Mobile Communications
Transcrição
Mobile Communications
Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Organization Lecture Dates • Wednesday, 13:30 - 15:00, in 5052 Mobile Communications Material (Slide Copies and Video Recordings) http://www-i4.informatik.rwth-aachen.de/ content/teaching/lectures/sub/mobil/WS0506/index.html Literature Lehrstuhl für Informatik 4 RWTH Aachen J. Schiller: Mobile Communications. 2nd Edition, Addison Wesley, 2003 Contact Dirk Thißen Lehrstuhl für Informatik 4, Room 4226 (Building E1) Phone: 0241 / 80 - 21450 E-Mail: [email protected] Dr. rer. nat. Dirk Thißen Prof. Dr. Otto Spaniol Seite 1 Chapter 1: Introduction Chapter 1: Introduction Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme What is Mobile Communications? Why Wireless Networks? • Two aspects of mobility: User mobility: a user communicates (wireless) „anytime, anywhere, with anyone“ Device portability: A device can connect to the network anytime and anywhere • Wireless vs. Mobile Example stationary computer notebook in a hotel Wireless LAN in buildings Personal Digital Assistants (PDA) • The demand for mobile communication creates the need for integration of wireless networks into existing fixed networks: – In the local range: standardization of IEEE 802.11, ETSI HIPERLAN – In the Internet: Mobile IP as enhancement of „normal“ IP – In wide area range: e.g. internetworking of GSM and ISDN Chapter 1: Introduction Seite 2 Seite 3 • Characteristics – Mostly radio transmission, new protocols for data transmission are needed • Advantages – Spatial flexibility in radio reception range – Ad hoc networks without former planning – No problems with wiring (e.g. historical buildings, fire protection, esthetics) – Robust against disasters like earthquake, fire – and careless users which remove connectors! • Disadvantages – Generally very low transmission rates for higher numbers of users – Often proprietary, more powerful approaches, standards are often restricted – Consideration of lots of national regulations, global regulations are evolving slowly – Restricted frequency range, interferences of frequencies Chapter 1: Introduction Seite 4 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Applications I „Typical“ Application: Road Traffic • Vehicles Transmission of news, road condition, weather, music via DAB (Digital Audio Broadcasting) Personal communication using GSM Location tracking via GPS Local ad-hoc network with vehicles close-by to prevent accidents, guidance system, redundancy Vehicle data (e.g., from busses, high-speed trains) can be transmitted in advance for maintenance UMTS, WLAN, DAB, GSM, TETRA, ... • Emergencies Early transmission of patient data to the hospital, current status, first diagnosis Replacement of a fixed infrastructure in case of earthquakes, hurricanes, fire etc. Crisis, war, ... Chapter 1: Introduction Seite 5 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme ho c Personal Travel Assistant, DAB, PDA, Laptop, GSM, UMTS, WLAN, Bluetooth, ... Chapter 1: Introduction Seite 6 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Applications II Location Dependent Services • Location aware services What services, e.g., printer, fax, phone, server etc. exist in the local environment • Traveling salesmen Direct access to customer files stored in a central location Consistent databases for all agents Mobile office • Follow-on services Automatic call-forwarding, transmission of the actual workspace to the current location • Replacement of fixed networks Remote sensors, e.g., weather, earth activities Flexibility for trade shows LANs in historic buildings • Information services „Push“: e.g., current special offers in the supermarket „Pull“: e.g., where is the Black Forrest Cherry Cake? • Entertainment, education, ... Outdoor Internet access Intelligent travel guide with up-to-date location dependent information Ad-hoc networks for multi user games Chapter 1: Introduction ad • Support services Caches, intermediate results, state information etc. „follow“ the mobile device through the fixed network • Privacy Who should gain knowledge about the location? Seite 7 Chapter 1: Introduction Seite 8 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Wireless Networks in Comparison to Fixed Networks Mobile Devices Pager • receive only • tiny displays • simple text messages PDA • simple graphical displays • character recognition • simplified WWW Laptop • fully functional • standard applications • Higher loss-rates due to interference Emissions of e.g. engines, lightning • Restrictive regulations of frequencies Frequencies have to be coordinated, useful frequencies are almost all occupied • Low transmission rates Local some Mbit/s, regional currently up to 384 Kbit/s with GPRS/UMTS/… Sensors, embedded controllers Mobile phones • voice, data • simple graphical displays • Higher delays, higher jitter Connection setup time with GSM in the second range, several hundred milliseconds for other wireless systems Palmtops • tiny keyboard • simple versions of standard applications • Lower security, simpler active attacking Radio interface accessible for everyone, base station can be simulated, thus attracting calls from mobile phones Performance Chapter 1: Introduction Seite 9 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 1: Introduction Seite 10 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Early „Wireless Communication“ History of Wireless Communication • Many people in history used light for communication Heliographs, flags („semaphore“), ... 