Downscaling procedure
Transcrição
Downscaling procedure
Statistical downscaling of CLM precipitation data with an analogue method using radar data of radar Essen (DWD) Alrun Tessendorf, Thomas Einfalt hydro & meteo GmbH & Co. KG Markus Quirmbach dr. papadakis GmbH Overview Introduction Data and research area Downscaling procedure Evaluation of the results Summary and conclusion Introduction: dynaklim dynaklim: dynamical adaptation of regional planning and development processes in the Emscher-Lippe-Region (North-Rhine-Westphalia) effect of climate change on regional precipitation Focus on extreme events: heavy rain as a potential risk for urban flash floods Introduction: dynaklim dynaklim: dynamical adaptation of regional planning and development processes in the Emscher-Lippe-Region (North-Rhine-Westphalia) effect of climate change on regional precipitation Focus on extreme events: heavy rain as a potential risk for urban flash floods Generation of input data for small-scale hydrological models and hydrodynamic sewer models Introduction Small-scale hydrological models and hydrodynamic sewer models require input data with high spatial and temporal resolution: adjusted radar QPE Introduction Small-scale hydrological models and hydrodynamic sewer models require input data with high spatial and temporal resolution: adjusted radar QPE Idea: using adjusted radar data for a statistical downscaling of regional climate model data Introduction: statistical downscaling classification method: • • Classification by weather type: basis for assignment of historical data Assumption: the model can better reproduce the large-scale weather situation than parameters on a smaller scale analogue method: • Selection of analogue weather events from historical measurements, based on a comparison of model and measurement data stochastic weather generators • combination of the methods Introduction: statistical downscaling classification method: • • Classification by weather type: basis for assignment of historical data Assumption: the model can better reproduce the large-scale weather situation than parameters on a smaller scale analogue method: • Selection of analogue weather events from historical measurements, based on a comparison of model and measurement data stochastic weather generators • combination of the methods Analogue method with predictors daily sum and objective weather type (DWD) Data and research area Regional climate model CLM provided by the Climate Service Center (CSC) : Scenario A1B, run 1 and run 2 Reference period: 1961-1990 (“C20”) , Near Future: 2021-2050 + Far Future: 2071-2100 • Daily sums • Objective weather types (Krahé et al., 2011) Data and research area Measurement data: Corrected and adjusted data from radar Essen (DWD, 1km x 1 , 5min, DX-product), 01.11.2001 – 01.11.2009 • Adjustment based on 580 controlled rain gauges (117 for validation) Objective weather types (daily, measurements of the DWD) Data and research area Research area: 10 CLM grid points in the Emscher-Lippe Region (North-Rhine Westphalia) • Selection of the area: based on similar precipitation characteristics and orographic conditions. • Production of data for 3 catchments near Dortmund, Duisburg and Bönen, catchment size 70-76 km² GP_088_088 GP_088_087 GP_088_091 GP_088_090 GP_088_089 GP_088_093 GP_088_092 GP_088_094 GP_088_095 Rorup Dülmen GP_087_088 GP_087_087 GP_087_090 GP_087_089 GP_087_091 GP_087_093 GP_087_092 GP_087_094 GP_087_095 Lembeck Werne-Wessels DWD Herringen Werne Welver DWD GP_086_088 GP_086_087 GP_086_089 Dinslaken Emschermündung GP_086_090 GP_086_091 GP_086_092 GP_086_093 GP_086_094 Gladbeck Hahnenbach GP_086_096 GP_086_095 Soest DWD Recklinghausen Im Reitwinkel Dortmund Nettebach GP_085_096 GP_085_087 GP_085_088 GP_084_087 GP_084_088 GP_085_089 GP_084_089 GP_085_091 GP_085_093 GP_085_094 GP_085_090 GP_085_092 GP_085_095 GP_084_090 GP_084_091 GP_084_092 GP_084_093 GP_084_094 GP_084_095 Data and research area Precipitation distribution from radar of a convective event on 12 August 2005: 24h-rain sums on 12 Aug 2005, rain sums are 1-22 mm (left) and 7-31 mm (right) Downscaling procedure, overview: CLM-Data • obj. weather types • daily sums • 2 runs (CLM 1 + 2) Rain gauge data (1961-1990) • quality controlled • 28 stations Bias correction • daily sums Selection procedure • based on daily sums/ obj. weather types Data set downscaling Evaluation • ∆t 5 min, 1km x 1km • Dortmund, Duisburg, Bönen • 1961-90 • 2021-50, 2071-100 Adjusted radar data (2001-2009) • ∆t 5 min • 1km x 1 Bias correction and use of the daily sums Bias correction of daily sums: Piani et al. (2010) Used data: • area means on CLM grid points from radar (2001-2009) • CLM data from 2 runs As RCM values on single grid points are less reliable than averages over several grid points: • daily sums statistically averaged over 10 grid points using the cumulated PDF Downscaling procedure: selection algorithm For each day from CLM: search for similar days from the measurement period. Criteria: daily sum (close interval around the given value) and objective weather type If no similar days are found: stepwise increase of the interval and inclusion of neighboring weather types Several days are found: random selection of one day Downscaling procedure: selection algorithm For each day from CLM: search for similar days from the measurement period. Criteria: daily sum (close interval around the given value) and objective weather type If no similar days are found: stepwise increase of the interval and inclusion of neighboring weather types Several days are found: random selection of one day Increase of the data-base by: Permitting spatial displacement of the radar data within the 10 grid points of the research area making use of the similar precipitation characteristics within the research area disadvantage: neglect of small-scale orographic effects Downscaling procedure selection process • performed for each catchment separately Selection results checked on: • Frequency of use of radar events (max. 3 times / 30 years) • selection effect (Young 1994) - Restrictive criteria in the selection process affecting the selection of extreme events • discrepancies of the daily sum > 4mm Downscaling procedure selection process • performed for each catchment separately Selection results checked on: • Frequency of use of radar events (max. 3 times / 30 years) • selection effect (Young 1994) - Restrictive criteria in the selection process effecting the selection of extreme events • discrepancies of the daily sum > 4mm discrepancies of the daily sum > 4 mm: 2-4 events per 30-year period modification of the radar event with a constant factor to catch the 24h-sum of the model event procedure • High resolution radar data used to produce time series for the catchments (on each 1x1km² field) Time series evaluated using extreme value statistics • evaluation by duration and return period (following the DVWK rules for water management 124/1985) • Evaluation for the reference period, near and far future Validation: Reference period Extreme precipitation (1h, 5a), comparison of station mean from 28 stations and downscaling results in the reference period Extreme precipitation (1h,5a) within the catchments, catchment size is 70-76 km² Results: trend analysis CLM 1 CLM 2 Extreme precipitation (1h, 5a) for reference period (1961-90), near future (2021-50) and far future. The shaded uncertainty area is 10% (according to KOSTRA). • CLM 1 shows significant positive trends (+18.8% / + 16.4%) • CLM 2 trends are weaker and less significant (+16.4% / +8.8%) Summary and conclusion • Generation of high resolution data with natural characteristics on a sub-daily scale possible • Data can be used as input to small-scale hydrological models run-off model of Rossbach catchment near Dortmund: reasonable results in comparison to observations • Requirement: good measurement data base with the needed spatial resolution Summary and conclusion Problems to overcome: • Reliable Bias correction of the daily values (with regard to the effect on climate trends) • Ensemble evaluation high effort because combination of climate model runs and runs of the statistical downscaling model is necessary considerable size of the produced data sets (high resolution) • Uncertainties have to be communicated to the end-users, e.g. general model uncertainties (statistical downscaling: do the used relationships hold in the future) uncertainty of extreme events -> high uncertainty intervals in model and observations References Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (1985): Niederschlag- Starkregenauswertung nach Wiederkehrzeit und Dauer, DVWK Regeln zur Wasserwirtschaft 124/1985 DWD (2005): KOSTRA-DWD-2000, Starkniederschlagshöhen für Deutschland (1951-2000), Grundlagenbericht. Offenbach am Main. hydro & meteo (2009): The SCOUT Documentation version 3.30. Lübeck, 69 Seiten Krahé, P., E. Nilson, U. Gelhardt und J. Lang (2010): Auswertungen ausgewählter globaler Klimamodelle hinsichtlich atmosphärischer Zirkulationsbedingungen im NordatlantischMitteleuropäischen Sektor. BfG-Bericht 1682. Piani, C., J.O. Haerter und E. Coppala (2010): Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 99, 187-192. Young, K. (1994): A multivariate chain model for simulating climatic parameters from daily data, J. Appl. Meteorol., 33(6), 661-671. Zorita, E. und H. von Storch,(1999): The analog method as a simple statistical downscaling technique: Comparison with more complicated methods, J. Clim., 12, 2474-2489 Thank you for your attention! Result Preliminary result: hydrological run-off model Rossbach catchment (Dortmund): Reference period 1960-90: Entwicklung der statistischen Abflussscheitel (T = 20 a) an der Mündung Rossbach (PSe) 20 18 Abflussscheitel [m³/s] 16 14 12 10 8 6 4 2 0 1961-1990 2021-2050 Station/1,3 CLM1 2071-2100 CLM2 Zusammenfassung und Ausblick Das radarbasierte Downskaling zeigt, dass - das Herunterbrechen von CLM-Daten auf eine in der Stadthydrologie nutzbare Auflösung möglich ist - die Daten etwa im Bereich > 30 Minuten oder seltener als 1x pro Jahr eingesetzt werden können - die Schwankungsbreite der Ergebnisse in der Statistik höher ist als zwischen Messstationen - zusätzliche Analysen und Empfehlungen für den Einsatz der Daten erforderlich sind Vielen Dank für Ihre Aufmerksamkeit ! Kontakt: Projektleiter Arbeitspaket AP 3.1: „Aufbereitung und Bereitstellung der Klimadaten für die Prognosemodelle“ Dr. Markus Quirmbach dr. papadakis GmbH Tel.: 02324/904489-1 Mail: [email protected] Downscaling procedure Downscaling procedure Downscaling procedure Matched results, 2009 Downscaling procedure Selection effect • caused by close criteria in the selection process • Result: unrealistic low extreme events