Reduced Basis Methods: A Tutorial Introduction for Stationary

Transcrição

Reduced Basis Methods: A Tutorial Introduction for Stationary
Reduced Basis Methods: A Tutorial Introduction
for Stationary Coercive Parametrized PDEs
RB Summerschool
TU München
16.-19. Sept. 2013
Bernard Haasdonk
Universität Stuttgart
Institut für Angewandte Analysis und Numerische Simulation
[email protected]
Institut für Angewandte Analysis
und Numerische Simulation
Overview Part 1
Introduction
Model Problem
Uniform coercivity, continuity, parameter separability
Full problem, solution manifold, examples, regularity
RB Problem
Thermal Block, solution structure
Abstract Problem
Motivation of Model Reduction
Basic Idea and Notions in RB-methods
„Primal“ formulation, error bounds, effectivities
Experiments
16.9.2013
B. Haasdonk, RB-Tutorial
2
Institut für Angewandte Analysis
und Numerische Simulation
Overview Part 2
Offline/Online Decomposition
Basis Generation
Lagrangian Basis
Greedy, Convergence Rates,
Orthonormalization
Adaptivity
Primal-Dual RB Approach
RB-Problem, Error Estimators
Min-theta
Output Correction
Improved Error Estimation
Conclusion/Extensions
16.9.2013
B. Haasdonk, RB-Tutorial
3
Introduction
Institut für Angewandte Analysis
und Numerische Simulation
Motivation of Model Reduction
Today: High resolution simulation schemes
Multitude of applications
High dimensional models (PDEs, ODEs)
Development of accurate schemes
Adaptive grids, higher order schemes
Parallelization and HPC
High runtime- and hardware requirements
Goal: Reduced models
Smaller model dimension, reduced requirements
Similar precision, error control
Automatic reduction, not „manual“
Realization of complex simulation scenarios
Multi-query, real-time, „Cool“-computing platforms
16.9.2013
B. Haasdonk, RB-Tutorial
5
Institut für Angewandte Analysis
und Numerische Simulation
Motivation of Model Reduction
„Real Time“ Scenarios
Real-time control of processes
Graphical user interfaces
Man-machine-interaction
Interactive design
Parameter exploration
„Cool“ Computing Platforms
16.9.2013
Simple industrial controllers
Web-applications / Applets
Ubiquitous Computing:
Mobile phone, smart devices
B. Haasdonk, RB-Tutorial
6
Institut für Angewandte Analysis
und Numerische Simulation
Motivation of Model Reduction
„Multi-Query“, High-Level Simulation Scenarios
Parameter studies, statistical investigations
Design, Parameter optimization, inverse problems
Multiscale Settings: Reduced Models as Microsolvers
Homogenized Problem
CP
CP
CP
CP
CP
CP
Homogenized Problem
CP
RP
RP
RP
RP
RP
RP
RP
Stochastic PDEs: Monte Carlo with Reduced Models
SPDE
ū(x) :=
16.9.2013
u(x, ω)
ūn (x) =
1
(
n
RP
+
RP
+ ... +
RP
Ω u(x, ω)p(ω)
B. Haasdonk, RB-Tutorial
7
)
Institut für Angewandte Analysis
und Numerische Simulation
Motivation of Model Reduction
Offline/Online Computational Procedure
Accept computationally intensive „offline phase“ (reduced
model generation, etc.)
Amortization of runtime cost in view of multiple online
phases i.e. simulations with reduced model
Multi-query with high dimensional model:
...
u(µ1 )
u(µ2 )
time
u(µ3 )
Multi-query with reduced model:
offline phase
online phase
uN (µ1 ), . . . , uN (µk )
16.9.2013
B. Haasdonk, RB-Tutorial
time
8
Institut für Angewandte Analysis
und Numerische Simulation
Motivation of RB-Methods
Parametric problems:
Parameter domain P ⊂ Rp , parameter vector µ ∈ P
solution u(µ) ∈ X , Hilbert space (HS)
Manifold of solutions M „parametrized“ by µ ∈ P
Low-dimensional subspace XN ⊂ X („RB-Space“)
Approximation uN (µ) ∈ XN and error bound ∆u (µ)
X
XN
M
u(µ1 )
16.9.2013
uN (µ)
uN (µ)
u(µ2 )
u(µ)
B. Haasdonk, RB-Tutorial
}
∆u (µ)
u(µ)
9
Institut für Angewandte Analysis
und Numerische Simulation
Motivation of RB-Methods
Simple Example: µ ∈ P = [0, 1]
Find u(µ) ∈ C 2 ([0, 1]) (not a HS) satisfying
(1 + µ)u = 1 in (0, 1),
u(0) = u(1) = 1
„Snapshots“: u0 := u(µ = 0) = 12 x2 − 12 x + 1
u1 := u(µ = 1) = 14 x2 − 14 x + 1
XN = span{u0 , u1 }
Reduced Solution uN (µ) = α0 (µ)u0 + α1 (µ)u1
α0 (µ) =
16.9.2013
2
µ+1
− 1,
α1 (µ) = 2 −
2
µ+1
Exact approximation: uN (µ) = u(µ) for µ ∈ P
M is contained in 2-dimensional subspace
(more precisely: M is convex hull of u0 , u1 )
B. Haasdonk, RB-Tutorial
10
Institut für Angewandte Analysis
und Numerische Simulation
Motivation of RB-Methods
Questions that need to be addressed:
16.9.2013
How to construct good spaces XN? Can such „procedures“
be provably good?
