Reynolds number influence on delta wing vortex flows

Transcrição

Reynolds number influence on delta wing vortex flows
Technische Universität München
Reynolds number influence on
delta wing vortex flows
TUM-AER project
Outline
Background and expertise
Objectives and exploitation
ETW experiments – model & instrumentation
Partners – consortium
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
1
Technische Universität München
Background and expertise
Objectives and exploitation
ETW experiments – model & instrumentation
Partners – consortium
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Outline
2
Technische Universität München
Flow physics – basics
Evolution of large scale vortices …
determine lift characteristics, maneuver capabilities
and stability
α
Main parameters
w
Incident and surface flow
U∞
Angle of attack α
Boundary layer
(laminar / turbulent)
φ
Geometry
Wing sweep φ
(planform)
rN
Leading-edge radius rN
(airfoil)
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Background
3
Technische Universität München
Flow physics – basics
Vortex development depend on leading-edge sweep φ and angle of attack α
α [°]
40
35
30
Thin,
Thin, planar
planar wings;
wings;
sharp
sharp leading–edge
leading–edge
αmax
25
20
15
4:
Vortex
bursting
over the
wing
3:
Span–wise
fixed vortex
φW
3
α
4
2:
Fully developed
vortex, moving
inboard
αBursting
(trailing–edge)
2
α
turbulent
laminar
10
1:
Vortex
formation
∆α
5
turbulent
α
1
laminar
0
50
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
55
60
65
70
75
Background
80
85
φ [°]
4
Technische Universität München
Flow physics – Re influence (secondary separation)
Separation line of secondary vortex
Re x =
U∞ x
ν
x
y
Laminar
region
–CP
y
Transition
Upper- / lower side:
Turbulent
region
–CP
Re > Re crit ,upper
Laminar / laminar :
Rex < 0.9 x 106 = Recrit,upper
y
–CP
Turbulent / laminar :
0.9 x 106 < Rex < 1.9 x 106
Re > Re crit ,lower
Turbulent / turbulent :
Rex > 1.9 x 106 = Recrit,lower
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
y
Background
5
Technische Universität München
VFE-2
(RTO-AVT-113, RTO-AVT-183)
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
6
Technische Universität München
b = 0.933 cr
VFE-2 configuration – Geometry
φ = 65°
Rounded LE
Sharp LE
cr
t = 0.034 cr
0.15 cr
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
0.10 cr
r/lµ = 0.15 %
Expertise
7
Technische Universität München
VFE-2 config. – TUM–AER wind tunnel model
Sharp leading-edge
Rounded leading-edge
r/lµ = 0.0015
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
8
Technische Universität München
VFE-2 config. – TUM–AER wind tunnel model
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
root chord
cr
0.980 m
wing span
b = 2s
0.914 m
wing area
F
0.448 m2
mean aerodynamic
chord
lµ
2/3 cr
aspect ratio
Λ
1.865
leading edge sweep
φ
65°
Expertise
9
Technische Universität München
φ = 65°
0.2
0.4
0.6
0.8 0.95
177 pressure pos.:
diam. 0.3 mm
cr
5 chord stations
t = 0.034 cr
0.15 cr
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
b = 0.933 cr
VFE-2 config. – TUM–AER model instrumentation
0.10 cr
133 steady sensors (PSI)
44 unsteady sensors (Kulites)
10
Technische Universität München
Laser light sheet flow visualization
Burst leading–edge vortex; α = 30°:
x/cr = 1.10
0.20
0.40
0.60
0.80
0.95
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
11
Technische Universität München
Laser light sheet flow visualization
Fully developed leading–edge vortex; α = 18°:
Sharp leading edge
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Rounded leading edge
Expertise
12
Technische Universität München
Flow field – mean velocity
Partly developed leading–edge vortex; α = 13°:
x/cr = 0.2, 0.4, 0.6, 0.8, and 0.95:
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
13
Technische Universität München
Flow field – turbulence intensity
Partly developed leading–edge vortex; α = 13°:
x/c
x/crr == 0.4
0.4
x/c
x/crr == 0.6
0.6
x/c
x/crr == 0.8
0.8
uurms
/U ∞
rms/U∞
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
14
Technische Universität München
Flow field – turbulence intensity
Burst leading–edge vortex; α = 23°:
x/c
x/crr == 0.4
0.4
x/c
x/crr == 0.6
0.6
x/c
x/crr == 0.8
0.8
uurms
/U ∞
rms/U∞
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
15
Technische Universität München
Surface pressure – turbulence intensity
Re
Re == 2.0
2.0 xx 10
1066
αα == 23°
23°
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
16
Technische Universität München
Complex flow topology – Re influence / multiple vortices
Ma = 0.4 (const.)
