes funções de proteção : ● Função 67_2 : Enxergar defeitos assimétricos e de alta impedância na planta de cogeração como hum todo. ● Função 21 de Distância – Enxergar defeitos 2F e 3F até o setor de 88 KV com suas três zonas de proteção. ● Função 51V – Adaptar os ajustes existentes que são : Relé COV8 – tap =5 , DT=5, Curva ANSI Normal Inversa. ● Função 50N – Enxergar defeitos à terra na barra do gerador TG05. ● Função 51N – Adaptar os ajustes da proteção existente obedecendo sua respectiva coordenação. Os ajustes atuais são : Relé C08 – tap = 0,5 A, DT =8 e Curva Normal Inversa (ANSI). ● Função 46 – Adaptar os ajustes da proteção existente obedecendo sua respectiva coordenação. Os ajustes atuais são : Relé RG81 – tap = 0,5 A Tempo Definido e tempo = 0s. 35 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 ● Funções 51V e 51 N : Adaptar os ajustes existentes que são : 51V - Relé COV Relé C08 – tap = 5 A, DT =5 e Curva Normal Inversa (ANSI). 51 N - Relé C08 – tap = 0,5 A, DT =8 e Curva Normal Inversa (ANSI). Função ANSI – 51/V dos gerador TG05 SETTING PARAMETER Phase TOC1 PickUP 1 pu Curve IAC Inverse TD Multiplier 5 Voltage Restraint Enabled Função ANSI – 51/N do gerador TG05 SETTING PARAMETER Neutral TOC1 PickUP 0.1 pu Curve IAC Inverse TD Multiplier 8 ● Função 67_2 : Essa função deverá enxergar até a barra de entrada de 88 KV da RPBC em forma de back-up das demais proteções. A primeira unidade (Negative Sequence DIR OC1) em sua unidade forward deverá enxergar esses defeitos. Já a sua unidade backward deverá enxergar um defeito 1F no gerador na forma de back-up das funções 87G e da proteção de sobrecorrente de neutro da barra de terra. A segunda unidade (Negative Sequence DIR OC2) em sua unidade forward deverá enxergar até a barra Light e sua unidade backward será também um backup da proteção 87G dos geradores. Negative Sequence DIR OC1 : Unidade Forward : PickUP ( Defeitos 1F na barra 14 – Caso 6 ) = IccF(1F)(I_2) = 167 A / 1500 = 0.111 pu O time delay será de 0.15s para possibilitar a devida coordenação com as demais proteções. 36 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Unidade Backward: PickUP (Defeitos 1F na barra 13 – Caso 6 operando ilhado em paralelo com os geradores TG03 e TG04) : IccF(1F)(I_2) = 148 A / 1500 A = 0.098 pu O time delay será de 600 ms para possibilitar a devida coordenação com a proteção 87 e 87 G do respectivo gerador. Negative Sequence DIR OC2 : Unidade Forward : PickUP ( Defeitos 1F na barra 15 – Caso 6 ) = IccF(1F)(I_2) = 175 A / 1500 A = 0.116 pu O time delay será de 3s para possibilitar a devida coordenação com as demais proteções. Unidade Backward: PickUP (Defeitos 1F na barra 13 – Caso 6). O time delay será de 600 ms para possibilitar a devida coordenação com a proteção 87 e 87 G do respectivo gerador. Função 67_2 SETTING PARAMETER NEG SEQ DIR OC1 FWD ECA - NEG SEQ DIR OC1 FWD LIMIT ANGLE - NEG SEQ DIR OC1 FWD PICK UP - NEG SEQ DIR OC1 REV LIMIT ANGLE - NEG SEQ DIR OC1 REV PICK UP 0.095 pu POSITIVE SEQUENCE RESTRAINT 0.063 NEG SEQ DIR OC2 FWD ECA - NEG SEQ DIR OC 2 FWD LIMIT ANGLE - NEG SEQ DIR OC2 FWD PICK UP - NEG SEQ DIR OC2 REV LIMIT ANGLE - NEG SEQ DIR OC2 REV PICK UP 0.095 pu POSITIVE SEQUENCE RESTRAINT 0.125 TIMER – FWD 1 UNIT (Ver Nota 3) 1s TIMER – REV 1 UNIT(Ver Nota 3) 0.6 s TIMER – FWD 2 UNIT (Ver Nota 3) 3s TIMER – REV 2 UNIT(Ver Nota 3) 0.6 s 37 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 ● Função 21 – Distância : Essa função deverá enxergar defeitos entre fases até o setor de 88 KV da RPBC em forma de retaguarda das demais proteções. Para a Zona 1 : Enxergar até a barra BT . Adotam-se aqui a Pb = 9375 KVA e Vb = 4.16 KV o que nos leva a Zb = 1.84 Ω. Impedâncias : Cabos(Trecho da barra 11 até a barra 1) Cabos : Trecho 11-12 = (0.000334 + j.