How to obtain approximation uN (µ) ∈ XN ? Can we do
better than interpolation?
Efficiency: How can uN (µ) be computed rapidly?
Stability with growing N?
Can we bound the error? Are bounds „rigorous“, i.e.
provable upper bounds?
Are error bounds largely overestimating the error or can
the „effectivity“ be bounded?
For which problem classes is low dimensional
approximation expected to be successful?
B. Haasdonk, RB-Tutorial
11
Institut für Angewandte Analysis
und Numerische Simulation
Motivation of RB-Methods
General References on the Topic:
Electronical Book: [PR06]
A.T. Patera and G. Rozza: „Reduced Basis Approximation and A Posteriori Error
Estimation for Parametrized Partial Differential Equations, Version 1.0, Copyright
MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs
in Mechanical Engineering.
RB-Skript: [Ha11]
B. Haasdonk: Reduzierte-Basis-Methoden, Vorlesungsskript SS 2011, IANSReport 4/11, University of Stuttgart, 2011.
Websites:
augustine.mit.edu: MIT-website
www.morepas.org: german RB activities
www.modelreduction.org: german MOR Wiki
Software:
rbMIT: http://augustine.mit.edu
RBmatlab, Dune-rb: www.morepas.org
Course Material:
www.haasdonk.de/data/summerschool2013
16.9.2013
B. Haasdonk, RB-Tutorial
12
Institut für Angewandte Analysis
und Numerische Simulation
Software
RBmatlab
MATLAB discretization and RB-library
2d-Grids, adaptive n-D grids
Linear, Nonlinear Evolution Problems
FV, FEM, LDG Discretizations, RB Algorithms
Download & Documentation:
www.morepas.org
DUNE-RB
Detailed Parametrized Models, C++ Template lib.
Extension of Dune-FEM (www.dune-project.org)
Discrete Function Lists, Parametrized Operators
Interface to RBmatlab
16.9.2013
B. Haasdonk, RB-Tutorial
13
Model Problem: Thermal Block
Institut für Angewandte Analysis
und Numerische Simulation
Model Problem
Thermal Block
p
i=1 Ωi
Ω1
Ω2
ΓN1
B 1 = B2 = 2
Parameters: heat conductivity coefficients
µmin =
Governing PDE
−∇ · k(µ)∇u = 0
u=0
k(µ)∇u · n = i
16.9.2013
Ω4
ΓN0
p := B1 · B2
µ = (µi )pi=1 ∈ [µmin , µmax ]p ,
Ω3
Slight modification of [PR06]
Heat conduction in solid block
Computational domain Ω = (0, 1)2
Partition in B1 horiz., B2 vert. subblocks
Ω=
ΓD
in Ω
on ΓD
on ΓNi ,
1
µmax
∈ (0, 1)
k(x; µ) =
i
µi χΩi (x)
i = 0, 1
B. Haasdonk, RB-Tutorial
15
Institut für Angewandte Analysis
und Numerische Simulation
Model Problem
Weak Form:
Solution space
X = HΓ1D (Ω) := { v ∈ H 1 (Ω) | v|ΓD = 0}
Weak form: find u(µ) ∈ X such that
k(µ)∇u(µ) · ∇v =
v,
N1
Ω
Γ
a(u(µ),v;µ)
v∈X
f (v;µ)
Possible output of interest:
s(µ) :=
u(x; µ)dx = l(u(µ); µ)
ΓN,1
Compactly written by means of bilinear form a(·, ·; µ) and
linear forms f(·; µ), l(·; µ) ∈ X 16.9.2013
B. Haasdonk, RB-Tutorial
16
Institut für Angewandte Analysis
und Numerische Simulation
Model Problem
Solution Variety:
Simple solution structure:
if B1 = 1 (or B1 ≥ 1 and all µi in each
row identical) the solution exhibits
horizontal symmetry, is piecewise
linear, can be exactly represented in a
finite dimensional space, although the
full problem is infinite dimensional.
Exercise 1: Find and prove an explicit solution
representation in a B2 -dimensional linear space
16.9.2013
B. Haasdonk, RB-Tutorial
µ1 = µ2 = µ3 = µ4
µ1 = µ2 =
/ µ3 = µ4
17
Institut für Angewandte Analysis
und Numerische Simulation
Model Problem
Solution Variety:
Complex solution structure:
if B1 > 1 the solution is in
general nonsymmetric,
complexity increasing
µ1 =
/ µ2 =
/ µ3 =
/ µ4
with B1 , B2
Parameter redundancy: manifold is invariant with respect
to scaling of the parameter vector:
µ̄ := cµ ∈ P, c > 0
⇒
u(µ̄) = 1c u(µ).
Important insight: More/many parameters do not
necessarily imply complex manifold structure
Exercise 2: Provide a different parametrization of k(x; µ) in the thermal block,
such that the model has arbitrary large number p > B1 · B2 of parameters, but
only 1-dimensional solution manifold.