Re = 1 x 106
Re = 2 x 106
Re = 3 x 106
URANS simulations
(Courtesy W. Fritz, AIAA Paper 2008-393)
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
17
Technische Universität München
Flow physics – Re influence
U∞ M = 0.14
Topology of
Re = 2.0 x 106 vortex system
α = 13°
Laminar
separation
Inboard vortex
Separation
Attachment
Turbulent
separation
Primary vortex
Separation
Attachment
Secondary vortex
Separation
Attachment
Oil flow
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
18
Technische Universität München
Flow physics – Re influence
VFE-2
delta wing
KKK tests (T: 240 K – 150 K)
Ma = 0.05 – 0.16
M = 0.14
Re = 2.0 x 106
α = 13°
DLR – TSP
TUM – Oil flow
(Courtesy R. Konrath)
Re = 1 x 106 – 6 x 106
α = 5° – 28°
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Expertise
19
Technische Universität München
Background and expertise
Objectives and exploitation
ETW experiments – model & instrumentation
Partners – consortium
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Outline
20
Technische Universität München
Flow physics – Re influence
¾ Separating shear layer
φ
¾ Vortex core (fully developed / bursting)
¾ Boundary layer – secondary separation
α = 25.0°
u ′2 U ∞
0.28
U∞
0.20
α = 30.0°
0.10
0.02
Associated characteristic instabilities
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
φ = 76°
Objectives and exploitation
21
Technische Universität München
Flow physics – Re influence
Multiple
vortex
system
Re = 2.0 x 106
α = 18°
Re = const.
α
Laminar
separation
Turbulent
separation
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Objectives and exploitation
22
Technische Universität München
Flow physics – Re influence
Rounded
leading edge
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
α = 18°
Re = 1·106
Objectives and exploitation
23
Technische Universität München
Objectives
Analysis of aerodynamic characteristics and
corresponding flow topologies – selected test cases
Improving flow physics knowledge and modeling
Vortex flow data base associated with
significant Reynolds number variation
Extending the VFE-2 data base for high-fidelity
CFD applications (hybrid RANS/LES methods)
The test case is currently addressed within the
research activities GARTEUR AG49 and ATAAC.
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Objectives and exploitation
24
Technische Universität München
Flow physics – CFD challenges (Re impact)
GARTEUR AG49:
Scrutinizing Hybrid RANS/LES methods
For Aerodynamic Applications
Test case 2.2: VFE-2 delta wing
ATAAC – Advanced Turbulence Simulation
for Aerodynamic Application Challenges
(Implicit LES
TUM-AER)
Test case: ST08 Delta wing with sharp leading edge (VFE-2)
Test case: AC06 Full aircraft with small aspect ratio wing (FA5)
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Objectives and exploitation
25
Technische Universität München
Background and expertise
Objectives and exploitation
ETW experiments – model & instrumentation
Partners – consortium
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Outline
26
Technische Universität München
VFE-2 Model – cryogenic testing
Model designed for cryogenic testing
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
ETW experiments
27
Technische Universität München
VFE-2 Model – balance and sting
¾ Balance: Wxxx suitable for ETW
¾ ETW tail sting
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
ETW experiments
28
Technische Universität München
Test conditions
Flow parameter
• Ma ≈ 0.1 – 0.5
(load limit)
• Re ≈ 1 x 106 – 30 x 106
•α
≈ 0° – 35°
• V = const; Ma & Re variable
• q = const; T variable
• β = 0°
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
ETW experiments
29
Technische Universität München
Measured data and analysis
Aerodynamic characteristics …
Forces and moments
Development stages of dominant vortices …
Flowfield (PIV)
VFE-2
KKK
(Courtesy R. Konrath)
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
ETW experiments
30
Technische Universität München
Background and expertise
Objectives and exploitation
ETW experiments – model & instrumentation
Partners – consortium
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Outline
31
Technische Universität München
Partner nations
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Consortium
32
Technische Universität München
Partner institutes
National
Technical
University of
Athens, NTUA
Warsaw
University
of Technology
Czech
Aeronautical
Research and
Test Institute
Swedish
Defence
Research
Agency
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Consortium
33
Technische Universität München
Consortium – links
National
Technical
University of
Athens, NTUA
Warsaw
University
of Technology
Czech
Aeronautical
Research and
Test Institute
GARTEUR AG49:
CIRA, Cassidian, DLR,
FOI, NLR, ONERA, TUM