(0.000711)) Ω Trecho 4-12 = (0.00167 Trecho 1-4(Reator) = j(0.153) Ω +j.(0.00355)) Ω Zona1(Total ) = (0.002004 + j.(0.157)) Ω = 0.157 Ω ângulo de 89.26graus. Zsec = Ztotal x RTC/RTP = 0.157 x 300/41.6 = 1.13 Ω Nota 11 : Para um defeito entre fases na barra BT adota-se a pior condição com os geradores TG03 TG04 e TG05 operando na forma ilhada que apresenta um tempo de estabilidade de 250 ms conforme a tabela 6.4. Para a Zona 2 : Enxergar até a barra de entrada em 88 KV da RPBC. Adotam-se aqui a Pb = 9375 KVA e Vb = 4.16 KV o que nos leva a Zb = 1.84 Ω. 38 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Impedâncias : Cabos(Trecho da barra 11 até a barra 15) Cabos : Trecho 11-12 = (0.000334 + j.(0.000711)) Ω Trecho 4-12 = (0.00167 Trecho 1-4(Reator) = j(0.153) Ω Trecho 1 -15 = (0.00183 + j(0.00391))Ω +j.(0.00355)) Ω Transformador 88/4.16 KV = j.(0.0345)Ω Zona2(Total ) = (0.03834 + j.(0.195)) Ω = 0.198 Ω ângulo de 78.85 graus. Zsec = Ztotal x RTC/RTP = 0.198 x 300/41.6 = 1.427 Ω Nota 12 : Para um defeito entre fases na barra de entrada da RPBC em 88 KV adota-se a pior condição com os geradores TG03,TG04 e TG05 operando em paralelo que apresenta um tempo de estabilidade de 850 ms conforme a tabela 6.4. Para a Zona 3 : Enxergar um defeito interno reverso no gerador em forma de back-up das demais proteções pertencentes ao mesmo. Adotam-se aqui a Pb = 9375 KVA e Vb = 4.16 KV o que nos leva a Zb = 1.84 Ω. Gerador TG05 = Xd = j(2,5) Ω Zona3(Total ) = 2.5 Ω com um ângulo de 90 graus. Zsec = Ztotal x RTC/RTP = 2.5 x 300/41.6 = 18.02 Ω Nota 13 : Para um defeito entre fases interno no gerador adota-se a pior condição com os geradores TG03,TG04 e TG05 operando em paralelo que apresenta um tempo de estabilidade de 450 ms conforme a tabela 6.4. 39 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Função 21 SETTING PARAMETER SHAPE - REACH PHASE DISTANCE Z1 - RCA PHASE DISTANCE Z1 - DELAY PHASE DISTANCE Z1 - REACH PHASE DISTANCE Z2 - RCA PHASE DISTANCE Z2 - DELAY PHASE DISTANCE Z2 - DIRECTION(Z3) BACKWARD REACH PHASE DISTANCE Z3 18.02 Ω RCA PHASE DISTANCE Z3 90 graus DELAY PHASE DISTANCE Z3 0.15 s ● Função 81 por freqüência absoluta : Através de software proprietário simulam-se as condições de operação dos geradores TG03,TG04 e TG05 em paralelo com a concessionária levando-se em consideração suas impedâncias, constantes de inércia e fator de potência operativo da planta. Todas as demais condições estariam cobertas pela condição de maior inércia do sistema descrita acima.Sugere-se aqui portanto dois ajustes distintos que seriam : Primeiro – Ajuste : Nessa condição adotam-se um degrau de energia de 17 % e um ajuste de freqüência de 59 Hz com uma temporização externa de 350 ms. Segundo – Ajuste : Nessa condição adotam-se um degrau de energia de 70 % e um ajuste de freqüência de 57.5 Hz sem temporização. 