Apostila_CM
Transcrição
Apostila_CM
CONFIABILIDADE METROLÓGICA Prof. Eng. Tobias Roberto Mugge 1 OBJETIVOS DA DISCIPLINA E CRONOGRAMA...............................................................2 2 INTRODUÇÃO À CONFIABILIDADE METROLÓGICA....................................................3 2.1 Metrologia............................................................................................................................3 2.2 Confiabilidade metrológica...................................................................................................3 2.3 Estruturação da metrologia....................................................................................................3 3 VOCABULÁRIO INTERNACIONAL DE METROLOGIA (VIM)........................................5 3.1 Metrologia............................................................................................................................5 3.2 Medição...............................................................................................................................6 3.3 Grandeza..............................................................................................................................6 3.4 Unidade de medição.............................................................................................................6 3.5 Padrão..................................................................................................................................6 3.6 Método de medição..............................................................................................................7 3.7 Resultado da medição...........................................................................................................7 3.8 Instrumento de medição e medida materializada..................................................................7 4 SISTEMA INTERNACIONAL DE UNIDADES (SI)...............................................................8 4.1 Principais unidades do SI......................................................................................................8 4.2 Prefixos das Unidades SI.......................................................................................................9 4.3 Algumas Unidades em uso com o SI, sem restrição de prazo.................................................9 4.4 Algumas Unidades fora do SI, admitidas temporariamente....................................................9 4.5 Conversão de unidades:.......................................................................................................10 5 ALGARISMOS SIGNIFICATIVOS........................................................................................11 5.1 Os algarismos significativos:...............................................................................................11 5.2 Operações com algarismos significativos ...........................................................................12 5.3 Arredondamento.................................................................................................................13 5.4 Quando o zero à direita, sem vírgula, for AS.......................................................................13 6 TEORIA DOS ERROS.............................................................................................................14 6.1 Erros de medição:................................................................................................................14 6.2 Tipos de Erros:....................................................................................................................14 6.3 Exatidão e Repetitividade....................................................................................................15 6.4 Exemplo de comportamento de um sistema de medição: ....................................................16 6.5 Critério de exclusão:...........................................................................................................18 7 INTRODUÇÃO À INCERTEZA DA MEDIÇÃO..................................................................19 7.1 Fontes de erros....................................................................................................................20 8 CARACTERÍSTICAS DOS SISTEMAS DE MEDIÇÃO......................................................22 9 CÁLCULO DE INCERTEZA DE MEDIÇÃO.......................................................................25 9.1 Determinação da incerteza padrão Tipo A...........................................................................26 9.2 Determinação da incerteza padrão Tipo B...........................................................................27 9.3 Incerteza Padronizada Combinada.......................................................................................29 9.4 Incerteza Expandida............................................................................................................30 9.5 Fator de Abrangência k........................................................................................................30 9.6 Relatando e apresentando os cálculos de incerteza..............................................................31 CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 1 1 OBJETIVOS DA DISCIPLINA E CRONOGRAMA Aplicar e utilizar princípios de metrologia em calibração de instrumentos e malhas de controle. Cálculo básico de incerteza de medição Nomenclatura do VIM Algarismos Significativos Sistema internacional de Unidades (SI) Verificar a confiabilidade metrológica dos instrumentos de medição dentro do sistema da qualidade. Interpretação de certificados de calibração. Geração de certificados de calibração. SEMANA CONTEÚDO Sondagem diagnóstica; apresentação do cronograma e formas de avaliação. Introdução à metrologia. Conceitos básicos. Algarismos Significativos. VIM Vocabulário Internacional de Metrologia; SI Sistema Internacional de Unidades Conversão de Unidades Avaliação Teoria dos Erros Critérios de exclusão Introdução a estatística Noções de estatística Introdução ao cálculo de incerteza para instrumentos de medição Cálculo básico da incerteza de medição Interpretação de certificado de calibração Determinação da incerteza de medição Avaliação 7º Noções de calibração 8º Prática de calibração Elaboração do certificado de calibração Revisão dos conteúdos Fechamento da disciplina 1º 2º 3º 4º 5º 6º 9º CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 2 2 INTRODUÇÃO À CONFIABILIDADE METROLÓGICA 2.1 Metrologia A ciência que trata das medições é a metrologia. A metrologia abrange todos os aspectos teóricos e práticos relativos às medições, em quaisquer campos da ciência ou da tecnologia. O problema central da metrologia é a credibilidade e universalidade dos resultados. Seus principais desafios são: Melhoria do controle do processo; Melhoria da qualidade do produto; Aumento da produtividade; Redução do impacto ambiental; Uso de sistema de medição viável técnica e economicamente; 2.2 Confiabilidade metrológica Confiabilidade metrológica é a capacidade de ter certeza, confiança nos resultados obtidos através de medições. A confiabilidade metrológica está intimamente relacionado com o Controle da Qualidade, ou seja, a conformidade de um produto com os requisitos preestabelecidos pela empresa. Para isso, é necessário que se trabalhe com procedimentos, rotinas, instruções e métodos de inspeção específicos. 2.3 Estruturação da metrologia O tratado do metro, que foi assinado em Paris no dia 20 de maio de 1875 contando com a presença de 17 países (entre eles o Brasil), estabeleceu o CGPM (Conférence Générale des Poids et Mesures), o CIPM (Comité International des Poids et Mesures) e o BIPM (Bureau International des Poids et Mesures). O organograma abaixo demonstra a estruturação, assim como as funções de cada participante do sistema. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 3 As pirâmides abaixo demonstram a hierarquia do sistema metrológico. Os padrões internacionais são de responsabilidade do BIMP (ver figura acima). Os padrões nacionais são de responsabilidade do Inmetro, no caso do Brasil. O laboratório do Cetemp, credenciado à rede RBC, conta com padrões calibrados a partir dos padrões do Inmetro, e realiza calibrações de padrões de empresas, que estão na base da cadeia. Como a cada calibração a incerteza do padrão utilizado é somada à incerteza da própria calibração, a incerteza de um nível mais baixo é sempre maior que a incerteza dos níveis que a precedem (ver figura abaixo). A incerteza do padrão primário do metro, por exemplo, é de ± 0,0013 m. A incerteza de calibração de um padrão de comprimento para a indústria (um bloco padrão) já é de ± 0,1 m. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 4 3 VOCABULÁRIO INTERNACIONAL DE METROLOGIA (VIM) Objetivos: Permitir uma comunicação clara na área de metrologia, e o entendimento dos conceitos que serão tratados nas próximas aulas. Permitir a compreensão quando da leitura de documentos técnicos, como certificados e procedimentos de calibração, e a correta utilização do vocabulário quando da escrita desses documentos. 3.1 Metrologia A ciência que trata das medições é a metrologia. A metrologia abrange todos os aspectos teóricos e práticos relativos às medições, em quaisquer campos da ciência ou da tecnologia. Medir, entretanto, é uma atividade mais corriqueira do que parece. Ao olhar no relógio, por exemplo, você está vendo no mostrador o resultado de uma medição de tempo. Ao tomar um táxi, comprar um quilograma de carne no açougue ou abastecer o carro no posto de gasolina, você presencia medições. Mas o que é uma medição? 3.1.1 Metrologia Legal É o ramo da metrologia que desenvolve atividades para estabelecer e assegurar o cumprimento das exigências legais referentes aos direitos básicos da sociedade e dos consumidores. É a "parte da metrologia que trata das unidades de medida, métodos de medição e instrumentos de medição em relação às exigências técnicas e legais obrigatórias, cujo objetivo é assegurar uma garantia pública do ponto de vista da segurança e da exatidão das medições". Quais são os Objetivos da Metrologia Legal e o que envolve: Estabelecer e manter a Regulamentação Metrológica, através de Leis e Portarias Oficiais, para a fiscalização, o controle, a supervisão e a Perícia Metrológica, necessárias a proteger o consumidor enquanto comprador de produtos e serviços e o vendedor enquanto fornecedor destes. Abrange os instrumentos de medir e medidas materializadas utilizadas nas atividades comerciais, oficiais, produtos pré-medidos, medições e exames nas áreas da saúde e segurança, que afetam a qualidade de vida das pessoas e do meio ambiente. 3.1.2 Metrologia Industrial É o emprego da Metrologia no chão-de-fábrica e laboratorial, visando controlar as especificações técnicas e/ou o processo de fabricação de um produto, constituindo-se em uma tecnologia fundamental para a Garantia da Qualidade. Importância da metrologia industrial: Diz um clássico ditado: "Só o que é mensurável pode ser melhorado". Melhorar continuamente é o caminho da sobrevivência das empresas, impulsionado pela necessidade de satisfazer o "cliente", que assume a posição, cada vez mais determinante, no direcionamento dos mercados e na determinação dos produtos que são consumidos. O princípio vale para todas as empresas que disputam mercados, cada vez mais dinâmicos e concorridos, cada qual buscando assegurar sua posição e seu crescimento. Medir tornase, portanto, um elemento central nas ações em busca da satisfação do cliente e na conquista de CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 5 espaços maiores no mercado. Medir viabiliza quantificação das grandezas determinantes à geração de um bem ou serviço, subsidiando com informações o planejamento, a produção e o gerenciamento dos processos que o produzem. 3.2 Medição Conjunto de operações que tem por objetivo determinar um valor de uma grandeza. Medir é comparar uma grandeza com uma outra, de mesma natureza, tomada como padrão. Existe uma imensa variedade de coisas diferentes que podem ser medidas sob vários aspectos. Imagine uma lata, dessas que são usadas para refrigerante. Você pode medir a sua altura, pode medir quanto ela "pesa" e pode medir quanto líqüido ela pode comportar. Cada um desses aspectos (comprimento, massa, volume) implica numa grandeza física diferente. 3.3 Grandeza Já deu pra perceber que o conceito de grandeza é fundamental para se efetuar qualquer medição. Grandeza pode ser definida, resumidamente, como sendo o atributo físico de um corpo que pode ser qualitativamente distinguido e quantitativamente determinado. Aqui vamos precisar de mais exemplos: a altura de uma lata de refrigerante é um dos atributos desse corpo, definido pela grandeza comprimento, que é qualitativamente distinto de outros atributos (diferente de massa, por exemplo) e quantitativamente determinável (pode ser expresso por um número). 3.4 Unidade de medição Para determinar o valor numérico de uma grandeza, é necessário que se disponha de uma outra grandeza de mesma natureza, definida e adotada por convenção, para fazer a comparação com a primeira. Para saber a altura daquela lata, por exemplo, é preciso adotar um comprimento definido para ser usado como unidade. O comprimento definido como unidade de medida pelo Sistema Internacional de Unidades - SI, é o Metro, seus múltiplos e submúltiplos. O Metro é definido como sendo o comprimento do trajeto percorrido pela luz no vácuo, durante um intervalo de tempo de 1/299.792.458 de segundo. 3.5 Padrão Seria bem complicado medir a altura de uma lata usando apenas a definição do Metro. Para isso existem os Padrões Metrológicos. Um padrão metrológico é, em resumo, um instrumento de medir ou uma medida materializada destinado a reproduzir uma unidade de medir para servir como referência. Medida materializada, instrumento de medição, material de referencia ou sistema de medição destinado a definir, realizar, conservar ou reproduzir uma unidade ou um ou mais valores de uma grandeza para servir de referencia. O padrão (de qualquer grandeza) reconhecido como tendo a mais alta qualidade metrológica e cujo valor é aceito sem referência a outro padrão, é chamado de Padrão Primário. Um padrão cujo valor é estabelecido pela comparação direta com o padrão primário é chamado Padrão Secundário, e assim sucessivamente, criando uma cadeia de padrões onde um padrão de maior qualidade metrológica é usado como referência para o de menor qualidade metrológica. Pode-se, por exemplo, a partir de um Padrão de Trabalho, percorrer toda a cadeia de rastreabilidade desse padrão, chegando ao Padrão Primário. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 6 3.6 Método de medição Mesmo na medição mais corriqueira adotamos, de maneira consciente ou inconsciente, um método de medição e um procedimento de medição. Como no exemplo do tópico anterior, métodos e procedimentos de medição são adotados em razão da grandeza a ser medida, da exatidão requerida e de outros condicionantes que envolvem uma série de variáveis. Vamos supor que você queira determinar o volume de 200ml de óleo comestível. Se você não necessita grande exatidão e você vai usar o óleo para fazer uma receita culinária o método escolhido pode ser, simplesmente, verter o óleo em uma medida de volume graduada (uma proveta, por exemplo). Porém, se o resultado exigir maior exatidão (um ensaio em laboratório), será necessário utilizar outro método que leve em consideração outras variáveis, como a temperatura do óleo, sua massa, sua massa específica e por ai vai, uma vez que o volume do óleo varia em razão da temperatura que este apresenta no momento da medição. 