150 BC smoke signals for communication (Polybius, Greece) 1794: optical telegraph, Claude Chappe • 1896 - Guglielmo Marconi First demonstration of wireless telegraphy (digital!) Long wave transmission, high transmission power necessary (> 200kw) • 1907 - Commercial transatlantic connections Huge base stations (30 100m high antennas) • Here electromagnetic waves are of special importance: 1831 Faraday demonstrates electromagnetic induction J. Maxwell (1831-79): theory of electromagnetic fields, wave equations (1864) H. Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space (1888, in Karlsruhe, Germany, at the location of today’s University of Karlsruhe) Chapter 1: Introduction • Always shared medium Secure access mechanisms important • 1915 - Wireless voice transmission New York - San Francisco • 1920 - Discovery of short waves by Marconi Reflection at the ionosphere Smaller sender and receiver, possible due to the invention of the vacuum tube (1906, Lee DeForest and Robert von Lieben) • 1926 - Train-phone on the line Hamburg - Berlin Wires parallel to the railroad track Seite 11 Chapter 1: Introduction Seite 12 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme History of Wireless Communication History of Wireless Communication • 1928 - Many TV broadcast trials (across Atlantic, color TV, TV news) • 1986 - C-Netz in Germany Analog voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device Was in use until 2000, services: FAX, modem, X.25, e-mail, 98% coverage • 1933 - Frequency modulation (E. H. Armstrong) • 1958 - A-Netz in Germany Analog, 160MHz, connection setup only from the mobile station, no handover, 80% coverage, 1971 11000 customers • 1972 - B-Netz in Germany Analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known) available also in Austria, Netherlands and Luxembourg, 1979 13000 customers in Germany • 1979 - NMT at 450MHz (Scandinavian countries) • 1982 - Start of GSM-specification Goal: pan-European digital mobile phone system with roaming • 1983 - Start of the American AMPS (Advanced Mobile Phone System, analog) • 1984 - CT-1 standard (Europe) for cordless telephones Chapter 1: Introduction Seite 13 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme • 1992 - Start of GSM In Germany as D1 and D2, fully digital, 900MHz, 124 channels Automatic location, hand-over, cellular Roaming in Europe - now worldwide in more than 170 countries Services: data with 9.6kbit/s, FAX, voice, ... Chapter 1: Introduction Seite 14 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme History of Wireless Communication History of Wireless Communication • 1994 - E-Netz in Germany GSM with 1800MHz, smaller cells As E-plus in Germany (1997 98% coverage of the population) • 1996 - HiperLAN (High Performance Radio Local Area Network) ETSI, standardization of type 1: 5.15 - 5.30GHz, 23.5Mbit/s Recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as wireless ATM-networks (up to 155Mbit/s) • 1997 - Wireless LAN – IEEE 802.11 IEEE standard, 2.4 - 2.5GHz and infrared, 2Mbit/s Already many (proprietary) products available in the beginning • 1998 - Specification of GSM successors UMTS (Universal Mobile Telecommunication System) as European proposals for IMT-2000 Iridium: 66 satellites (+6 spare), 1.6GHz to the mobile phone Chapter 1: Introduction • 1991 - Specification of DECT Digital European Cordless Telephone (today: Digital Enhanced Cordless Telecommunications) 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 user/km2, used in more than 50 countries Seite 15 • 1999 - Standardization of additional wireless LANs IEEE standard 802.11b, 2.4-2.5GHz, 11Mbit/s Bluetooth for piconets, 2.4Ghz, <1Mbit/s Decision about IMT-2000 Several “members” of a “family”: UMTS, cdma2000, DECT, … Start of WAP (Wireless Application Protocol) and i-mode Access to many (Internet) services via the mobile phone • 2000 - GSM with higher data rates HSCSD offers up to 57,6kbit/s First GPRS trials with up to 50 kbit/s (packet oriented!) UMTS auctions/beauty contests Hype followed by disillusionment (approx. 50 B$ payed in Germany for 6 UMTS licences!) • 2001 - Start of 3G systems Cdma2000 in Korea, UMTS in Europe, Foma (almost UMTS) in Japan • 2002 – Standardization of high-capacity wireless networks 802.16 als Wireless MAN Seite 16 Chapter1:IEEE Introduction Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Wireless Systems: Overview of the Evolution Wireless Systems • CT - Cordless Telephony (analogous predecessor of DECT) transmission rate (MBit/s) • DECT - Digital Enhanced Cordless Telecommunications (Standard for wireless phones in a local range) wired devices 100.0 10.0 WMAN WLAN HIPERLAN 1.0 0.1 • GSM - Global System for Mobile Communication (cellular phone system) (CT, DECT) 0.01 Office Building stationary Indoor walk Outdoor mobility • HIPERLAN – alternative LAN to WLAN, „wireless ATM enhancement“ drive • WMAN – Wireless MAN (Bridging the last mile between a fixed network and the end user, wireless alternative to DSL) • And furthermore: Satellite systems, Bluetooth/IrDA in very short range Chapter 1: Introduction 1991: CDMA 1991: D-AMPS 1993: PDC 1994: DCS 1800 Seite 17 1987: CT1+ 1989: CT 2 1992: Inmarsat-B Inmarsat-M 1991: DECT 1998: Iridium 2000: GPRS digital 199x: proprietary 1997: IEEE 802.11 1999: 802.11b, Bluetooth 2000: IEEE 802.11a 2001: IMT-2000/UMTS 4G – fourth generation: when and how? Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme 2002: IEEE 802.16 200?: Fourth Generation (Internet based) Chapter 1: Introduction Seite 18 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Contents of this lecture: Personal Area Networks Contents of this lecture: Wireless Local Area Networks Wireless LANs (small range) • IEEE 802.11 (Wireless LAN, WLAN) “The” standard for supporting mobile computers High data rates: currently up to 54 MBit/s Physical layer and MAC: often called “wireless variant of Ethernet” Base stations (Access Point, AP) connect WLAN with fixed Ethernet, additionally WLAN enables forming ad-hoc networks Transmission medium: radio and infrared Personal Area Networks (very small range) • IrDA (Infrared Data Association) Standard for connecting devices using infrared light Data rate up to 4 Mb/s gross, used only 115 Kb/s Range of some meters, only line of sight Susceptible to disturbances • IEEE 802.15 (WPAN, Bluetooth): Data rates up to 723 Kb/s Range up to ca. 10/15 meters (with higher transmission power, also 100 meters are no problem), forming of small radio cells Ad-hoc Networking: spontaneous (automatically) connection of several devices (maximally 8) to an independent network Used with cellular phones, Personal Digital Assistants (PDAs), ... Chapter 1: Introduction 1984: CT1 1988: Inmarsat-C analogue wireless LAN 1980: CT0 1986: NMT 900 1992: GSM cordless phones 1982: Inmarsat-A 1983: AMPS • WLAN - Wireless Local Area Network (Standard for wireless networking of (portable) computer) CELLULAR (GSM) satellites 1981: NMT 450 • UMTS - Universal Mobile Telecommunications System (universal system, comprising several different access systems) UMTS CORDLESS cellular phones Seite 19 • IEEE 802.16 (WirelessMAN) 802.11 mainly supports mobility, 802.16 more focuses on connecting buildings Higher data rates (32-134 Mb/s), larger range • HIPERLAN (High Performance Radio Local Area Network) Several variants, from Type 1 with 23,5 Mb/s up to Type 4 with 155 Mb/s Range varies between 50 meter up to 5 kilometer No products Chapter 1: Introduction Seite 20 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Contents of this lecture: Telecommunication Networks Overlay Networks Cordless Systems • DECT (Digital Enhanced Cordless Telecommunications) Standard for cordless telephony Transmission of voice and data in short range (at home) integration of heterogeneous fixed and mobile networks with varying transmission characteristics Cellular Systems (medium range) • GSM (Global System for Mobile Communications) Mainly designed for voice transmission, also used for data transmission (Wide Area Network) Low data rates (9,6 Kb/s) Enhancements for data transmission (EDGE, GPRS, HSCSD) regional Vertical Handover metropolitan area • UMTS (Universal Mobile Telecommunications System) Also: IMT-2000 (International Mobile Telecommunications) Integration of “all” types of data, rates up to 2 Mb/s campus Horizontal Handover … and for word-wide coverage: satellites. Chapter 1: Introduction Seite 21 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 1: Introduction indoor Seite 22 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Areas of Research in Mobile Communication Simple Reference Model used here • Wireless communication Transmission quality (bandwidth, error rate, delay) Modulation, coding, interference Media access, regulations ... • Mobility Location dependent services Location transparency Quality of Service support (delay, jitter, security) ... Application Transport Transport Network • Portability Power consumption Limited computing power, sizes of display, ... Usability ... Chapter 1: Introduction Application Network Network Data Link Data Link Data Link Data Link Physical Physical Physical Physical Radio Seite 23 Network Chapter 1: Introduction Medium Seite 24 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Relation to OSI Reference Model Application Layer Transport Layer • Service location • Adaptive application • New applications Chapter 2 • Technical Basics: Layer 1 • Methods for Medium Access: Layer 2 • Congestion and flow control • Quality of Service Network Layer • Addressing, routing • Device location • Handover Data Link Layer • Medium access control • Multiplexing • Authentication Physical Layer • Frequencies, modulation • Interferences, attenuation • Encryption Chapter 1: Introduction Structure of the Lecture Chapter 3 • Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN • Mobile Networks: GSM, GPRS, UMTS • Satellites and Broadcast Networks Chapter 4 • Mobility on the network layer: Mobile IP, Routing, Ad-Hoc Networks • Mobility on the transport layer: reliable transmission, flow control, QoS • Mobility support on the application layer Seite 25 Chapter 1: Introduction Seite 26