40 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Mantem-se aqui os mesmos ajustes adotados para os geradores TG03 e TG04. Função ANSI – 81 – Freqüência Absoluta do gerador TG05 SETTING PARAMETER PickUP Underfrequency 1 55 Hz Underfrequency 1 Time Delay 1s Underfrequency 1 Min Volt / Amp 0.85 pu PickUP Underfrequency 2 - Underfrequency 2 Time Delay - Underfrequency 2 Min Volt / Amp - Obs : O ajuste acima foi definido pela Petrobrás baseado na operação da válvula garganta. O mesmo deverá ser coordenado com a proteção de freqüência absoluta da entrada em 4.16 kV (BL-02) e baseado nos estudos complementares de estabilidade apresentado a seguir. ● Função 59 : Ajuste pré-definido. Função ANSI – 59/TG05 SETTING PARAMETER Phase OV1 PickUP 1.13 pu Phase OV1 Delay 0s ● Função 46 : Ajuste Pré-definido. Função ANSI – 46 / TG05 SETTING PARAMETER Neutral IOC1 PickUP 0.5 pu Neutral IOC1 PickUP Delay 0.38 s 41 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 4.1.1.3 - Proteção do Paralelo em 4.16 KV – Cubículo BL-02(Relé F-60 de fabricação GE). Essa proteção está conectada a o cabo que conecta a barra 1(BT) a barra 15(Light). A seguir são apresentadas a lista de funções de proteção a serem ajustadas. RTC de fase e de neutro = 2000/5A ou 400/1. RTP = 4025 / 115 V = 35/1. 4.1.1.3.1 - Funções de Proteção do Paralelo : Para essa condição admite-se que a planta de cogeração irá operar sempre na forma de importação de energia ou no máximo com a concessionária presente na forma de backup das alimentações das cargas principais da mesma. As funções a serem ajustadas para esse fim serão : Função 81 por Taxa : Admite-se aqui a maior inércia para o sistema que é dada pela condição do caso 2 com os geradores TG03,TG04 e TG05 operando em paralelo com concessionária. Adotam-se aqui os seguintes valores para o cálculo : Fator de Potência da Planta antes da perda = 0.8 Fator de Potência da Planta depois da perda = 0.8 Xt (X´d(TG03// TG04// TG05)) = 0.05796 pu. H – Constante de Inércia (TG03 + TG04 + TG05)(s) = 20.27 s Admite-se aqui que a usina em regime nominal de operação é alimentada pela Concessionária somente importando energia ,tomando-se como base a potência instalada. Com os dados acima simula-se em software proprietário as condições operativas acima obtendo-se os gráficos das figuras 2 para a freqüência e 3 para a função de subtensão. Para a condição operativa a ser tomada como referência para esse caso adotam-se os valores apresentados na tabela 6.1 do estudo de estabilidade onde ocorre uma geração de 19,5 MW interna e um consumo de 16,5 MW da concessionária. 42 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Ocorrendo uma perda desse valor os geradores deverão ter um degrau de energia de aproximadamente 302 %. Conforme informação da RPBC temos hoje uma proteção de reversão de potência função ANSI 32 ajustada em uma exportação de 600A através da conexão em 4.16 KV o que nos leva a um degrau de (((3.45 + 19.5) /19.5))) ou 17.7 % de sua potência para esse caso.Essas condições operativas são apresentadas nas figuras 6,7 e 8 a seguir. Obs : Em reunião recente foi definido de comum acordo que a sobrecarga admissível será de 100 % em caso de ilhamento do sistema. Nesse caso entra-se na curva e se obtem um valor de 1,3 Hz/s