3.7 Resultado da medição Após medir uma grandeza, devemos enunciar o resultado da medição. Parece coisa simples, mas não é. Em primeiro lugar, ao realizar uma medição, é impossível determinar um valor verdadeiro para a grandeza medida. Vamos supor que você mediu a massa de um corpo em uma balança eletrônica e a indicação numérica que apareceu no visor foi 251 g. Na verdade, um possível valor verdadeiro da massa daquele corpo estaria próximo da indicação obtida, embora este seja, por definição, indeterminável. Os parâmetros dessa aproximação são dados pela incerteza da medição. Como nos exemplos anteriores, se essa medição destina-se a fins domésticos, não é necessário qualquer rigor ao expressar o seu resultado. Entretanto, quando se trata de medições para fins científicos ou tecnológicos, será preciso deixar claro se o resultado apresentado refere-se àquela indicação, ou ao resultado corrigido, ou ainda à média de várias medições. Deve conter ainda informações sobre a incerteza de medição, ser expresso utilizando-se o nome e a simbologia da grandeza de forma correta e levar em consideração os algarismos significativos que compõem o valor numérico. 3.8 Instrumento de medição e medida materializada Já temos padrões de referência! Agora, antes de fazer qualquer medição, precisamos saber qual a grandeza que pretendemos medir e o grau de exatidão que pretendemos obter como resultado dessa medição, para então podermos escolher o instrumento de medir adequado. Além disso, é necessário que o instrumento ou medida materializada em questão tenha sido calibrado. Vamos supor que você queira saber quanto você "pesa". A grandeza a ser medida é a massa. Você não necessita de um resultado com grande exatidão de medição. A balança antropométrica da drogaria resolve o seu caso. Agora, vamos supor que você trabalhe numa farmácia de manipulação e precise determinar a massa do componente de um medicamento para aviar uma receita. É aconselhável que você obtenha um resultado com grande exatidão de medição. Uma balança analítica compatível com a exatidão requerida é o instrumento mais adequado. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 7 4 SISTEMA INTERNACIONAL DE UNIDADES (SI) Objetivos: Utilizar, na prática metrológica, unidades internacionalmente reconhecidas. Realizar conversão para as unidades do SI, de forma a poder utilizar estas unidades na prática metrológica. 4.1 Principais unidades do SI Abaixo são representadas as principais unidades que compõe o Sistema Internacional. Estas unidades podem ser utilizadas em conjunto com os prefixos, apresentados na tabela seguinte. Grandeza comprimento área volume ângulo plano tempo freqüência velocidade aceleração massa massa específica vazão quantidade de matéria força pressão trabalho, energia quantidade de calor potência, fluxo de energia corrente elétrica carga elétrica tensão elétrica resistência elétrica condutância capacitância temperatura Celsius temp. termodinâmica intensidade luminosa fluxo luminoso iluminamento Nome Plural Símbolo metro metro quadrado metro cúbico radiano segundo hertz metro por segundo metro por segundo por segundo quilograma quilograma por metro cúbico metro cúbico por segundo mol newton pascal metros metros quadrados metros cúbicos radianos segundos hertz metros por segundo metros por segundo por segundo quilogramas quilogramas por metro cúbico metros cúbicos por segundo mols newtons pascals m m² m³ rad s Hz m/s joule joules J watt ampère coulomb volt ohm siemens farad grau Celsius kelvin candela lúmen lux watts ampères coulombs volts ohms siemens farads graus Celsius kelvins candelas lúmens lux W A C V S F ºC K cd lm lx m/s² kg kg/m³ m³/s mol N Pa Tabela 1 - retirada do site http://www.inmetro.gov.br/ CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 8 4.2 Prefixos das Unidades SI Nome yotta zetta exa peta tera giga mega quilo hecto deca deci centi mili micro nano pico femto atto zepto yocto Símbolo Y Z E P T G M k h da d c m µ n p f a z y Fator de multiplicação da unidade 1024 = 1 000 000 000 000 000 000 000 000 1021 = 1 000 000 000 000 000 000 000 1018 = 1 000 000 000 000 000 000 1015 = 1 000 000 000 000 000 1012 = 1 000 000 000 000 109 = 1 000 000 000 106 = 1 000 000 10³ = 1 000 10² = 100 10 10-1 = 0,1 10-2 = 0,01 10-3 = 0,001 10-6 = 0,000 001 10-9 = 0,000 000 001 10-12 = 0,000 000 000 001 10-15 = 0,000 000 000 000 001 10-18 = 0,000 000 000 000 000 001 10-21 = 0,000 000 000 000 000 000 001 10-24 = 0,000 000 000 000 000 000 000 001 Tabela 2 - retirada do site http://www.inmetro.gov.br/ 4.3 Algumas Unidades em uso com o SI, sem restrição de prazo Grandeza Nome Plural Símbolo Equivalência volume ângulo plano ângulo plano ângulo plano massa tempo tempo velocidade angular litro grau minuto segundo tonelada minuto hora rotação por minuto litros graus minutos segundos toneladas minutos horas rotações por minuto l ou L º ´ ´´ t min h 0,001 m³ /180 rad /10 800 rad /648 000 rad 1 000 kg 60 s 3 600 s rpm /30 rad/s Tabela 3 - retirada do site http://www.inmetro.gov.br/ 4.4 Algumas Unidades fora do SI, admitidas temporariamente Grandeza pressão pressão pressão quantidade de calor área força comprimento velocidade Nome Plural atmosfera bar milímetro de mercúrio caloria hectare quilograma-força milha marítima nó atmosferas bars milímetros de mercúrio calorias hectares quilogramas-força milhas marítimas nós Símbolo atm bar mmHg cal ha kgf Equivalência 101 325 Pa 105 Pa 133,322 Pa aprox. 4,186 8 J 104 m² 9,806 65 N 1 852 m (1852/3600)m/s Tabela 4 - retirada do site http://www.inmetro.gov.br/ CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 9 4.5 Conversão de unidades: Para realizar a conversão de uma unidade qualquer para o SI recomenda-se a utilização do método descrito abaixo, que utiliza a regra-de-três. Como exemplo, será utilizada a conversão de 67 mmHg para a unidade de pressão do SI, o Pascal. 1. Encontrar o fator de conversão entre as unidades: 1 mmHg = 133,322 Pa 2. Iniciar a montagem de uma regra-de-três, reescrevendo a linha acima como sendo a primeira linha da regra. 1 mmHg 133,322 Pa 3. Completar a regra-de-três com o valor da grandeza de unidade conhecida abaixo da mesma unidade que já está na primeira linha e um 'x' abaixo da unidade que se deseja obter: 1 mmHg 67 mm Hg 133,322 Pa x Pa 4. Resolver a regra-de-três descobrindo 'x': 1 · x = 133,322 · 67 x = 8932,574 Pa Converta 28 psi para a unidade do SI: CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 10 5 ALGARISMOS SIGNIFICATIVOS Objetivos: Utilizar a teoria dos Algarismos Significativos para expressar o valor de uma medição e para realizar cálculos com estes valores. Reconhecer, a partir desta teoria, a exatidão de uma medida realizada por outro técnico. 5.1 Os algarismos significativos: O resultado de uma medição deve, além de expressar um valor, deve expressar também a exatidão dessa medida. Exemplo: realizando a medida do comprimento de um lápis utilizando uma régua temos o seguinte: Comprimento: 9,2 cm É muito importante que se consiga distinguir a partir de um valor numérico quais são algarismos corretos e qual é o algarismo duvidoso resultantes da medição. A medida de comprimento do lápis está entre 9,2 e 9,3 cm. No exemplo acima temos como algarismo correto o 9. Afinal, ele está na escala da régua. O 2 já é uma subdivisão imaginária da escala da régua. Ele não carrega a mesma certeza que o 9. Por essa razão o 9 é considerado o algarismo correto, e o 2 é o algarismo duvidoso. Dizer que o lápis tem um comprimento de 9,25 cm beira o absurdo, já que nenhum olho humano consegue divir uma escala de 1 mm em 100 subdivisões, apenas no olho. O 5, desta forma, não tem significado algum, não sendo considerado um algarismo significativo. Desta forma uma medida deve ser expressa utilizando os algarismos corretos e apenas UM algarismo duvidoso, expressando a exatidão da medida. Se for necessário realizar uma transformação de unidade, de forma a expressar a medida em metros, o resultado seria 0,092 m. E em micrometros, 92000 m. Sabemos que esta medida tem dois algarismos significativos: o 9, que é o correto, e o 2, que é o duvidoso. Mesmo realizando a conversão de unidades são esses os algarismos significativos provenientes da medição. Vejamos então as regras que expressam