Didaktik der Linearen Algebra
Transcrição
Didaktik der Linearen Algebra
Didaktik der Linearen Algebra Grundlagen aus der SekI SS 2010 Oliver Passon [email protected] Material zur Veranstaltung unter: www.psiquadrat.de Prozess- und Inhaltskompetenzen Kommunizieren, Argumentieren Arithmetik und Algebra Problemlösen Modellieren Funktionen Geometrie Werkzeuggebrauch und Medien Stochastik Oliver Passon Didaktik der Linearen Algebra 2 Lineare Algebra und analytische Geometrie • Sofern nicht ausdrücklich erwähnt, beziehen sich alle Angaben auf das 8 jährige Gymnasium (G8) • Geometrie-Schwerpunkte liegen in der SekI in den Klassenstufen 5 und 9 Oliver Passon Didaktik der Linearen Algebra 3 Klasse 5 • Symmetrie – Achsensymmetrie – Punktsymmetrie – Spiegeln Aus: Lambacher Schweizer, Klasse 5, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 4 Klasse 5 • Symmetrie – Achsensymmetrie – Punktsymmetrie – Spiegeln Aus: Lambacher Schweizer, Klasse 5, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 5 Klasse 5 • Orthogonal und parallel • Koordinatensysteme Aus: Lambacher Schweizer, Klasse 5, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 6 Klasse 5 • Orthogonal und parallel • Koordinatensysteme Aus: Lambacher Schweizer, Klasse 5, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 7 Klasse 5 • Figuren Aus: Lambacher Schweizer, Klasse 5, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 8 Aus: Lambacher Schweizer, Klasse 5, Klett 2007 Praktischer Teil: Beweisen sie, dass die Varignon Konstruktion immer ein Parallelogramm liefert! Oliver Passon Didaktik der Linearen Algebra 9 Klasse 6 • Winkel Aus: Lambacher Schweizer, Klasse 6, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 10 Klasse 6 • Winkel Aus: Lambacher Schweizer, Klasse 6, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 11 Aus: Lambacher Schweizer, Klasse 6, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 12 Klasse 7 • Dreiecke – Konstruktion – Winkelsumme – Kongruenzsatz Praktischer Teil 2: Begründen sie, dass die Winkelsumme im ebenen Dreieck 180 Grad beträgt! Oliver Passon Didaktik der Linearen Algebra 13 Aus: mathe live, Klasse 7, Klett 2007 Oliver Passon Didaktik der Linearen Algebra 14 Klasse 9 • Ähnlichkeit – Strahlensätze • Satzgruppe des Pythagoras – Pythagoras – Höhensatz – Kathetensatz • Körper – Volumen – Oberfläche Oliver Passon Didaktik der Linearen Algebra 15 Der Funktionsbegriff • Ab Klasse 7 Behandlung von „Zuordnungen“, Wertetabellen LS, Klasse 8 (Gy G8) Oliver Passon Didaktik der Linearen Algebra 16 LS, Klasse 8 (Gy G8) Oliver Passon Didaktik der Linearen Algebra 17 Exkurs: Funktionen Was ist eine Parabel? • Der Graph einer quadratischen Funktion: f ( x) = ax + bx + c 2 Rene Descartes (1596-1650) Oliver Passon Didaktik der Linearen Algebra 18 Was ist eine Parabel? II Ein Kegelschnitt Die Menge aller Punkte, die von einer gegebenen Geraden („Leitgerade“) und einem Punkt („Brennpunkt“) Den selben Abstand haben Oliver Passon Didaktik der Linearen Algebra 19 Was ist eine Parabel III Sperrungsrechteck und Ordinaten-Quadrat sind gleich groß! Griechisch: παραβάλλειν (paraballein) Oliver Passon Didaktik der Linearen Algebra 20 Fazit • Bei der Behandlung spezieller Kurven (vor allem Parabel und später Hyperbel) werden geometrische Deutungen in der aktuellen Schulmathematik oft ignoriert • (Kurven und Funktionen werden algebraisiert, während der Zahlbegriff „geometrisiert“ wird… ) • Die Vektorrechnung und Koordinatengeometrie in der OS kann versuchen, diese Lücken teilweise zu füllen (Kegelschnitte, Satz des Thales, …) Oliver Passon Didaktik der Linearen Algebra 21 Zusammenfassung in tabellarischer Form • Die folgenden Tabellen enthalten nur die Zuordnung der wichtigsten Unterrichtsinhalte auf die Klassenstufen (G8). Es handelt sich um keinen vollständigen Lehrplan! Oliver Passon Didaktik der Linearen Algebra 22 Geometrie Arithmetik Algebra Funktionen 5 Symmetrie, ebene Figuren( Vielecke und Kreis), Koordinatensystem Parallel und senkrecht Flächen und Volumenberechnung (Dreieck, Rechteck, Würfel) Grundrechenarten, große Zahlen (Stellenwertsystem), Ganze Zahlen Tabellen und Diagramme 6 Winkel Brüche (Q+ und Q-), Primfaktorzerlegung, Teilbarkeitsregeln Oliver Passon Didaktik der Linearen Algebra 23 Geometrie Arithmetik Algebra Funktionen 7 Dreiecke, Konstruktion, Winkelsumme, Kongruenzsätze Lineare Gleichungssysteme, Zinsrechnung Proportionale und antiproportionale Zuordnungen Lineare Funktionen 8 „pi“, Kreisfläche und Umfang Reelle Zahlen, Wurzeln, Parabeln binomische Formeln, Termumformungen 9 Satzgruppe Pythagoras, Ähnlichkeit und Strahlensätze Prisma, Kegel, platonische Körper Höhere Wurzeln, Nullstellenuntersuchung , Logarithmus, Winkelfunktionen Oliver Passon Didaktik der Linearen Algebra Wachstumsvorgänge 24