para a condição citada. Teremos portanto três grupos de ajustes para esse casos : Freq Rate 1 : Com os geradores TG03,TG04 e TG05 operando em paralelo e assumindo um degrau total de 100 %. Os valores de supervisão por tensão são tirados dos estudos de estabilidade. Pick Up – Freq Rate 1 : - 1,3 Hz/s. Pick Up Delay (Freq Rate 1) : 0.15 s 43 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Freq Rate 2 : Com os geradores TG03,TG04 e TG05 operando em paralelo e assumindo um degrau total de 17.7 %. Pick Up – Freq Rate 2 : - 0.25 Hz/s. Pick Up Delay (Freq Rate 2) : 0.65 s Nota 19 : Toma-se como referência para esse tempo os valores apresentados na tabela 6.4 para defeitos trifásicos nas barras de 88 KV que apresentam um tempo típico de 850 ms. A faixa de medição da função df/dt será de 45 a 59,5 Hz para garantir que essa medição só se iniciará a partir desse valor. . Função 81 por taxa SETTING PARAMETER TREND DECREASING MIN 45 Hz MAX 59.5 Hz PICKUP - Freq Rate 1 - 1,3 Hz/s PICKUP DELAY – FREQ RATE 1 0.15 s OV SUPV 1 0.85 pu PICKUP - Freq Rate 2 - 0.25 Hz/s PICKUP DELAY – FREQ RATE 2 0.65 s OV SUPV 2 0.85 pu Com relação a freqüência absoluta solicitada pela Petrobrás ajustam-se os seguinte valores abaixo: PICKUP UNDERFREQUENCY 1 56 Hz PICKUP DELAY – UNDERFREQUENCY 1 1s MIN VOLTAGE / AMP 0.85 pu Obs : O ajuste acima foi definido pela Petrobrás baseado na operação da válvula garganta. O mesmo deverá ser coordenado com a proteção de freqüência absoluta dos geradores TG03,TG04 e TG05 e baseado nos estudos complementares de estabilidade apresentado a seguir e abaixo. 44 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Para as unidades de subtensão (Função ANSI 27) adotam-se os mesmos critérios apresentados para a unidade de taxa de variação de freqüência,sendo esses gráficos apresentados nas figuras 9 e 10 a seguir. Das figuras obtidas acima obtêm-se : Ajuste U1 << - PickUP-Phase UV2 : 0.965 pu Time delay : 750 ms. Nota 23 : Adota-se como referência a informação da reunião de 16/10/2008 onde supõe-se uma sobrecarga nos geradores de aproximadamente 100 %. Ajuste U2 << - PickUP-Phase UV3 : 0.93 pu Time Delay : 650 ms. Nota 24 : Adota-se como referência de tempo uma condição de ilhamento de 300 % nos geradores. Ajuste U3 << - PickUP-Phase UV3 : 0.808 pu Time Delay : 500 ms. Nota 25 : Adota-se o valor default apresentado no ajuste do relé CV7 indicado na pág. 44 de 61 do relatório de ajustes ET-RPBC /100 – 70 - 01 45 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Nota 25 : Como valor de referência para bloqueio dessa unidade para a indevida operação para defeitos internos a usina usa-se a tensão de defeito 3F na barra de 88 KV da RPBC como valor mínimo que é de 0.75 pu. Função 27 SETTING PARAMETER PICKUP – Phase UV1 0.965 pu PICKUP DELAY – Phase UV1 0.75 s PICKUP – Phase UV 2 0.93 pu PICKUP DELAY – Phase UV2 0.65 s PICKUP – Phase UV3 0.808 pu PICKUP DELAY – Phase UV3 0.5 s Minimum Voltage 0.75 pu ● Sensitive Directional Power : (ANSI 32). Essa função deverá enxergar uma reversão de potência no sentido da planta de cogeração para a as outras cargas da RPBC fora da mesma. Segundo informações da RPBC essa corrente reversa não deve ultrapassar os 600 A primários. Para um ajuste típico de alarme e trip adotam-se os seguintes procedimentos : f.p = 0.8 P = 0.8 x 3 x 600 A x 4.16 KV = 3.45 MW Onde Pb = 3 x 2000 A x 4.025 KV = 24.15 MVA. Logo o primeiro ajuste de alarme SEM DIR POWER 1 será : Ajustes : SEM DIR POWER 1 : Stage 1 - Min = P / Pb = 3.45 / 24.15 = 0.142 pu RCA = 180 graus. 