quantos algarismos significativos têm uma medida, e qual é o duvidoso: 5.1.1 Algarismo MAIS significativo É o algarismo significativo que mais interfere no valor da medição. A regra para encontrá-lo é simples: O algarismo mais significativo é o primeiro algarismo à esquerda diferente de zero. Exemplos: 9,2 cm 0,092 m 92 000 m CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 11 5.1.2 Algarismo MENOS significativo É o algarismo significativo que menos influencia na medida. É também o algarismo duvidoso no valor de uma medida. Sabemos que para 9,2 cm; 0,092 m e 92 000 m o algarismo duvidoso é o 2. Por isso existem duas regras para determinar qual é o algarismo menos significativo de uma medida. Quando a medida não possui vírgula, o algarismo menos significativo é o ultimo algarismo à direita diferente de zero. Exemplos: 92 000 m 125 000 Pa Quando a medida possui vírgula é o ultimo algarismo à direita. Mesmo que este for zero. Exemplos: 0,092 m 0,0320 Pa 890,670 m/s. 5.1.3 Número de algarismos significativos Para saber quantos algarismos significativos uma medida possui basta contar todos algarismos partindo do mais significativo até o menos significativo, inclusive estes: 0,092 m (2 A.S.) 890,670 m/s (6 A.S.) 9,2 cm (2 A.S.) 125 000 Pa (3 A.S.) 92 000 m (2 A.S.) 0,0320 Pa (3 A.S.) 5.2 Operações com algarismos significativos 5.2.1 Soma (adição ou subtração) Se tivermos uma malha de controle onde precisamos, para realizar determinado controle, somar a leitura de três instrumentos de medição de pressão diferentes, um com resolução decimal, outro centesimal e outro milesimal, qual deve ser a resolução do resultado da soma? O cálculo é facil de ser realizado, como explicitado abaixo: 25,4 Pa + 49,89 Pa + 67,001 Pa = 142,291 Pa Mas para o primeiro instrumento de medição o algarismo duvidoso está na casa dos décimos. Para o segundo, na casa dos centésimos. E para o último, na dos milésimos. Sublinhando os duvidosos de cada medida e repassando cada um deles para o resultado da soma temos: 25,4 Pa + 49,89 Pa + 67,001 Pa = 142,291 Pa Nossa soma, portanto, possui neste momento três algarismos duvidosos. Só poderia ter um. Para que reste só um precisamos arredondar o resultado de forma a possuir somente a casa decimal, a menor resolução dos instrumentos que utilizamos: 25,4 Pa + 49,89 Pa + 67,001 Pa = 142,3 Pa CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 12 5.2.2 Multiplicação e divisão Se necessitarmos multiplicar ou dividir o resultado de duas medições a fim de encontrar um resultado precisamos considerar, da mesma forma, a teoria dos algarismos significativos. Exemplo: deseja-se encontrar qual é o volume de um determinado fluído que passou pela tubulação em determinado tempo, como em uma bomba de posto de gasolina. Para isso mede-se tempo e fluxo, multiplicando-se os valores encontrados: 34,56 m3/s · 22,2 s = 767,232 m3 A regra para a multiplicação e divisão é a seguinte: o resultado precisa ter número de algarismos significativos do número da sentença que tiver o menor número de A.S. No exemplo, a medida de fluxo apresenta 4 A.S. e a medida de tempo, 3 A.S. O resultado, portando, necessita ter 3 A.S. 34,56 m3/s · 22,2 s (4A.S.) (3A.S.) = 767 m3 (3A.S.) 5.3 Arredondamento Em muitos momentos quando se trabalha com algarismos significativos é necessário realizar o arredondamento de casas decimais. Se tivermos uma medida de 26,68 (4 AS) e tivermos que arredondar para 3AS, teremos 26,7. O problema reside quando temos que arredondar um numero terminado em 5, 50, 500.... Como 28,65. Para ficar com 3 AS, arredonda-se para mais ou para menos? Neste caso a regra é clara: arredonda-se para o valor positivo. Ficaria 28,6. Da mesma forma, 47,875 se arredondado para 4 AS ficaria 47,88. 5.4 Quando o zero à direita, sem vírgula, for AS Utilizando-se um manômetro foi encontrada uma medida de 4 600 Pa. Pela teoria dos algarismos significativos, o algarismo duvidoso é o 6, podendo a medida variar de 4 500 Pa a 4 700 Pa. Mas o operador do manômetro sabe que na realidade o algarismo duvidoso é o último zero. De forma a possibilitar que teoria e prática ofereçam o mesmo resultado temos que alterar a forma de representar esta medida com algarismos significativos. A solução é utilizar a notação científica: 4,600 · 103 Pa. O algarismo menos significativo está sublinhado. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 13 6 TEORIA DOS ERROS Objetivos: Responder as seguintes questões: Qual é a melhor forma de expressar o resultado de uma medição? Quais são os tipos de erros envolvidos em uma medição? Como cada um destes erros afeta a medição? O que é exatidão e o que é repetitividade? 6.1 Erros de medição: Por diversas razões, que serão discutidas a seguir, todas as medidas estão afetadas por um erro, que trataremos como E. Este erro relativo a uma medida M pode ser sintetizado pela expressão: E = M VV Onde VV é o valor verdadeiro que teria de ser representado por um padrão de valor perfeitamente conhecido ou por um sistema de medição livre de erros. Na prática esta situação é impossível, por esta razão o erro E é calculado por: E = M VVC VVC significa valor verdadeiro convencional, que contém um erro desprezível em relação ao erro do sistema de medição analisado (ideal menor que 1/10). Utilizamos, como Valores Verdadeiros Convencionais, os padrões metrológicos. 6.2 Tipos de Erros: 6.2.1 Grosseiros Falta de cuidado ou maus hábitos do operador. Causas: Erros de leitura , anotação errada, operação indevida, ajuste incorreto do instrumento de medição, escolha errada de escalas. Podem ser evitados pela repetição cuidadosa das medições. Não podem ocorrer. Inadmissíveis na prática metrológica. Os procedimentos de medição, quando bem elaborados, contribuem para impossibilitar o ocorrência dos erros grosseiros. 6.2.2 Sistemáticos São erros provenientes do sistema de medição utilizado. Propiciam medidas consistentemente acima ou abaixo do valor real, prejudicando a exatidão da medida. Sendo identificados podem ser eliminados ou compensados. Causas: método de medição, paralaxe, efeitos ambientais, simplificações do modelo teórico utilizado. Exemplo: Em dada balança o método de medição de massa é indireto, utilizando uma medida de força para estabelecer a medida de massa através do modelo físico F = m . g, sendo F CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 14 a força medida pela balança a partir de stringages, m a massa do objeto e g a aceleração da gravidade. O fabricante estipulou que a aceleração da gravidade utilizada para calcular a massa é 9,8 m/s 2. Acontece que o valor da aceleração da gravidade varia de acordo com a longitude e a altitude do local onde está sendo realizada a medição. Desta forma, se a balança for utilizada em um local com aceleração da gravidade diferente de 9,8 m/s2, todas as medidas apresentarão um desvio em relação ao valor real. A boa notícia é que, identificada esta fonte de erro sistemático, ela pode ser compensada, bastando medir a aceleração da gravidade local e realizar um cálculo simples de correção. Caso se deseje pode-se eliminar o erro, alterando o método de medição e utilizando uma balança de comparação. 6.2.3 Aleatórios São causados por fatores imprevisíveis e aleatórios, tais como vibrações, atritos e folgas do instrumento de medição. Tais fatores não podem ser identificados. Mas pode-se ter uma avaliação quantitativa deles pois são os erros aleatórios que impossibilitam que, em uma série de medição, uma medida seja igual a outra. Sua quantificação é realizada para cada medida, sendo a diferença entre cada medida e a média de um número infinito de medições em condições de repetitividade (mesmo operador, mesmo método de medição, mantendo as mesmas condições ambientais). A idéia de se ter 'condições de repetitividade' é que a única váriável no sistema de medição seja a grandeza a ser medida, de forma que grandezas de influência permaneçam constantes. 