Thermodynamics of relativistic gases and the QGP
Transcrição
Thermodynamics of relativistic gases and the QGP
Thermodynamics of relativistic gases and the QGP Daniel Müller Seminar WS 2009/2010 Relativistische Schwerionenphysik October 22, 2009 | TU Darmstadt | D. Müller | 1 Outline Hadrons, Quarks and Gluons Thermodynamics Critical temperature Critical density / chemical potential October 22, 2009 | TU Darmstadt | D. Müller | 2 Matter at different scales October 22, 2009 | TU Darmstadt | D. Müller | 3 Quarks and Gluons Quarks ◮ fermions ◮ color charge (r/g/b) Gluons ◮ gauge bosons ◮ spin 1 ◮ mass: 0 GeV ◮ electric charge 0 ◮ color charge ◮ Nc2 − 1 = 8 types October 22, 2009 | TU Darmstadt | D. Müller | 4 Confinement ◮ Quarks confined in colorless mesons (quark - antiquark) and baryons (3 quarks) ◮ linear rising potential V (r ) ∝ r ◮ large energies: string breaking Quark - antiquark potential [S. Necco, R. Sommer (2002)] October 22, 2009 | TU Darmstadt | D. Müller | 5 Running Coupling and Asymptotic Freedom ◮ running coupling constant of QCD αs (q 2 ) ≈ ◮ 4π 11 − 2 N 3 f 1 ln(q 2 /Λ2QCD ) large q: αs → 0 ⇒ asymptotic freedom [D. J. Gross, F. Wilczek (1973), D. Politzer (1973)] [S. Bethke (2006)] October 22, 2009 | TU Darmstadt | D. Müller | 6 QCD Phase Diagram October 22, 2009 | TU Darmstadt | D. Müller | 7 Basic thermodynamic relations Density operator ρ̂ = 1 −(Ĥ −µN̂)/T e , Z hÔ i = Tr (ρ̂Ô) Partition function Z (T , V , µ) = Tr e−(Ĥ −µN̂)/T ≡ e−Ω(T ,V ,µ)/T Grand potential Ω(T , V , µ) = −T ln Z (T , V , µ) = E − TS − µN = −pV Energy density ǫ = October 22, 2009 | TU Darmstadt | D. Müller | 8 T 2 ∂ (Ω/T ) µ ∂Ω E = − − V V ∂T V ∂µ Noninteracting Bose gas Partition function ZB = Y X k e −l(E(k)±µ)/T l !d = Y k 1 1− e−(E(k)−µ)/T d , E(k ) = √ k 2 + m2 Thermodynamic potential Ω = −T ln ZB = VTd 2 ◮ ◮ Z d3k π2 4 −(E(k)−µ)/T m=0,µ=0 = − Vd ln 1 − e T (2π )3 90 2 Pressure: P = d π90 T 4 , energy density ǫ = 3d π90 T 4 = 3P Stefan-Boltzmann law for massless Bosons with degeneracy d: P ∝ T 4 October 22, 2009 | TU Darmstadt | D. Müller | 9 Noninteracting Fermi gas Partition function ZF = Y X k e−l(E(k)±µ)/T l=0,1 !d = Y 1 + e−(E(k)±µ)/T k d Thermodynamic potential at µ = 0 and m = 0 Ω = −T ln ZF = −VTd ◮ ◮ Z 7 π2 4 d 3k −(E(k)±µ)/T m=0,µ=0 = − Vd ln 1 + e T (2π )3 8 90 Stefan-Boltzmann law for Fermions difference to Bosons: factor 87 October 22, 2009 | TU Darmstadt | D. Müller | 10 Ideal gas of massless pions Number density nπ (T ) = 1 ∂ Ω = 3 V ∂µ Z d 3k 1 3 (E(k) −µ )/T − 1 (2π ) e Pion volume Vπ = 4π 3 R , 3 π Rπ ≃ 0.65 fm Critical temperature close-packing: nπ (Tc ) = V1π → Tc ≃ 263 MeV → Tc ≃ 186 MeV percolation theory: nπ (Tc ) = 0.35 Vπ October 22, 2009 | TU Darmstadt | D. Müller | 11 m=0,µ=0 = 3ζ (3) π2 T3 Bag model ◮ ◮ free (perturbative) quarks trapped inside bags → Hadrons Bag constant B: positive contribution to energy +B and negative contribution to pressure −B inside the bag ◮ equivalent: negative contribution to energy −B and positive contribution to pressure +B outside the bag ◮ nontrivial vacuum: ǫvac = −B, pvac = B [Chodos et al. (1974)] October 22, 2009 | TU Darmstadt | D. Müller | 12 Simple estimate of the bag constant Hadron mass in the bag model EBM (R) = 4π 3 3x z0 R B+ − + ... 