46 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Ajustes : SEM DIR POWER 2 : Será ajustado para 30 % acima desse valor. Stage 2 - Min = (P x 1.3) / Pb = 4.48 / 24.15 = 0.185 pu RCA = 180 graus. Função ANSI 32 SETTING PARAMETER DIR POWER 1 RCA 180 graus DIR POWER 1 STG1 MIN 0.142 pu DIR POWER 1 STG1 DELAY 2s DIR POWER 1 STG2 MIN 0.185 pu DIR POWER 1 STG2 DELAY 1s 47 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 4.1.1.3.2 - Funções de Proteção Contra Curto – Circuitos na Planta : Nota 26 : Toma-se como referência aqui os ajustes apresentados no relatório ET-RPBC - /100 – 70 -01 que apresenta as devidas coordenações com as demais proteções da planta. Os ajustes apresentados são : Função 67 – JBC 53 – TAP = 2 e DT = 0,5 – Curva ANSI Normal Inverse. Função 67N – JBCG53 – TAP = 0,5 e DT = 8 – Curva ANSI Normal Inverse. Função 51 – IAC 53 – TAP = 4 e DT =0,5 – Curva ANSI Normal Inverse. Função 27 – CV7 – TAP = 93 V e DT = 0,5 As proteções nesse caso serão divididas em dois tipos : ● Função 50 e 50 N : A primeira unidade (Phase and Neutral IOC1) deverá enxergar defeitos nas barra LIGHT com a menor contribuição da cogeração que será a do caso 3, onde se apresentam em paralelo os geradores TG03 e TG04.Essa unidade deverá operar também para um defeito logo na saída do disjuntor BL-02 para um defeito no cabo próximo ao mesmo. Portanto para um defeito na barra LIGHT no caso 3 para defeitos 2F e 1F adotamos o menor valor encontrado para a contribuição para esses defeitos nas barras : Icc2F(Contribuição dos Geradores TG03 +TG04) = 3758 A. Icc1F(Contribuição dos Geradores TG03 +TG04) = 286 A. 48 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Phase IOC 1 : Ajuste = 3758 / 2000 = 1.879 pu Time Delay = 0.45 s Neutral IOC 1 : Ajuste = 286 / 2000 = 0.143 pu Time Delay = 0.85 s Função ANSI - 50 SETTING PARAMETER Phase IOC1 PickUP 1.879 pu Phase IOC1 PickUP Delay 0.45 s Função ANSI – 50N SETTING PARAMETER Neutral IOC1 PickUP 0.143 pu Neutral IOC1 PickUP Delay 0.85 s ● Função 67 e 67_2 : A função 67 forward deverá enxergar defeitos entre fases até a barra de entrada da RPBC em 88 KV e sua unidade backward o menor defeito nas barras dos geradores em forma de backup das demais proteções e para a condição de alimentação da planta alimentada somente pela concessionária(Caso 7). A unidade 67_2 deverá fazer a mesma função somente para defeitos 1F. Portanto para um defeito na Barra de 88KV com contribuição dos geradores TG03 e TG04 : Icc2F(Contribuição dos Geradores TG03 +TG04 – Forward)) = 1878 A. Icc2F(Contribuição do Caso 7 – Barra 12 /TG04 - Backward) = 3197 A Icc1F(Contribuição dos Geradores TG03 +TG04 – Forward – (I_2)) = 828 A. Icc1F(Contribuição do Caso 7 – Barra 12 /TG04 – Backward – (I_2)) = 260 A 49 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 TOC1 + Phase DIR 1 : Pick Up Phase TOC1 : 800 / 2000 = 0.40 pu Curve : ANSI – Normal Inverse. TD Multiplier : O ajuste desse tempo deverá ser menor do que o ajuste da unidade 21 para defeitos entre fases adotados nos relés G60 dos geradores com uma folga