6.3 Exatidão e Repetitividade Exatidão é a aptidão de um instrumento de medição para dar respostas próximas a um valor verdadeiro, sendo um conceito qualitativo. Repetitividade é a aptidão de um instrumento de medição em fornecer indicações muito próximas, em repetidas aplicações do mesmo mensurando, sob as mesmas condições de medição. Pode ser expressa quantitativamente em termos das características da dispersão das indicações. Exato, mas pouco repetitivo. Repetitivo, mas pouco exato. O instrumento de medição ideal apresenta ótima exatidão e ótima repetitividade. O gráfico abaixo apresenta estes conceitos de forma técnica, sendo sua correta interpretação necessária para a continuidade dos estudos. Ele demonstra os valores das medidas encontrados a partir da calibração de um instrumento de medição. Para esta explicação podemos definir que está sendo calibrado um Micrômetro, utilizando um bloco padrão de 50 mm como padrão. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 15 A linha abaixo de Valor de referência indica o valor da grandeza do padrão que está sendo utilizado como Valor Verdadeiro Convencional. Seria, no exemplo, a medida de 50 mm do blocopadrão. A linha curva é a curva de dispersão dos resultados encontrados na medição, sendo uma curva de Gauss, indicando no eixo x o valor da medida (50,12 mm; 50,17 mm; 50,10 mm) e no eixo y a ocorrência para este valor durante a série de medições. Esta curva de dispersão será explicada em detalhes mais adiante, no estudo de incerteza. A linha abaixo de Média indica a média dos resultados encontrados. A distância entre a média da série de medições e o valor de referência indica o grau de exatidão do instrumento, que tem origem no seus erros sistemáticos. Como já estudado esses erros podem ser identificados e então compensados ou corrigidos. A abertura da curva de Gauss indica a repetitividade do instrumento. Quanto mais aberta esta curva (no eixo x) maior foi a disperção entre os valores encontrados na série de medições. Quanto mais fechada, menor foi esta dispersão, estando cada medida mais próxima da média. A repetitividade, portando, está relacionada aos erros aleatórios ocorridos durante a medição, visto que o erro aleatório de cada medida é a diferença entre cada medida e a média de um número infinito de medições em condições de repetitividade. Para expressar o valor de um mensurando, portanto, precisamos inicialmente realizar uma série de medições. Apenas desta forma poderemos ter uma idéia da repetitividade e da exatidão dessa medição. Note que se realizássemos apenas uma medição não conseguiríamos determinar a curva de distribuição, tampouco teríamos uma média. 6.4 Exemplo de comportamento de um sistema de medição: Para exemplificar tem-se o exemplo da balança eletromecânica digital a seguir. Para saber qual o erro que a balança comete ao medir uma massa de 1 kg, coloca-se sobre a mesma uma massa padrão de erro desprezível em relação ao que pode ocorrer na balança. Caso a experiência de determinação do erro venha a ser repetida, possivelmente a medida, correspondente a mesma massa padrão, seja um pouco diferente da anterior, fato que também ocorrerá também às medidas subseqüentes. Este comportamento dos sistemas de medição é denominado repetitividade. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 16 a) Primeira medição: L= 1015g M = L.l M = 1015 g E = 1015 - 1000 = +15 g b) Comportamento observado em medições subsequentes Medid a 1015 1014 1018 1015 1013 1016 1017 1014 1015 1016 1012 1015 1015 Média E Td Ea 15 14 18 15 13 16 17 14 15 16 12 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 0 -1 +3 0 -2 +1 +2 -1 0 +1 -3 0 0 c) Análise da distribuição: Se para um mesmo valor da grandeza a medir obtém-se diferenças nas medidas, o erro de uma medição não é constante. Pode-se caracterizar o erro como sendo a composição das seguintes parcelas: E = Es + Ea + Eg O erro sistemático (Es) ou Tendência (Td): é a parcela de erro da medição que se mantém constante (em sinal e valor) ou varia de uma forma previsível, quando se efetuam várias medições da mesma grandeza. Os erros sistemáticos e suas causas podem ser conhecidos e desconhecidos. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 17 Como o erro sistemático é referente à série de medições ele é igual para todas as medidas (ver tabela acima). O erro sistemático é dado por: Es = Td = MM VVC, onde: MM = média das medidas VVC = valor verdadeiro convencional O erro aleatório (Ea): é a parcela de erro que surge em, função de fatores aleatórios: Ea = M - MM O erro grosseiro (Eg): é uma parcela que pode ocorrer em função de leitura errônea, operação indevida ou dano do sistema de medição. Seu valor é totalmente imprevisível, podendo sua aparição suprimida a casos intuito esporádicos, desde que o trabalho de medição seja feito com atenção e coincidentemente. Esta parcela de erro não será considerada nos estudos a seguir. No exemplo da balança, mostrado anteriormente, como foi aplicado um massa padrão de 1 kg, pode-se afirmar que esta balança, sistematicamente apresenta um erro de +15 g, isto é, 15 g acima do valor esperado. O erro aleatório como falado e definido é imprevisível. Apenas pode-se supor a partir deste experimento que ele ocorrerá dentro de uma faixa de ± 3 g (ver gráfico de distribuição) Se não fosse conhecido o valor da massa aplicada a tendência de um leigo seria afirmar: m = 1015 ± 3 g Como já é possível observar, ao fazer isto um grave erro será cometido, por simplesmente ter esquecido do erro sistemático. A determinação do resultado será motivo de uma discussão mais detalhada em itens a seguir. 6.5 Critério de exclusão: Em uma série de medições pode acontecer de algumas das medidas não estarem condizentes com as demais, geralmente devido a algum erro grosseiro. Mas como saber quando uma medida deve ser excluida das demais? Utiliza-se algum critério de exclusão. A seguir está apresentado o critério de Chauvenet. n Rc n Rc 2 1,15 14 2,10 3 1,38 15 2,13 4 1,53 16 2,15 5 1,64 17 2,18 O critério de exclusão de Chauvenet compara o número de desvios-padrão r que a medida xi difere da média com um critério de rejeição pré-estabelecido (probabilidade de 95 %). Caso r seja maior do que Rc a medida em questão está fora da faixa de probabilidades e deve ser excluída da série. 6 1,73 18 2,20 7 1,80 19 2,22 8 1,86 20 2,24 9 1,91 21 2,26 10 1,96 22 2,28 11 2,00 23 2,30 12 2,04 24 2,31 13 2,07 25 2,33 xi − x r= S CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 18 7 INTRODUÇÃO À INCERTEZA DA MEDIÇÃO Fazendo-se uma análise da distribuição dos valores medidos normalmente constata-se que, quanto à repetitividade das leituras/medidas, os sistemas de medição apresentam uma distribuição aproximadamente Gaussiana dos valores. Pode-se, então, utilizar os recursos de estatística para avaliar a faixa dentro da qual ocorrerão os erros aleatórios. Esta faixa é denominada dispersão da medida (DM) ou repetitividade (Re) e seu valor pode ser calculado como sendo: DM(P) = Re = ± t.S Onde: DM(P) dispersão da medida enquadrando P% dos valores. Re repetitividade P probabilidade de enquadramento t fator de Student. S desvio padrão calculado para n medidas. n ∑(M S= i − MM ) 2 i =1 n −1 A dispersão avaliada desta forma, enquadra praticamente P% dos valores possíveis do erro aleatório. O fator t (coeficiente de Student) para comportamentos Gaussianos pode ser determinado a partir de tabelas como a mostrada a seguir em função de P e n (tabela abaixo). A balança mostrada anteriormente pode então ser caracterizada quanto ao seu comportamento metrológico pelos valores dos parâmetros: ES ou Td informando a parcela de erro sempre presente; DM(P) ou Re informando que a parcela de erro aleatório em P% dos casos não supera o valor ± DM. Para este caso então teríamos: Td = Es = 15 g Sendo o desvio padrão S = 1,65 g Para: P = 100% DM(l00) = 4,0.1,65 = ± 6,6 g P = 95% DM(95) = 2,3.1,65 = ± 3,8 g P = 68% DM(68) = l,05.1,65 = ± 1,7 g CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 19 Valores de t e para vários níveis de probabilidade P 7.1 Fontes de erros Toda medida esta afetada por um erro. Este erro é provocado pelo sistema de medição e operador, sendo inúmeras as possíveis causas. 