16.9.2013
B. Haasdonk, RB-Tutorial
18
Abstract Problem
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
Notation
X Hilbert space (real, separable), scalar product ·, · ,
norm
v := v, v, v ∈ X
Dual space X with norm
gX g(v)
,
:= sup
v∈X\{0} v
For all g ∈ X denote Riesz-Representer by vg ∈ X :
g(v) = vg , v ,
gX = vg v∈X
(Representer property)
(Isometry of Riesz-map)
Parameter domain P ⊂ Rp
bilinear form and linear forms
a(·, ·; µ) : X × X → R
16.9.2013
g ∈ X
f(·; µ), l(·; µ) ∈ X ,
B. Haasdonk, RB-Tutorial
µ∈P
20
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
(A1): Uniform Boundedness and Coercivity of a(·, ·; µ)
a(·, ·; µ) is assumed to be coercive, i.e.
a(v, v; µ)
>0
α(µ) := inf
2
v∈X\{0}
u
and the coercivity is uniform wrt. µ , i.e. there exists ᾱ with
α(µ) ≥ ᾱ > 0,
µ ∈ P.
a(·, ·; µ) is assumed to be bounded (continuous), i.e.
a(u, v; µ)
γ(µ) := sup
<∞
u,v∈X\{0} u , v
and boundedness is uniform wrt. µ , i.e. there exists a γ̄ s.th.
γ(µ) ≤ γ̄ < ∞,
µ ∈ P.
Remark: a(·, ·; µ) may possibly be nonsymmetric
16.9.2013
B. Haasdonk, RB-Tutorial
21
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
(A2): Uniform Boundedness of f(·; µ), l(·; µ)
f(·; µ), l(·; µ) are assumed to be uniformly bounded wrt. µ :
f(·; µ)X ≤ γ̄f , l(·; µ)X ≤ γ̄l , µ ∈ P.
for suitable constants γ̄l , γ̄f
Remark: Possible Discontinuity wrt. µ
Example: X = R, P := [0, 2]
l(x; µ) := x · χ[1,2] (µ)
l(·; µ) is linear and bounded, hence a continuous linear
functional with respect to x, but it is discontinuous with
respect to µ
16.9.2013
B. Haasdonk, RB-Tutorial
22
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
(A3): Parameter Separability
We assume the forms a, f, l to be parameter separable:
a(u, v; µ) =
Qa
θqa (µ)aq (u, v),
q=1
u, v ∈ X, µ ∈ P
for suitable bilinear, continuous components aq : X × X → R
coefficient functions θqa : P → R, q = 1, . . . , Qa , and similar
expansions for f, l with linear functionals fq , lq and
coefficient functions θqf , θql and expansion sizes Qf , Ql
Remark:
16.9.2013
Qa , Qf , Ql should be preferably small, as they will enter
the online computational complexity.
This property also is referred to as „affine“ parameter
dependence (which is slightly misleading)
B. Haasdonk, RB-Tutorial
23
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
Sufficient Criteria for (A1), (A2)
Assume that we have parameter separability (A3) then
a f l
If coefficient functions θq , θq , θq are bounded, then the
forms a, f, l are uniformly bounded with respect to µ :
|θqf (µ)|
≤C
⇒
f(·; µ)X ≤
Qf
q=1 C
fq X =: γ̄f
If coefficient functions are strictly positive, θqa (µ) ≥ θ̄ > 0, ∀µ, q
components aq are positive semidefinite, aq (v, v) ≥ 0, ∀v, q
and a(·, ·; µ̄) is coercive for at least one µ̄ ∈ P , then a is
uniformly coercive wrt. µ
Exercise 3: Prove sufficient criteria for uniform coercivity
16.9.2013
B. Haasdonk, RB-Tutorial
24
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
Definition: Full Problem (P)
For µ ∈ P find a solution u(µ) ∈ X and output s(µ) ∈ R
such that
a(u(µ), v; µ) = f(v; µ),
∀v ∈ X
s(µ) = l(u(µ); µ)
Well-posedness: Existence, Uniqueness & Boundedness
Assuming (A1),(A2) then a unique solution of (P) exists
and is uniformly bounded
f(·; µ)X γ̄f
u(µ) ≤
≤
,
α(µ)
ᾱ
16.9.2013
|s(µ)| ≤ l(·; µ)X u(µ) ≤
γ̄l γ̄f
.
ᾱ
Proof: Lax Milgram & uniform boundedness/coercivity
B. Haasdonk, RB-Tutorial
25
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
(P) Can both represent
analytical problem, infinite dimensional (interesting from
approximation theoretic viewpoint, manifold properties)
discretized problem, high dimensional (important for
practical application of RB-methods), also denoted
„detailed problem“ and „detailed solution“
Examples of Instantiations of (P):
Thermal Block
Exercise 4: Prove, that the bilinear and linear forms of the thermal block model
are separable parametric, uniformly bounded and uniformly coercive. In
particular, provide the corresponding constants, coefficients, components.
16.9.2013
B. Haasdonk, RB-Tutorial
26
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
Examples of Instantiations of (P)
Parametric Matrix-Equation:
For µ ∈ P find a solution u(µ) ∈ RH of
A(µ)u(µ) = b(µ),
A(µ) ∈ RH×H , b(µ) ∈ RH
Corresponds to (P) by choosing
X := RH ,
a(u, v; µ) := uT A(µ)v,
Note:
16.9.2013
u, v ∈ RH
Forms by given manifold:
Choose X and arbitrary complicated (discontinuous,
nonsmooth) u : P → X. Then u(µ) is the solution of (P) by
a(v, v ; µ) := v, v f(v) := b(µ)T v,
f(v) := u(µ), v
v, v ∈ X
(A1)-(A3) are not addressed here, output is ignored
(P) can be used for MOR of finite dimensional matrix
equations, (P) may have arbitrary complex solutions
B. Haasdonk, RB-Tutorial
27
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
Solution Manifold
M := {u(µ), |u(µ) solves (P) , µ ∈ P} ⊂ X
Finite dimensional manifold for Qa = 1
Exercise 5: If a consists of a single component, Qa = 1 show, that M is
contained in an (at most) Qf -dimensional linear space.