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Consortium
34
Technische Universität München
Partners – TUM-AER (Institute of Aerodynamics and Fluid Mechanics)
Proposal initiative / preparation
Data analysis and exploitation – nucleus for future projects
Importance of proposed work (commitment of partners)
ƒ Knowledge improvement of vortex physics
ƒ Experimental database for high-fidelity CFD verification
ƒ Contribution to improved transition/turbulence modeling
ƒ Fostering activities in vortex flow analysis and testing
Participation
ƒ Definition and support of test program and data reduction
ƒ Contribution to vortex flow measuring techniques
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
35
Technische Universität München
Partners – City University London
Background and expertise
¾ Analysis of aerodynamic performance, flow control, aerodynamic optimization;
in particular vortex flows and high-angle of attack aerodynamics
¾ Transition physics and turbulence modeling
¾ Subsonic wind tunnel facility; measurement techniques
Exploitation of data and results
¾ Re effects - enhancement of vortex flow analysis and modeling
¾ Analysis of laminar-turbulence transition, shear-layer instabilities,
vortex evolution
¾ Improved understanding w.r.t vortex manipulation
Key personnel (School of Engineering)
Dr. S. Prince, Dr. D. Greenwell, Prof. C. Atkins
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Consortium
36
Technische Universität München
Partners – FOI, KTH (Swedish Defence Research Agency
Background and expertise
Royal Institute of Technology)
¾ Advanced modeling of flow physics (turbulence and transition)
¾ Development of CFD methods and in-house CFD solver (EDGE)
¾ CFD analysis of air-vehicle aerodynamic performance, flow control,
aero-acoustic noise, as well as for other multi-disciplinary aerodynamic applications
¾ Hybrid RANS-LES simulations of vortex flows in conceptual studies of
delta wing and fighter models
Exploitation of data and results
¾ Validation for development of advanced URANS and hybrid RANS-LES methods
¾ Validation of turbulence-resolving simulations in modeling local laminar-turbulence
transition, shear-layer instabilities, vortex formation, bursting and shedding
¾ In-depth understanding towards vortex flow control in relation to flight stability
¾ Extrapolation to higher Re-number flow conditions
Key personnel
Dr. S.-H. Peng (FOI), Prof. A. Rizzi (KTH), Prof. C. Hirschel
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Consortium
37
Technische Universität München
Partners – NTUA (National Technical University of Athens)
Background and expertise
¾ Testing of UAVs, airfoil sections, scaled wind turbine rotors,
flow control concepts
¾ Flow predictions of vortical flows using various CFD models
associated with fixed and rotary aircraft configurations
¾ Subsonic wind tunnel facility (M = 0.15);
Force, PIV measurement techniques, …
Participation in EU projects
Exploitation of data and results
¾ CFD based validation
¾ Support of PhD theses and post-doctoral research
using data which will become available in this project
Key personnel (School of Mech. Eng., Fluids. Dept., Aero Lab.)
Prof. K. Giannakoglou, Ass. Prof. S. Voutsinas, Ass. Prof. D. Mathoulakis
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Consortium
38
Technische Universität München
Partners – VZLU (Aeronautical Research and Test Institute, CZ)
Background and expertise
¾ distinguished research and test center; center of excellence
¾ substantial computational capacities and skills
¾ operation of several wind tunnel facilities (Mach 0.2 ÷ 3.5)
Exploitation of data and results
¾ verification of URANS CFD code EDGE
¾ improvement of CFD application for high-agility A/C, high-α-regime
¾ possible extension of in-house flight dynamics analysis
Key personnel
Dr. Z. Patek, Dr. J. Fiala, Dr. P. Vrchota
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
39
Technische Universität München
Partners – Warsaw University of Technology
Background and expertise
¾ Faculty of Power and Aero. Eng. – center of excellence for CFD
¾ Development of CFD methods
¾ CFD analysis of aircraft aerodynamic performance
Exploitation of data and results
¾ Widening of experience to be used in preparation of 2 Ph.D. theses
¾ Improvement of research methodology and education for aerospace
students
Key personnel
Prof. Z. Goraj
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
40
Technische Universität München
Concluding remarks
Research topic of high relevance for improving flow physics
knowledge and high-fidelity numerical modeling
European research consortium established
W/T model and instrumentation available for cryogenic testing
Creating a sounded data base
PD Dr.-Ing. C. Breitsamter,
Dipl.-Ing. J.-U. Klar
Summary
41