0 comportamento metrológico do SM é influenciado por perturbações externas e internas, bem como efeitos de retroação do SM sobre a grandeza a medir e retroação do receptor da medida sobre o SM (esquematizado na figura abaixo). As perturbações externas podem provocar erros alterando diretamente o comportamento do SM ou agindo diretamente sobre a grandeza a medir. 0 elemento perturbador mais crítico, de modo geral é a variação de temperatura ambiente. A variação de temperatura provoca, por exemplo, dilatação das escalas dos SM para medição de comprimentos, da mesma forma que age sobre a grandeza a medir, por exemplo, o comprimento a medir de uma peça. A variação de temperatura pode também ser uma perturbação interna. Exemplo típico é a não estabilidade dos sistemas elétricos de medição, por determinado espaço de tempo, após terem sido ligados. Em função da liberação de calor nos circuitos elétricos/eletrônicos pode haver uma variação das características elétricas de alguns componentes e assim do SM. Há necessidade de aguardar uma estabilização térmica, a que minimizará os efeitos da temperatura. A retroação do SM sobre o processo, ou seja, sobre a GM pode ter diversas causas. Por exemplo, na metrologia dimensional, a dimensão da peça modifica-se em função da forca de medição aplicada. A retroação do receptor acontece, por exemplo, na conexão indevida de registradores de sinal. Para a operação o fabricante fixa condições limitantes aos fatores que influem sobre o comportamento do SM. Somente dentro destas faixas é que são garantidas as especificações metrológicas dos SM. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 20 Fontes de erros de medição Finalmente existem uma série de outros fatores que influem nos erros, que não se pode quantificar através de formulações. Estes fatores não são objeto de estudos de técnicas em metrologia. São fatores relacionados com os erros grosseiros, mas que sem dúvida são necessários de se conhecer, para que através do treinamento no trabalho seja possível evitá-los. Entre estes fatores pode-se citar: Falhas causadas por cansaço; Falhas causadas por leitura distorcida (paralaxe); Falhas causadas por manipulação errada; Falhas causadas por falta de atenção. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 21 8 CARACTERÍSTICAS DOS SISTEMAS DE MEDIÇÃO O comportamento funcional de um sistema de medição é descrito pelas suas características (parâmetros) operacionais e metrológicas. Aqui é definida e analisada uma série destes parâmetros para o uso correto da terminologia e uma melhor caracterização dos sistemas de medição. Faixa de indicação (FI): A FI é o intervalo entre o menor e o maior valor que o indicador do SM teria condições de apresentar como leitura (medida). Nos SMs de indicação analógica a Fl corresponde ao intervalo entre o menor e o maior valor da escala. Exemplos: -Fl manômetro: 0 a 20 bar; -FI termômetro: 700 a 12000C; Faixa de medição ou faixa de operação (FO): É o intervalo entre o menor e o maior valor da GM entre o qual o SM opera segundo as especificações metrológicas estabelecidas. Exemplos: - termômetro: FO: -50 a 2800C; - medidor de deslocamento: FO: -0,050 a +0,050 mm; A FO é menor ou, no máximo, igual a FI. A FO pode ser obtida através do manual de utilização do SM, de sinais gravados sobre a escala, de especificações de normas técnicas ou de relatórios de calibração. Divisão de escala (DE): Característica de SM analógicos em que as leituras são em geral obtidas a partir da posição de um elemento de referencia (ponteiro, coluna de líquido, etc.) em relação a uma escala. 0 parâmetro DE corresponde ao valor nominal de variação da leitura entre dois traços adjacentes da escala. Exemplos: - manômetro: DE = 0,2 bar; - termômetro: DE = 5 K; - escala mecânica: DE = 1 mm. Incremento digital (ID): Característica observada em SMs digitais e é o valor do incremento digital. Deve-se tomar cuidado na definição deste parâmetro já que nem sempre a variação do último dígito é unitária. Esta variação pode também ser de dois em dois ou de cinco unidades. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 22 Resolução (R): Resolução é a menor variação da grandeza a medir que pode ser indicada/registrada pelo sistema de medição. A avaliação de resolução é feita em função do tipo de instrumento: nos sistemas de medição de indicação ou registro digital, a resolução corresponde ao incremento digital. nos sistemas de medição de indicação analógica, a resolução teórica é zero; no entanto, em função das limitações do executor da leitura, da qualidade do indicador e da própria necessidade de leituras mais ou menos criteriosas, a resolução a adotar no problema específico pode ser: • R=DE quando a grandeza a medir apresentar flutuações superiores a própria DE; • R=DE/2 quando tratar-se de SM de qualidade regular ou inferior e/ou a GM apresentar flutuações significativas ou tolerâncias de leitura grandes. • R=DE/5 quando tratar-se de SM de boa qualidade (traços e ponteiros finos, etc.) e a medição em questão tiver de ser feita criteriosamente. • R=DE/10 quando o SM for de qualidade e a medição for altamente critica quanto a erros de medição. Erro sistemático (Es) ou Tendência (Td): É a parcela de erro que se mantém constante (em sinal e valor) ou varia da forma previsível, quando se efetuam várias medições da mesma grandeza. Os erros sistemáticos (tendências) e suas causas podem ser conhecidos ou desconhecidos. Dispersão da medição (DM) ou Repetitividade (Re): Especifica a faixa de valores dentro da qual, com uma probabilidade estatística definida, se situará o erro aleatório de uma medição. Normalmente especifica-se a DM de modo a abranger 95% dos erros aleatórios. A utilização de outras probabilidades de enquadramento dos erros aleatórios depende da aplicação e obedece tradições, determinações de norma ou desejo do usuário. Função de transferência nominal (FTn) e real (FTr): No caso da balança anterior se aplicarmos uma massa de 2 kg, o valor da tendência e da repetitividade certamente serão diferentes de 15 g. Através de sucessivas experiências, com valores de GM distintos, pode-se determinar o comportamento do SM em toda a sua faixa de operação (ou de interesse). Esta operação de determinação do comportamento, pela aplicação de valores conhecidos, é CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 23 denominada calibração. A função de transferência real difere da nominal em função dos SM apresentar erro sistemático e aleatório, podendo notar esta diferença quando estas funções são apresentas em gráficos, onde a FTr é um conjunto de curvas, onde existe uma linha media e uma faixa de dispersão associada. Curva de erro: Os gráficos FTr e FTn, em especial para instrumentos de qualidade, em geral não oferecem boas condições para visualização do comportamento do SM, tendo em vista que Os erros são pequenos frente ao valor da medida. Isto faz que este gráfico dê lugar as curvas de erro (CE). No gráfico CE, os erros são apresentados em função do valor indicado (leitura ou medida). Este gráfico é bastante explicito sobre o comportamento do SM e muito prático para determinação do resultado da medição (RM). Neste mesmo gráfico associa-se a curva de tendências os valores de dispersão da medição (DM) em cada ponto, de modo a dar noção da faixa de erros total. A curva de erro pode também apresentar a tendência com a incerteza expandida. Correção (C): Sabendo-se que determinada leitura contém um erro sistemático de valor conhecido, pode-se então eliminar este erro. Isto é feito através da correção (C), que é adicionada à leitura: Lc = L + C, onde: Lc é a leitura corrigida. O valor da correção é a tendência (Td) com o sinal trocado. Sensibilidade (Sb): É a variação de sinal de saída (leitura) correspondente a uma variação unitária da grandeza a medir. Flutuação da sensibilidade (FS): Em função da variação das condições ambientais e de outros fatores no decorrer do tempo, a função de transferência real do SM pode apresentar mudanças em relação a função de transferência nominal. Como exemplo pode-se citar a variação da Sb de um dinamômetro em função da temperatura que afeta o módulo de elasticidade do material. Histerese (H): Diferença entre leitura/medida (L/M) para um dado valor da GM quando esta foi atingida por valores crescentes e a L/M quando atingida por valores decrescentes da GM. A histerese é um fenômeno bastante típico em SMs mecânicos devido a folgas e deformações associados ao atrito. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 24 9 CÁLCULO DE INCERTEZA DE MEDIÇÃO Quando se relata o resultado de uma medição de uma grandeza física, é obrigatório que seja dada uma indicação quantitativa da qualidade do resultado de forma tal que aqueles que o utilizam possam avaliar sua faixa de dúvidas. Sem esta indicação, resultados das medições não podem ser comparados, seja entre eles mesmos ou com valores de referência dados numa especificação ou numa norma. É, portanto, necessário que haja um procedimento prontamente implementado, facilmente compreendido e de aceitação geral para caracterizar a qualidade de um resultado de uma medição, isto é, para avaliar e expressar sua incerteza. O procedimento apresentado a seguir é baseado no ISO-GUM, Guia para determinação da Incerteza de Medição. Quando se relata o resultado de uma medição de uma grandeza física, é obrigatório que seja dada uma indicação quantitativa da qualidade do resultado de forma tal que aqueles que o utilizam possam avaliar sua faixa de dúvidas. Sem esta indicação, resultados das medições não podem ser comparados, seja entre eles mesmos ou com valores de referência dados numa especificação ou numa norma. É, portanto, necessário que haja um procedimento prontamente implementado, facilmente compreendido e de aceitação geral para caracterizar a qualidade de um resultado de uma medição, isto é, para avaliar e expressar sua incerteza. O Guia para a Expressão da Incerteza de medição adotou a abordagem de combinação de componenetes de incerteza em duas categorias baseadas em seus métodos de avaliação: Avaliação tipo A - método de avaliação da incerteza pela análise estatística de uma série de observações. Avaliação tipo B - método de avaliação da incerteza por outros meios que não a análise estatística de uma série de observações. A incerteza padronizada ou padrão de uma fonte de erro é a faixa de dispersão em torno do valor central equivalente a um desvio padrão. A avaliação da incerteza padronizada pode ser classificada em Tipo A e Tipo B. O propósito de classificação Tipo A e Tipo B é de indicar as duas maneiras diferentes de avaliar as componentes da incerteza e serve apenas para discussão, a classificação não se propõe a indicar que haja qualquer diferença na natureza dos componentes resultando dois tipos de avaliação. Ambos os tipos de avaliação são baseados em distribuições de probabilidade e os componentes de incerteza resultantes de cada tipo são quantificados por variâncias ou desvios padrão. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 25 Passos para a determinação da Incerteza de Medição: Determinar a fonte de incerteza padrão Tipo A Determinar as fontes de incerteza padrão Tipo B Calcular a Incerteza Combinada Determinar o Fator de Abrangência Calcular a Incerteza Expandida Relatar o valor da medição e a incerteza deste 9.1 Determinação da incerteza padrão Tipo A Este tipo de avaliação será normalmente utilizado para obter um valor para a repetitividade ou aleatoriedade de um processo de medição apresentado em uma ocasião particular. A dispersãos dos resultados indica a repetitividade do processo de medição e depende dos equipamentos utilizados, do método, e algumas vezes do técnico que está efetuando a medição. A função estatística utilizada para caracterizar a dispersão nos resultados é o desvio padrão amostral, lido como: N ∑(x S= i − µ)2 i =1 n −1 Neste caso, a incerteza padrão será caracterizada pelo desvio padrão experimental da média: s ( xi ) = s n Nos casos onde o desvio padrão amostral for igual a zero, ou bastante pequeno, como acontece nos processos de calibração de micrômetros, paquímetros, poderá ser assumido que há um intervalo dentro do qual existe a possibilidade de se encontrar o valor da grandeza xi. Este intervalo será ± a divisão da escala do instrumento (± a resolução). Como esta distribuição de probabilidade é uniforme retangular, deverá ser transformada em normal. Para isso , a seguinte condição matemática deverá ser satisfeita: resol. s ( xi ) = 2 _ , então assume-se que s ( xi ) s ( x) = 3 CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 26 9.2 Determinação da incerteza padrão Tipo B Se um laboratório de medição tivesse recursos e tempo ilimitados, ele poderia conduzir uma investigação estatística exaustiva de cada causa concebível de incerteza, por exemplo, utilizando vários instrumentos de feitios e tipos diferentes, métodos diferentes de medição, aplicações diferentes do método e diferentes aproximações em seus modelos teóricos de medição. As incertezas associadas à todas estas causas poderiam então ser avaliadas pela análise estatística da série de observações e a incerteza de cada causa seria caracterizada por um desvio padrão avaliado estatisticamente. Em outras palavras, todos os componentes de incerteza seriam obtidos de avaliações do Tipo A. À medida que tal investigação não é uma prática econômica, muitos dos componentes de incerteza precisam ser avaliados por quaisquer outros meios que sejam práticos, ou seja, a incerteza padronizada é avaliada através de um julgamento científico baseado em todas as informações disponíveis sobre a variabilidade possível de uma grandeza de entrada. O conjunto de informações pode incluir: Experiência com ou conhecimento geral do comportamento e propriedades de materiais relevantes e instrumentos; Dados fornecidos em certificados de calibrações e outros certificados; Incertezas especificadas para dados de referência tomados de manuais; Correções a serem feitas; Dados de medições anteriores. Por exemplo, histórico em gráficos podem ser construídos e podem fornecer informações úteis sobre mudanças em função do tempo; Experiência ou conhecimento geral do comportamento e propriedades de materiais similares e equipamentos; Valores aceitos de constantes associadas com materiais e grandezas; Especificações de fabricantes; Qualquer outra informação relevante. O uso apropriado do conjunto de informações disponíveis para a avaliação do tipo B de incerteza padronizada pede um discernimento baseado na experiência e no conhecimento geral, e é uma habilidade que pode ser apreendida com a prática. Deveria ser reconhecido que uma avaliação do tipo B de incerteza padronizada pode ser tão confiável quanto uma avaliação tipo A, especialmente em situações de medição onde uma avaliação tipo A é baseada em um número comparativamente menor de observações estatisticamente independentes. As incertezas individuais avaliadas pelo método apropriado serão denominadas individualmente como uma incerteza padronizada. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 27 Como o potencial para erros em um estágio posterior da avaliação deve ser minimizado expressaremos todas as componentes de incerteza como um desvio padrão. Este método requer o ajuste de alguns valores de incerteza, tais como aqueles obtidos de certificados de calibrações e outras fontes, que freqüentemente serão expressos com um alto nível de confiança, implicando em um múltiplo do desvio padrão. Como a incerteza padronizada é derivada da incerteza da grandeza de entrada, tal ajuste é obtido dividindo-se a grandeza de entrada por um número associado com a distribuição de probabilidade assumida. Os divisores para as distribuições comumente encontrados são os que seguem: Normal (k=x) x Retangular 3 Triangular 6 Em forma de U 2 Alguns exemplos das fontes mais comuns de incerteza tipo B e sua transformação para incerteza padronizada serão apresentadas à seguir. 