Boundedness of Manifold
M ⊆ B γ̄f (0)
ᾱ
16.9.2013
Is consequence of the well-posedness-result.
B. Haasdonk, RB-Tutorial
28
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
Lipschitz-Continuity (extension of [EPR10])
Assume that (A1),(A2),(A3) hold and additionally the
coefficient functions are Lipschitz-continuous,
|θqa (µ) − θqa (µ )| ≤ L µ − µ etc.
Then the forms a, f, l are Lipschitz-continuous wrt. µ
|a(u, v; µ) − a(u, v; µ )| ≤ La u v µ − µ ,
La = L
q
γaq
and the solutions u and s are Lipschitz-continuous with
respect to µ
u(µ) − u(µ ) ≤ Lu µ − µ ,
Lu =
Lf
ᾱ
s(µ) − s(µ ) ≤ Ls µ − µ ,
Ls =
Ll γ̄f
ᾱ
+
γ̄f La
ᾱ2
+ γ̄l Lu
Exercise 6: Prove the Lipschitz-constants for u and s.
16.9.2013
B. Haasdonk, RB-Tutorial
29
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
Differentiability (cf. [PR06])
Assume that (A1),(A2),(A3) hold and additionally the
coefficient functions are differentiable wrt. µ .
Then the solution u : P → X is differentiable with
respect to µ and the partial derivatives ∂µi u(µ) ∈ X are
the solution of
a(∂µi u(µ), v; µ) = f˜i (v; u(µ), µ),
(∗)
with u-dependent right hand side
v∈X
Qf
Qa
f˜i (·; u(µ), µ) :=
(∂µi θqf (µ))fq (·) −
(∂µi θqa (µ))aq (u(µ), ·; µ) ∈ X .
q=1
16.9.2013
q=1
Proof (sketch): Solution of (*) uniquely exists with Lax
Milgram, and satisfies conditions for being derivative of u.
B. Haasdonk, RB-Tutorial
30
Institut für Angewandte Analysis
und Numerische Simulation
Abstract Problem
Remarks
16.9.2013
The partial derivatives are also denoted „sensitivity
derivatives“ and the variational problem (*) the
„sensitivity PDE“.
Similar statements are possible for higher order
derivatives: right hand side of sensitivity PDE depending
on lower order derivatives.
Sensitivity derivatives are useful for Parameter
Optimization: RB model for sensitivity PDEs yields gradient
information [DH13,DH13b].
The more smooth the coefficient functions, the more
smooth the solution manifold
With increasing smoothness of the manifold, we may hope
and expect better approximability by an RB-approach.
B. Haasdonk, RB-Tutorial
31
RB Method
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Reduced Basis / RB-Space
Let parameter samples be given
SN = {µ(1) , . . . , µ(N) } ⊂ P
Define „Lagrangian“ RB-Space and Basis
XN := span{u(µ(i) )}N
i=1 = spanΦN ,
ΦN := {ϕ1 , . . . , ϕN }
Remarks:
RB may be identical to snapshots, or orthogonalized.
Other MOR-Techniques: A RB-space may also be chosen
completely different/arbitrary, as long as it is a N-dimensional
subspace: Proper Orthogonal Decomposition (POD) [Vo13],
Balanced Truncation, Krylov-Supspaces, etc. [An05]
For now: Simple choice of samples: Random or equidistant
samples, assuming linear independence of snapshots.
Later: More clever choice: a-priori analysis / greedy
16.9.2013
B. Haasdonk, RB-Tutorial
33
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Definition: Reduced Problem (PN)
For µ ∈ P find a solution uN (µ) ∈ XN and output sN (µ) ∈ R
such that
a(uN (µ), v; µ) = f(v; µ),
∀v ∈ XN
sN (µ) = l(uN (µ); µ)
Remarks:
The above is called „Galerkin“ projection, as Ansatz and test
space are identical (in contrast to „Petrov-Galerkin“ required
for non-coercive problems)
Improved output estimation is possible by primal-dual
technique: see later section.
„Galerkin Orthogonality“: Error is a-orthogonal to RB-space:
a(u − uN , v) = a(u, v) − a(uN , v) = f(v) − f(v) = 0,
16.9.2013
B. Haasdonk, RB-Tutorial
v ∈ XN
34
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Well-posedness: Existence, Uniqueness & Boundedness
Identical statement as for (P), even with same constants:
Assuming (A1),(A2), then a unique solution of (PN) exists,
and is uniformly bounded
f(·; µ)X γ̄f
uN (µ) ≤
≤
,
α(µ)
ᾱ
γ̄l γ̄f
|sN (µ)| ≤ l(·; µ)X u(µ) ≤
.
ᾱ
Proof: Lax-Milgram is applicable, as continuity and
coercivity is inherited to subspaces:
a(u, u; µ)
a(u, u; µ)
inf
≥ inf
= α(µ)
2
2
u∈XN \{0}
u∈X\{0}
u
u
a(u, v; µ)
a(u, v; µ)
sup
≤ sup
= γ(µ)
u,v∈XN \{0} u v
u,v∈X\{0} u v
then same argumentation as for (P) applies.