de aproximadamente 150 ms para acomodar possíveis tempos diferentes de abertura dos respectivos disjuntores. Logo o tempo ajustado para essa unidade será de 330 ms. ECA : 45 graus. Pol V Threshold : 0.35 pu( Baseado em um defeito 3F na barra de H.Borden). Neste ajuste a PETROBRÁS optou por manter os ajustes antigos pertencentes aos relés eletromecânicos. TOC2 + Phase DIR 2 : Pick Up Phase TOC2 : 3197 / 2000 = 1.598 pu Curve : Definite Time. TD Multiplier : (Time Delay) : 450 ms. ECA : 225 graus. Pol V Threshold : 0.18 pu( Baseado em um defeito 3F na barra do TG04). Função ANSI - 51 + Phase DIR SETTING PARAMETER Phase TOC1 PickUP 0,4 pu Phase TOC1 Curve ANSI Normal Inverse. Phase TOC1 TD Multiplier 0.5 s ECA(Phase Dir 1) 45 graus Pol V Threshold(Phase Dir 1) 0.35 pu Phase TOC2 PickUP 1,59 pu Phase TOC2 Curve Definite Time Phase TOC2 TD Multiplier 0.45 s ECA(Phase Dir 2) 225 graus. Pol V Threshold(Phase Dir 2) 0.18 pu 50 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Negative Sequence DIR 1 : (Forward and Backward) Forward Pick UP : 828 / 2000 = 0.414 pu Forward ECA = 75 graus. Forward Limit Angle = 80 graus. Reverse Pick UP : 260 / 2000 = 0,13 pu Reverse Forward ECA = 75 graus. Reverse Limit Angle = 80 graus. Função 67_2 SETTING PARAMETER NEG SEQ DIR OC1 FWD ECA 75 graus NEG SEQ DIR OC1 FWD LIMIT ANGLE 80 graus NEG SEQ DIR OC1 FWD PICK UP 0.414 pu NEG SEQ DIR OC1 REV LIMIT ANGLE 80 graus NEG SEQ DIR OC1 REV PICK UP 0.13 pu POSITIVE SEQUENCE RESTRAINT 0.063 pu TIMER – FWD 1 UNIT (Ver Nota 3) 1.45 s TIMER – REV 1 UNIT(Ver Nota 3) 1.85 s Função 59_2 : Essa função não direcional deverá enxergar em forma de back-up através de suas três unidades defeitos assimétricos na planta de forma a respeitar os respectivos tempos de estabilidade da mesma e a forma de aterramento que dificulta as medições de sequencia zero. Do estudo de curto – circuito,visualizando a planta como hum todo e a condição de operação em paralelo dos geradores TG03,TG04 e TG05 obtem-se os três menores valores de U_2 para defeitos fase –terra: 51 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Na entrada em 88 KV ( Barra 1000) : 446 V. Na barra BT ( Barra 1) : 16 V. Nas barras dos Geradores TG03,TG04 e TG05 : 8 V. Função 59_2 SETTING PARAMETER NEG SEQ OV1 PICKUP 0.11 pu NEG SEQ OV1 PICKUP DELAY 6s NEG SEQ OV2 PICKUP 0.004 pu NEG SEQ OV2 PICKUP DELAY 5s NEG SEQ OV3 PICKUP 0.002 pu NEG SEQ OV3 PICKUP DELAY 4s 52 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 6.1 - Conclusões Finais. 6.1.1 – Alguns dados importantes não foram disponibilizados pela PETROBRÁS, principalmente os relacionados aos geradores, tais como : - Constante de Inércia das Máquinas que impactam diretamente nos estudos de estabilidade e nos ajustes das proteções do paralelo entre a planta de cogeração e a concessionária. Para dar prosseguimento ao estudo foram adotados valores estimativos usados em geradores semelhantes e de mesmo porte existentes no mercado. - Sistema de regulação de velocidade com o mesmo impacto nos estudos de estabilidade e nos tempos obtidos para os defeitos mono e trifásicos. Aqui também foram adotados sistemas de regulação similares para máquinas de mesmo porte ,mas sem as possíveis particularidades da instalação. 