9.2.1 Resolução e divisão de escala de um instrumento de medição: A resolução de um instrumento de medição digital ou a divisão de escala de um instrumento de medição analógico, assim como a capacidade de interpolação do operador causam uma componente de incerteza matematicamente expressa como: uR = d , onde d é a resolução ou capacidade de interpolação do operador 2 3 9.2.2 Histerese: A histerese h na indicação de um instrumento de medição deve ser tratada como uma incerteza simétrica em relação a média das duas indicações (avanço/retorno) que formam a histerese. A componente de incerteza atribuída a histerese terá como incerteza padronizada: uh = h , onde h é a histerese do instrumento de medição. 2 3 CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 28 9.2.3 Certificados de calibração (incerteza herdada): Certificados de calibração apresentam valores medidos de características metrológicas e suas respectivas incertezas de medição. Quando um instrumento calibrado é utilizado, as incertezas padronizadas oriundas do certificado de calibração são as apresentadas à seguir, porém não se limitam a estas: Incerteza herdada da calibração do instrumento de medição: uc = U k , onde U: Incerteza expandida expressa no certificado de calibração; k: Fator de abrangência expresso no certificado de calibração. Erro de indicação do instrumento de medição: uE = E 3 , onde E: Erro de indicação expresso no certificado de calibração; 9.3 Incerteza Padronizada Combinada Uma vez que as contribuições associadas com o processo de medição forem identificadas e quantificadas, será necessário combiná-las da mesma maneira a fim de prover um único valor de incerteza que poderá ser associado com o resultado de medição. Então, as incertezas padronizadas individuais são combinadas para produzir um valor total de incerteza, denominada como incerteza padronizada combinada. Utilizando um conjunto de convenções predeterminadas, os órgãos de credenciamento, os laboratórios e sues clientes estarão aptos a comparar resultados de diferentes fontes da mesma maneira, sendo que as incertezas herdadas dos padrões nacionais aos usuários finais, freqüentemente através de uma cadeia de muitos laboratórios, também serão tratadas de maneira consistente e da mesma maneira a cada passo do processo. As componentes de incerteza tem que ser combinadas para produzir uma incerteza total. Na maioria dos casos, isto é reduzido a aplicar a raiz quadrada da soma dos quadrados das incertezas CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 29 padronizadas. Todavia, alguns componentes podem ser interdependentes e podem, por exemplo, cancelar ou reforçar umas às outras. Em muitos casos isto é facilmente visto e os componentes interdependentes podem ser adicionados algébricamente para obter um valor líquido. Todavia, em casos mais complexos, métodos matemáticos mais rigorosos devem ser utilizados para tais componentes correlacionadas. u c ( y) = N ∑c u ( x ) 2 i i =1 2 i N ≡ ∑ u ( y) 2 i i =1 9.4 Incerteza Expandida É usualmente requerida para reunir as necessidades de muitas aplicações, especialmente onde segurança interessa. Ela intenciona fornecer um intervalo maior do que a incerteza padrão sobre o resultado de uma medição, consequentemente, uma alta probabilidade de que o valor verdadeiro do mensurando esteja contido neste intervalo. Isto é obtido através da multiplicação da incerteza padrão combinada por um fator de abrangência, k. Para muitas finalidades um valor de 2 é usado para k, fornecendo um nível de confiança de aproximadamente 95%. 9.5 Fator de Abrangência k Na maioria dos casos, será possível avaliar incertezas do tipo B com alta confiabilidade. Além disso, se o procedimento apresentado para fazer as medições é bem estabelecido e as avaliações do tipo A são obtidas de um número suficiente de observações, então o uso do fator de abrangência de k=2 significará que a incerteza expandida, U, fornecerá um intervalo com um nível de confiança de 95%. Todavia, na maioria dos casos, não é prático basear a avaliação tipo A em um grande número de leituras, o que poderá resultar em um nível de confiança menor do que 95% se o fator de abrangência de k=2 for utilizado. Nestas situações o valor de k, ou mais estritamente kp, onde p é a probabilidade de confiança em termos percentuais, por exemplo 95, deve ser baseada na distribuição t-student e não na distribuição normal. Para a obtenção de um valor para kp será necessário obter uma estimativa dos graus efetivos de liberdade, veff, da incerteza padronizada combinada uc(y). O Guide recomenda que a equação de CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 30 Welch-Satterwaite seja utilizada para calcular o valor de v eff, baseado nos graus de liberdade, vi, das contribuições individuais de incerteza ui(y). Logo: veff uc4 ( y ) = N 4 ui ( y ) ∑ v i =1 i Nota 1: Os graus de liberdade, vi, para contribuições obtidas de avaliações tipo A é n-1. Nota 2: Os graus de liberdade, vi, para contribuições obtidas de avaliações tipo B com distribuições de probabilidade retangulares, triangulares ou em forma de U é . Nota 3: Os graus de liberdade, vi, para a incerteza herdada da calibração de um instrumento de medição é o veff apresentado no certificado de calibração do instrumento. Tendo obtido um valor para veff , a tabele t-student será utilizada para encontrar um valor de tp(v). A tabela abaixo apresenta alguns valores para t95,45(v); Valores para outros níveis de confiança podem ser encontrados no Guide. veff t(v) 1 2 13,9 4,53 3 3,31 4 2,87 5 2,65 6 2,52 7 2,43 8 2,37 10 2,28 12 2,23 14 2,20 16 2,17 veff t(v) 18 20 2,15 2,13 25 2,11 30 2,09 35 2,07 40 2,06 45 2,06 50 2,05 60 2,04 80 2,03 100 2,02 2,00 Nota: Se o valor de veff obtido da equação não é um número inteiro, que será geralmente o caso na prática, o valor correspondente de t p poderá ser interpolado ou truncado para o próximo número inteiro mais baixo. O valor obtido para t 95,45(v) é o valor de k95,45 requerido para calcular a incerteza expandida U95,45. 9.6 Relatando e apresentando os cálculos de incerteza Para apresentar os dados e cálculos de uma forma na qual seja facilmente entendida, é sugerida a construção de uma tabela a qual apresenta as grandezas de entrada e saída, as distribuições de probabilidade associadas e os respectivos divisores. Um layout sugestivo é apresentado na página seguinte e é similar ao usado no apêndice G da NIS3003, edição 8. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 31 Deve ser relembrado que a incerteza total é somente uma estimação e por esta razão, não existe a necessidade para precisões inadequadas na apresentação dos resultados. Se a incerteza expandida é calculada como sendo, por exemplo, ± 0,388 unidades, esta poderá ser arredondada para ± 0,39 ou até ± 0,4 unidades. Sugestão de tabela para cálculos de incerteza: Fonte de Incerteza Xi Esti mati va δ (xi) Ince rteza Padr ão u(xi ) Distribuiç ão de Probabilid ade/ fator divisor Coefici ente de Sensibi lidade Contrib uição para Incertez a ui(y) Gra us de libe rda de νi e ν eff x1 x2 ..... xn uc(y) U(y) O resultado de uma medição deve reportado na forma y ± U. Esta condição não estaria completa sem a menção ao fator de abrangência usado para obter a incerteza expandida. Uma indicação do nível de confiança obtido deverá ser incluído. Uma sugestão para fornecer uma informação completa acerca da incerteza de medição poderá ser a seguinte: A incerteza declarada é baseada em uma incerteza padronizada combinada multiplicada por um fator de abrangência k=2, fornecendo um nível de confiança de aproximadamente 95%. Os valores de k e para o nível de confiança serão, todavia, modificados quando usados outros, que não este apresentado no exemplo. CONFIABILIDADE METROLOGICA :: Prof Eng Tobias Roberto Mugge :: 32