16.9.2013
B. Haasdonk, RB-Tutorial
35
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Discrete Form of RB Problem
For given µ ∈ P and basis ΦN = {ϕi }N
i=1 define
N×N
AN (µ) := (a(ϕj , ϕi ; µ))N
i,j=1 ∈ R
f N (µ) := (f(ϕi ; µ))N
i=1 ,
N
lN (µ) := (l(ϕi ; µ))N
i=1 ∈ R
N
∈
R
Solve the following linear system for uN (µ) = (uNj )N
j=1
AN (µ)uN (µ) = f N (µ)
Then the solution of (PN) is obtained by
uN (µ) =
N
uNj ϕj ,
sN (µ) = l(µ)T uN (µ)
j=1
16.9.2013
Proof: This representation of uN (µ) fulfills (PN) by linearity
B. Haasdonk, RB-Tutorial
36
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Algebraic Stability by Using Orthonormal Basis
If a(·, ·; µ) is symmetric and ΦN is orthonormal, then the
condition number of AN (µ) is bounded (independent of N)
γ(µ)
−1 ≤
cond2 (AN (µ)) = AN (µ) AN (µ)
α(µ)
Proof: symmetry ⇒ cond2 (AN ) = λmax /λmin
N
N
Let u = (ui )i=1 be EV for λmax and set u := i=1 ui ϕi ∈ X
Orthonormality yields
2
2
2
u =
u
ϕ
,
u
ϕ
=
u
u
ϕ
,
ϕ
=
u
=
u
i
i
j
j
i
j
i
j
i
j
i,j
i i
Definition of AN and continuity yields
2
2
≤
u
u
ϕ
,
u
ϕ
=
a(u,
u)
γ(µ)
λmax u = uT AN u = a
i i i
j j j
Hence λmax ≤ γ(µ) , similar λmin ≥ α(µ)
16.9.2013
B. Haasdonk, RB-Tutorial
37
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Remark: Difference FEM/RB
Let A(µ) denote the FEM (or Finite Volume, Discontinuous
Galerkin) matrix
The RB matrix AN (µ) ∈ RN×N is small but typically dense
in contrast to the typically sparse but large matrix
A(µ) ∈ RH×H
16.9.2013
The condition of AN (µ) does not deteriorate with N (if
using orthonormal basis, e.g. by Gram Schmidt), while the
condition number of A(µ) typically grows polynomial in H.
B. Haasdonk, RB-Tutorial
38
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Relation to Best-Approximation (Lemma of Cea)
For all µ ∈ P holds
u(µ) − uN (µ) ≤
γ(µ)
inf u(µ) − v
α(µ) v∈XN
Proof: For all v ∈ XN continuity and coercivity result in
α u − uN 2 ≤ a(u − uN , u − uN )
= a(u − uN , u − v) + a(u − uN , v − uN )
=0
= a(u − uN , u − v) ≤ γ u − uN v − uN Where a(u − uN , v − uN ) = 0 follows from Galerkin
orthogonality as v − uN ∈ XN
16.9.2013
B. Haasdonk, RB-Tutorial
39
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Remarks:
„Quasi-optimality“: RB-scheme is as good as best-approximation
up to a constant.
Implication: Approximation scheme and space are decoupled:
Find a good approximating space (without RB-scheme) you are
sure, that the RB-scheme performs well.
Similar best-approximation bounds are known for interpolation
techniques (via „Lebesgue“-constant). But for interpolation
techniques (e.g. polynomial) these constants diverge to infinity
for growing dimension of the approximation space.
In contrast: the bounding constant in RB-approximation does
not grow to infinity with growing dimension. This is a
conceptional advantage of Galerkin projection over interpolation
techniques.
Exercise 7: Assuming symmetric a, the Lemma of Cea can be sharpened
by a squareroot in the constants. (Hint: Energy norm, introduced soon)
16.9.2013
B. Haasdonk, RB-Tutorial
40
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Error-Residual Relation
The error satisfies a variational problem with residual as
right hand side:
For µ ∈ P we define the residual r(·; µ) ∈ X via
r(v; µ) := f(v; µ) − a(uN (µ), v; µ),
v∈X
Then the error e(µ) := u(µ) − uN (µ) satisfies
a(e(µ), v; µ) = r(v; µ),
v∈X
Proof:
a(e, v) = a(u, v) − a(uN , v) = f(v) − a(uN , v) = r(v),
Remark: Residual vanishes on the RB-space:
v∈X
v ∈ XN ⇒ r(v) := f(v) − a(uN , v) = a(uN , v) − a(uN , v) = 0
16.9.2013
B. Haasdonk, RB-Tutorial
41
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Reproduction of Solutions
If u(µ) ∈ XN for some µ ∈ P then uN (µ) = u(µ)
Proof: e(µ) = u(µ) − uN (µ) ∈ XN hence
Remark:
α e2 ≤ a(e, e) = r(e) = 0
Reproduction of solutions is a basic consistency property.
Holds trivially, if error-bounds are available, but for some
more complex RB-schemes this may be all you can get
and a good initial consistency check.