6.1.2 – As diferentes condições operativas possíveis foram literalmente estressadas e discutidas com a PETROBRÁS em reunião efetuada na RPBC na data de 04/09/2008. Todo a execução do relatório em pauta se baseou nessas condições operativas. 6.1.3 – Conforme a reunião de 16/10 na RPBC foram ajustadas somente as funções de proteção internas. Para os respectivos defeitos externos nos geradores foram usadas somente as funções 21 de distância para defeitos entre fases e a função direcional de sequencia negativa(67_2) para os defeitos assimétricos. 6.1.3 – O relatório ora entregue a PETROBRÁS está em formato de DRAFT, ou seja, o mesmo deverá ser refeito em seu formato e apresentação após a geração dos desenhos ASBUILT e da finalização do projeto em pauta. 6.1.4 – Para os ajustes das funções 81 por freqüência absoluta do geradores TG03,TG04 e TG05 não nos foi informada conforme indicação de ata de reunião do dia 16/10 na RPBC ao ajustes das respectivas válvulas garganta para a posterior avaliação. 53 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 6.1.4 – Com relação ao e-mail do Alessandro do dia 26/11/2008 cabem os seguintes comentários e sugestões : - O comportamento da freqüência em relação ao tempo para o caso com dois geradores(TG03 e TG04) é apresentado nas figuras abaixo tomando-se como referência um defeito 3F e 1F na barra de entrada da RPBC em 88 kV. Curto 3F na barra de 88 kV da RPBC com operação dos Geradores TG3 e TG4 : Defasagem angular dos geradores Tensões nas barras RPBC 4.16 kV : caso p2ct1 1.2 400 300 Delta (graus) Tensão (pu) 1 0.8 0.6 0.4 0.2 0 1 2 3 Tempo (s) VOLT 9915 LIGHT VOLT VOLT 9901 BT 9910 TG3 VOLT 9912 TG4 4 200 100 0 5 0 Frequencia dos geradores 1 DELT 9910 30 TG3 501 10 I.SOLTE-13GR DELT 9912 40 TG4 501 10 I.SOLTE-13GR 2 3 Tempo (s) 4 5 Potencia acelerante dos geradores 61.5 4 Pot (MW) Frequencia (Hz) 2 61 60.5 0 -2 -4 60 0 1 2 3 Tempo (s) FMAQ 9910 30 TG3 FMAQ 9912 40 TG4 4 -6 5 0 1 2 3 Tempo (s) PACE 9910 30 TG3 PACE 9912 40 TG4 4 5 54 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Curto 1F na barra de 88 kV da RPBC com operação dos Geradores TG3 e TG4 : Tensões nas barras RPBC 4.16 kV : caso p2cm1 Defasagem angular dos geradores 1.2 -55 Delta (graus) Tensão (pu) 1.1 1 0.9 0.8 0 5 10 Tempo (s) VOLT 9915 LIGHT VOLT 9901 BT VOLT 9910 TG3 VOLT 9912 TG4 15 -60 -65 -70 20 0 DELT 9910 30 TG3 DELT 9912 40 TG4 10 Tempo (s) 501 10 I.SOLTE-13GR 501 10 I.SOLTE-13GR 15 20 Potencia acelerante dos geradores 0.5 60.05 Pot (MW) Frequencia (Hz) Frequencia dos geradores 5 60 0 -0.5 59.95 0 5 10 Tempo (s) FMAQ 9910 30 TG3 PACE 9910 30 TG3 FMAQ 9912 40 TG4 PACE 9912 40 TG4 15 20 0 5 10 Tempo (s) 15 20 Podemos notar que não temos a principio uma medição efetiva da freqüência na barra do BL-02 a menos dos geradores TG3 e TG4. Não temos disponível as simulações da freqüência no tempo na barra light no tempo. Nesse caso para termos uma idéia do comportamento do sistema após a perda da concessionária quando da operação somente dos geradores TG03 e TG04 pode-se obter os gráficos abaixo para uma sobrecarga típica de 100 % na conexão com as indicações feitas em vermelho : 55 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Ou seja, o valor de 2,5 Hz estaria literalmente coberto pelo ajuste da função de taxa que é de 1,3 Hz/s apresentado nos itens anteriores. 