3 R R Minimizing hadron mass 0 = ◮ ◮ ◮ ∂ EBM (R) z0 3x = 4π R 2 B − 2 + 2 ∂R R R x /R: kinetic energy of quarks inside the bag, x = 2.04 z0 /R: correction term [T. A. DeGrand et al. (1975)] assume mN = 938 MeV, R = 0.877 fm → B 1/4 ≃ 160 MeV October 22, 2009 | TU Darmstadt | D. Müller | 13 Simple estimate of the bag constant Hadron mass in the bag model EBM (R) = 4π 3 3x z0 R B+ − + ... 3 R R Minimizing hadron mass 0 = ◮ ◮ ◮ ◮ ◮ ∂ EBM (R) z0 3x = 4π R 2 B − 2 + 2 ∂R R R x /R: kinetic energy of quarks inside the bag, x = 2.04 z0 /R: correction term [T. A. DeGrand et al. (1975)] assume mN = 938 MeV, R = 0.877 fm → B 1/4 ≃ 160 MeV fit to hadron spectrum: B 1/4 = 146 MeV [DeGrand] QCD sum rules: B 1/4 = 220 MeV [Shifman et al. (1979)] October 22, 2009 | TU Darmstadt | D. Müller | 13 Critical temperature in the bag model Low T: free pion gas Pπ = dπ π2 90 T4 High T: free quark - gluon gas dQGP π2 T4 − B 90 7 = 2 × (Nc2 − 1) + × 4 × Nc × Nf = 37 8 PQGP = dQGP October 22, 2009 | TU Darmstadt | D. Müller | 14 Critical temperature in the bag model For B 1/4 = 220 MeV Low T: free pion gas Pπ = dπ π2 90 T4 90 Tc4 = dQGP π2 T4 − B 90 7 = 2 × (Nc2 − 1) + × 4 × Nc × Nf = 37 8 P / MeV 4 High T: free quark - gluon gas PQGP = dQGP B → Tc = 158 MeV π 2 dQGP − dπ 5e+09 4e+09 3e+09 2e+09 1e+09 0 -1e+09 -2e+09 -3e+09 Pion gas QGP 0 50 100 T / MeV October 22, 2009 | TU Darmstadt | D. Müller | 14 150 200 Latent heat ◮ ◮ 50 L = ǫQGP (Tc ) − ǫπ (Tc ) = 4B 30 critical energy density: ǫQGP (Tc ) ≈ L ≈ 1.2 GeV fm−3 nuclear matter: ǫNM ≈ 0.15 GeV fm−3 October 22, 2009 | TU Darmstadt | D. Müller | 15 Pion gas QGP 40 4 ◮ steep rise of energy density at the phase transition ε/T ◮ 20 10 0 100 L 120 140 160 T / MeV 180 200 Lattice QCD ◮ non-perturbative method of solving QCD ◮ difficulties: discretization, finite volume, fermions ◮ only at vanishing µ ◮ critical temperature: Tc = 170 − 200 MeV October 22, 2009 | TU Darmstadt | D. Müller | 16 [Karsch et al. (2009)] Hagedorn temperature ◮ ◮ exponentially increasing number density of hadrons with increasing energy state density for large M: c M /Tc e Ma [R. Hagedorn (1965)] ρ(M) = ◮ fit to data: Tc ≈ 160MeV [R. Hagedorn (1969)] October 22, 2009 | TU Darmstadt | D. Müller | 17 Simple estimate of critical density Nucleon volume R = 0.877 fm, VN = 4π 3 R ≈ 2.8 fm3 3 N Dense nucleon matter ρc ≈ 1 = 0.35 fm3 ≈ 2.4ρNM VN ◮ but heavily dependent on radius ◮ for R = 0.5 fm: ρc = 1.9 fm3 October 22, 2009 | TU Darmstadt | D. Müller | 18 Finite chemical potential Massless quarks at chemical potential µ Pq = −T = dq dq 2 π2 90 Z T4 d 3k ln 1 + e−(k −µ)/T + ln 1 + e−(k+µ)/T 3 (2π ) 15 µ4 7 15 µ2 + + 2 8 4 (π T ) 8 (π T )4 Phase transition at T = 0 MeV Pπ = PQGP → 0 = dq µ4c −B 48π 2 µc = 463MeV, µB,c = 3µc = 1389MeV October 22, 2009 | TU Darmstadt | D. Müller | 19 Phase diagram Quark gluon plasma vs. pion gas PQGP = Pπ → dq π2 90 T 4 7 15 µ2 15 µ4 + + 8 4 (π T )2 8 (π T )4 + dg π2 90 200 phase diagram T / MeV 150 100 50 0 0 October 22, 2009 | TU Darmstadt | D. Müller | 20 100 200 300 µ / MeV 400 500 T 4 − B = dπ π2 90 T4 Summary & Outlook Summary ◮ critical temperature in different models: 160 - 200 MeV ◮ critical chemical potential? µB ∼ 1200 MeV Outlook (later seminars) ◮ lattice QCD ◮ color superconductivity October 22, 2009 | TU Darmstadt | D. Müller | 21 Literature ◮ J. Letessier, J. Rafelski, Hadrons and Quark-Gluon Plasma, Cambridge University Press 2004 ◮ K. Yagi, T. Hatsuda, Y. Miake, Quark-Gluon Plasma, Cambridge University Press 2005 ◮ M. Buballa, Phys. Rep. 407, 205 (2005) Thanks for your attention October 22, 2009 | TU Darmstadt | D. Müller | 22