Validation of Program Code: Choose Basis by snapshots
ϕi := u(µ(i) ), i = 1, . . . , N
Then we expect uN (µ(i) ) = ei ∈ RN to be a unit vector
16.9.2013
B. Haasdonk, RB-Tutorial
42
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Uniform Convergence of RB-approximation
Assume Lipschitz-continuity of coefficient functions, then
u(µ) and uN (µ) are Lipschitz-continuous with Lu
independent of N.
Assume {SN }N∈N to be sample sets getting dense in P ,
„fill distance“ hN := sup dist(µ, SN ),
µ∈P
lim hN = 0
N→∞
Then for all µ and „closest“ µ∗ := arg minµ ∈SN µ − µ u(µ) − uN (µ) ≤ u(µ) − u(µ∗ ) + u(µ∗ ) − uN (µ∗ ) + uN (µ∗ ) − uN (µ)
≤ Lu µ − µ + 0 + Lu µ − µ ≤ 2hN Lu
Therefore, we obtain
Note: Convergence rate linear in hN is of no practical use
16.9.2013
lim sup u(µ) − uN (µ) = 0
N→∞ µ∈P
B. Haasdonk, RB-Tutorial
43
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Coercivity Constant Lower Bound
We assume to have available a rapidly computable lower
bound for the coercivity constant
0 < αLB (µ) ≤ α(µ),
µ∈P
We assume this to be large, w.l.o.g. ᾱ ≤ αLB (µ)
(otherwise simply set αLB (µ) := ᾱ )
Continuity Constant Upper Bound
We assume to have available a rapidly computable upper
bound for the continuity constant
γUB (µ) ≥ γ(µ),
16.9.2013
µ∈P
We assume this to be small, w.l.o.g. γ̄ ≥ γUB (µ)
(otherwise simply set γUB (µ) := γ̄ )
B. Haasdonk, RB-Tutorial
44
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
A-posteriori Error Bounds
For all µ ∈ P holds
r(·; µ)X u(µ) − uN (µ) ≤ ∆u (µ) :=
αLB (µ)
|s(µ) − sN (µ)| ≤ ∆s (µ) := l(·; µ)X ∆u (µ)
Proof: testing the error-residual eqn. with e yields
αLB (µ) e2 ≤ a(e, e) = r(e) ≤ rX e
division then yields the bound for u.
Bound for output error follows with continuity
|s − sN | = |l(u) − l(uN )| = |l(u − uN )| ≤ l(·; µ)X ∆u (µ)
16.9.2013
Note: Output bound is coarse, can be improved (see later)
B. Haasdonk, RB-Tutorial
45
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Remark:
16.9.2013
General pattern: Derive error-residual relation, then apply
stability statement to obtain an error bound.
If u is the continous solution in infinite X, then the bound
is „a-priori“, as the residual norm is not computable.
In case of RB methods: If u is the FEM solution in finitedimensional X, the residual norm is computable, hence the
error bound turns into a computable quantity.
It is „a-posteriori“: reduced solution must be available.
„Rigorosity“: As the bound is a provable upper bound on
the error, the bound is denoted „rigorous“ in RB methods
(corresponding to „reliable“ error estimators in FEM
literature)
RB method with a-posteriori error control is denoted a
„certified“ RB method
B. Haasdonk, RB-Tutorial
46
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Vanishing Error Bound / Zero Error Prediction
If u(µ) = uN (µ) then ∆u (µ) = ∆s (µ) = 0
Proof:
e = 0 ⇒ 0 = a(e, v) = r(v) ⇒ rX = 0 ⇒ ∆u = 0 ⇒ ∆s = 0
Remark:
16.9.2013
Initial desired property of an error bound: Bound is zero if
the error is zero. This may give hope, that the error bound
is not too conservative, i.e. not too large overestimating
the error.
The statement is trivial in case of „effective“ error bounds
as seen soon. But if no „effective“ error bounds are
available for a more complex RB scheme, this may be as
much as you can get, or a useful initial property of an
error estimator.
This property is again useful for validating program code
B. Haasdonk, RB-Tutorial
47
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
(Uniform) Effectivity Bound
The „effectivity“ ηu (µ) of ∆u (µ) is defined and bounded by
ηu (µ) :=
∆u (µ)
u(µ)−uN (µ)
≤
γU B (µ)
αLB (µ)
≤
γ̄
ᾱ ,
µ∈P
Proof: Test error eqn. with Riesz-repr. vr ∈ X of residual:
vr 2 = vr , vr = r(vr ) = a(e, vr ) ≤ γUB (µ) e vr Therefore
vr e
ηu (µ) =
≤ γUB (µ) and
∆u (µ)
e(µ)
=
vr αLB (µ)e
≤
γUB (µ)
αLB (µ)
≤
γ̄
ᾱ
Remark
16.9.2013
Upper bound on the effectivity can be evaluated rapidly
Related notion „efficiency“ in FEM literature.
„Rigorosity“ of error bound implies ηu (µ) ≥ 1
B. Haasdonk, RB-Tutorial
48
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Relative Error Bound and Effectivity (cf. [PR06])
For all µ ∈ P holds
r(·; µ)X u(µ) − uN (µ)
1
≤ ∆rel
(µ)
:=
2
·
·
u
u(µ)
αLB (µ)
uN (µ)
rel
∆
γUB (µ)
γ̄
u (µ)
rel
≤3·
≤3· .
ηu (µ) :=
e(µ) / u(µ)
αLB (µ)
ᾱ
under the condition that ∆rel
u (µ) ≤ 1
Exercise 8: Prove this relative error bound and effectivity bound
Remark:
16.9.2013
Relative bounds are typically only valid if the bound is
sufficiently small. If these are not small, the RB space
should be improved.