6.1.5 – Simulações solicitadas NE reunião de 10/02/2009. Casos de abertura do disjuntor de entrada : ●● Caso com operação do TG3,TG4 e TG5 em paralelo com a concessionária Abertura do disjuntor de entrada da RPBC (Perda Total da Concessionária) em 88 kV (Sem simular defeitos) com medição das freqüências absolutas na barras LIGHT, TG3, TG4 e TG5 após essa perda. ●● Caso com operação do TG3 e TG4 em paralelo com concessionária Abertura do disjuntor de entrada da RPBC (Perda Total da Concessionária) em 88 kV (Sem simular defeitos) com medição das freqüências absolutas na barras LIGHT, TG3 e TG4 após essa perda. Para os dois casos serão plotados somente os gráficos das freqüências nessas barras. Resultados Figura 1 - Cenário P1 – paralelo TG3, TG4 e TG5. A abertura do disjuntor de entrada foi simulada com a abertura da ligação 9900 (RPBC AT 88) – 3417 (REF+ULTRA-88). 56 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Caso p1ab1.stb, abertura do disjuntor de entrada (TG3, TG4 e TG5 operando em paralelo com a rede) a) Barra Light b) Barra TG3 57 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 c) Barra TG4 d) Barra TG5 58 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 e) Comparação Figura 2 – Freqüências nas barras - paralelo TG3, TG4 e TG5, abertura disjuntor de 88 (entrada) Caso p2ab1.stb, abertura do disjuntor de entrada (TG3 e TG4 operando em paralelo com a rede) a) Barra Light 59 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 b) Barra TG3 c) Barra TG4 60 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 d) Comparação Figura 3 – Freqüências nas barras - Paralelo TG3 e TG4, abertura disjuntor de 88 (entrada) Comentários da Farfilho sobre os resultados obtidos : 1 – As curvas acima foram obtidas através de simulações no ANAFAS com a abertura do disjuntor de entrada da Refinaria. 2 – Em seguida, através de software proprietário podemos modelar a condição de operação do TG03 e TG04 e supondo um degrau de energia de aproximadamente 100 %. Os tempos mostrados acima indicam o tempo total que o sistema levará para chegar na freqüência absoluta de ajuste dos relés da BL-02 e nas proteções dos geradores em questão respeitando os valores de pickup e de tempos já definidos. 61 GE INDUSTRIAL Consumer & Industrial,Supply T 55 11 2178 – 1700 F 55 11 2178 - 1792 Os respectivos tempos acima são em realidade os tempos em que o sistema leva para chegar as freqüências ajustadas. Vemos que o tempo de detecção das freqüências de 56Hz(BL-02) e de 55(Hz) para os geradores TG03,TG04 e TG05 apresentam uma diferença de detecção de aproximadamente de 500 a 800 ms para ambos os casos mesmo na condição de operação do TG03 e TG04 com huma menor inércia no sistema. Como as respectivas temporizações serão de 1s para todos os relés não há risco de haver uma operação indevida das proteções dos geradores antes da abertura do relé da BL-02 para uma perda parcial ou total de alimentação da concessionária. 6.1.5 – A Farfilho recomenda que a Petrobrás avalie as demais funções de proteção dos relés que fazem parte do fornecimento para seu posterior ajuste, pois temos muitas outras funções de proteção disponíveis nos relés que podem complementar e de forma bastante eficaz as respectivas proteções da planta. Farfilho(Ph.D) Consultor da GES São Paulo 06 de março de 2009. 62