Exercícios Grafos 1) Use o algoritmo de Kruskal para encontrar a
Transcrição
Exercícios Grafos 1) Use o algoritmo de Kruskal para encontrar a
Exercícios Grafos 1) Use o algoritmo de Kruskal para encontrar a árvore geradora mínima para os Grafos: G1) G3) G5) Algoritmo de Kruskal Algoritmo de Kruskal Algoritmo de Kruskal (a, f) : Peso = 1 (c, d) : Peso = 2 (c, e) : Peso = 3 (d, f) : Peso = 5 (b, c) : Peso = 7 (a, b) : Peso = 10 (a, c) : Peso = 12 (a, d) : Peso = 13 (b, e) : Peso = 14 Peso total é 18 Peso total é 49 (a, e) : Peso = 1 (b, f) : Peso = 3 (f, e) : Peso = 4 (a, d) : Peso = 5 (a, h) : Peso = 6 (c, g) : Peso = 8 (c, d) : Peso = 8 Peso total é 35 2) Use o algoritmo de Dijkstra para encontrar a árvore de distância mínima, cuja raíz é u nos grafos abaixo. Você deve rotular adequadamente os vértices como a, b, … para organizar o algoritmo. G2) Algoritmo de Dijkstra G4) Algoritmo de Dijkstra (u, b) : Peso = 7 (b, a) : Peso = 4 (b, d) : Peso = 6 (b, c) : Peso = 5 (c, e) : Peso = 3 (e, f) : Peso = 5 (u, a) : Peso = 2 (a, b) : Peso = 2 (a, d) : Peso = 2 (a, e) : Peso = 4 (b, f) : Peso = 2 (f, c) : Peso = 3 (e, g) : Peso = 2 Peso total é 30 Peso total é 17 G6) Algoritmo de Dijkstra (u, a) : Peso = 1 (u, b) : Peso = 2 (a, d) : Peso = 2 (d, g) : Peso = 2 (g, e) : Peso = 1 (e, c) : Peso = 2 (c, f) : Peso = 3 Peso total é 13 G7) Algoritmo de Dijkstra (u, b) : Peso = 2 (b, a) : Peso = 2 (b, c) : Peso = 3 (c, f) : Peso = 2 (a, d) : Peso = 2 (d, e) : Peso = 2 (e, g) : Peso = 1 Peso total é 14
Documentos relacionados
ROLLING NET TEMA: FORMAS Os alunos planificam as figuras
Ponha os alunos em pequenos grupos e dê a cada grupo um cubo, um prisma rectangular e pelo menos uma pirâmide ou outro sólido. Os alunos devem trabalhar aos pares, de modo que um possa segurar o só...
Leia mais