B. Haasdonk, RB-Tutorial
49
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Remark: No Effectivity for Output Error Bound
Without further assumptions, one cannot expect a
bounded effectivity for the output error estimator ∆s (µ)
/ u(µ)
Example: Choose XN and µ such that uN (µ) =
Then also e(µ), r(µ), ∆u (µ), ∆s (µ) are nonzero.
Now choose l such that
l(u − uN ) = 0 ⇒ s(µ) − sN (µ) = l(e) = 0
Hence
∆s (µ)
|s(µ)−sN (µ)|
is not well defined.
(A4) Symmetry:
16.9.2013
For the remainder of this section, we additionally assume,
that a(·, ·; µ) is symmetric.
B. Haasdonk, RB-Tutorial
50
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Energy norm
For symmetric, coercive, continuous a(·, ·; µ) we define
the (µ -dependent) energy scalar product and norm
vµ := v, vµ ,
u, vµ := a(u, v; µ)
Norm Equivalence
u, v ∈ X
We have
α(µ) u ≤ uµ ≤ γ(µ) u ,
u ∈ X, µ ∈ P
Proof: Coercivity and Continuity imply
α(µ) u2 ≤ a(u, u; µ) ≤ γ(µ) u2
=u2µ
16.9.2013
B. Haasdonk, RB-Tutorial
51
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Energy Norm Error bound and Effectivity [PR06]
For µ ∈ P holds
r(·; µ)X u(µ) − uN (µ)µ ≤ ∆en
(µ)
:=
u
αLB (µ)
en
∆u (µ)
γUB (µ)
γ̄
≤
≤
,
ηuen (µ) :=
u(µ) − uN (µ)µ
αLB (µ)
ᾱ
As
µ∈P
γ(µ)
≥ 1 this is an improvement by a squareroot
α(µ)
Exercise 9: Prove this energy error bound and effectivity bound
16.9.2013
B. Haasdonk, RB-Tutorial
52
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Remark: Possible Improvement by Changing Norm
By choosing µ̄ ∈ P and setting u := uµ̄ as new norm on
X, we get
α(µ̄) = 1 = γ(µ̄)
The RB-approximation is not affected
But the error bound and effectivities are improved:
They are optimal in µ̄ : ∆u (µ̄) = e(µ̄) , ηu (µ̄) = 1
and (assuming continuity) almost optimal in the vicinity of µ̄
In the following: return to arbitrarily chosen norm on X
16.9.2013
B. Haasdonk, RB-Tutorial
53
Institut für Angewandte Analysis
und Numerische Simulation
RB Method
Improved Output Error Bound & Effectivity, Compliant Case
Assume that a(·, ·; µ) is symmetric and f = l (the so called
„compliant“ case), then we obtain the improved output error
bound and effectivity
Remark:
2
r(·;
µ)
X
0 ≤ s(µ) − sN (µ) ≤ ∆s (µ) :=
αLB (µ)
∆
γUB (µ)
γ̄
s (µ)
≤
≤
ηs (µ) :=
−
s(µ) sN (µ)
αLB (µ)
ᾱ
Proof: Follows later from more general statement
The bound gives a definite sign on the error: sN (µ) ≤ s(µ)
This output error bound ∆s (µ) is better as it is quadratic in rX while ∆s (µ) is only linear
The thermal block is a „compliant“ problem.
16.9.2013
B. Haasdonk, RB-Tutorial
54
Experiments
Institut für Angewandte Analysis
und Numerische Simulation
Experiments
Thermal Block
16.9.2013
rb_tutorial(1):
Full simulation, solution
variety as seen earlier
rb_tutorial(2):
Demo gui for
full simulation:
rb_tutorial(3)
All steps for generation
of reduced model and
timing
B. Haasdonk, RB-Tutorial
56
Institut für Angewandte Analysis
und Numerische Simulation
Experiments
Error Estimator and True Error
rb_tutorial(4): Lagrangian basis for N=5
B1 = B2 = 2
SN = (0.1, 0.1, 0.1, 0.1)
(0.5, 0.1, 0.1, 0.1)
(0.9, 0.1, 0.1, 0.1)
(1.3, 0.1, 0.1, 0.1)
(1.7, 0.1, 0.1, 0.1)
Parameter sweep for
estimator is cheap
Estimator and error are
zero for samples
Estimator is upper bound
of true error
For small parameters larger error,
hence more samples would be required
16.9.2013
B. Haasdonk, RB-Tutorial
57
Institut für Angewandte Analysis
und Numerische Simulation
Experiments
Effectivity and Bounds:
rb_tutorial(5)
α(µ) = min(µi ) = 0.1
γ(µ) = max(µi ) = µ1
Effectivities are good, only
order of 10
Effectivity upper bound
is verified
Effectivity undefined for
basis samples (division
by zero)
16.9.2013
B. Haasdonk, RB-Tutorial
58
Institut für Angewandte Analysis
und Numerische Simulation
Experiments
Error Convergence:
rb_tutorial(6): B1 = B2 = 3, µ = (µ1 , 1, 1, 1 . . . , 1)
N equidistant samples
Gram-Schmidt orth.
Test-error/estimator:
maximum over
random test set
Stest ⊂ P
µ1 ∈ [0.5, 2]
|Stest | = 100
Exponential error/bound
convergence observed
Upper bound very tight
Numerical accuracy limit
for estimators
16.9.2013
B. Haasdonk, RB-Tutorial
59
Institut für Angewandte Analysis
und Numerische Simulation
Experiments
Error Convergence:
16.9.2013
Gram-Schmidt orthonormalized basis: rb_tutorial(7)
B. Haasdonk, RB-Tutorial
60
Offline/Online Decomposition
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Offline/Online Decomposition
offline phase
online phase
uN (µ1 ), . . . , uN (µk )
time
Offline Phase:
Possibly computationally intensive, depending on H := dim(X)
Performed only once
Computation of snapshots, reduced basis, Riesz-representers
and auxiliary parameter-independent low-dim. quantities
Online Phase:
Rapid, i.e. complexity polynomial in N, Qa , Qf , Ql , independent
of H
Performed multiple times for different parameters
Assembly and solution of RB-system, computation of error
estimators and effectivity bounds.
16.9.2013
B. Haasdonk, RB-Tutorial
62
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Required: Discretization of (P)
Space X = span{ψi }H
i=1 , high dimension H := dim(X)
H×H
Inner Product Matrix K := (ψi , ψj )H
∈
R
i,j=1
Assume component matrices and vectors
H×H
Aq := (aq (ψj , ψi ))H
i,j=1 ∈ R
H
∈
f q := (fq (ψi ))H
R
i=1
For any µ ∈ P evaluate coefficients & assemble full system
A(µ) :=
H
lq := (lq (ψi ))H
i=1 ∈ R
Qa
a
q=1 θq (µ)Aq ,
f (µ) :=
Qf
f
q=1 θq (µ)f q ,
l(µ) :=
Ql
l
q=1 θq (µ)lq
H
Solve linear system A(µ)u(µ) = f (µ) for u(µ) = (ui )H
i=1 ∈ R
H
Obtain solution of (P): u(µ) = i=1 ui ψi , s(µ) := lT u
Remark:
16.9.2013
Components may be nontrivial for third-party-software!
B. Haasdonk, RB-Tutorial
63
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Offline/Online Decomposition of (PN)
Offline: After the computation of a basis ΦN = {ϕi }N
i=1
construct the parameter-independent component matrices
and vectors
N×N
AN,q := (aq (ϕj , ϕi ))N
i,j=1 ∈ R
N
f N,q := (fq (ϕi ))N
i=1 ∈ R
N
lN,q := (lq (ϕi ))N
i=1 ∈ R
Online: For given µ ∈ P evaluate the coefficient functions
and assemble the matrix and vectors
AN (µ) :=
Qa
q=1
θqa (µ)AN,q ,
f N (µ) :=
Qf
θqf (µ)f N,q ,
q=1
lN (µ) :=
Ql
θql (µ)lN,q
q=1
This exactly gives the discrete RB system AN (µ)uN (µ) = f N (µ)
stated earlier, that can then be solved and gives uN (µ), sN (µ)
16.9.2013
B. Haasdonk, RB-Tutorial
64
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Remark: Simple Computation of Reduced Components
The reduced component matrices/vectors do not require
any space-integration, if the high dimensional components
are available:
Assume expansion of reduced basis vectors
ϕj =
H
i=1 ϕij ψi
With coefficient matrix
H×N
ΦN := (ϕij )H,N
i,j=1 ∈ R
Reduced components are then simply obtained by
matrix-matrix/matrix-vector multiplications
AN,q = ΦTN Aq ΦN ,
16.9.2013
f N,q = ΦTN f q ,
B. Haasdonk, RB-Tutorial
lN,q = ΦTN lq
65
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Complexities of (PN)
Offline: O(NH 2 + NH(Qf + Ql ) + N 2 HQa )
Online: O(N 3 + N(Qf + Ql ) + N 2 Qa ) independent of H
Runtime Diagram
(P)
Runtime for k simulations
With (P): t = k · tfull
With (PN): t = toff line + k · tonline
Intersection
k∗ =
t
toff line
tf ull −tonline
(PN)
k∗
k
ACHTUNG: RB Payoff only for „multiple“ requests
16.9.2013
RB model offline time only pays off if sufficiently many k ≥ k∗
reduced simulations are expected.
B. Haasdonk, RB-Tutorial
66
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Remark: No Distinction between u and uh
Remember, we did not discriminate in (P) between the
true weak (Sobolev) space solution u and the fine FEM
solution, say uh (we only do this for this slide). This can
be motivated by two arguments:
1. In view of the independency of the online phase on H,
we can assume u − uh arbitrary small, hence H arbitrary
large (just let the offline phase be sufficiently accurate)
without affecting the online runtime.
2. In practice, the reduction error will dominate the overall
error, the FEM error is neglegible ε := u − uh uh − uN Then it is sufficient to control uh − uN uh − uN − ε ≤ u − uN ≤ uh − uN + ε
16.9.2013
B. Haasdonk, RB-Tutorial
uN (µ)
uh (µ)
u(µ)
67
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Requirements for Error and Effectivity Bounds
We require offline/online decompositions of the following
quantities if we want to compute a-posteriori and effectivity
bounds rapidly:
Dual norm of the residual r(·; µ)X for all error bounds
Dual norm of output functional l(·; µ)X for output error
bound ∆s (µ)
rel
Norm of RB-solution uN (µ) for relative error bound ∆u (µ)
Lower coercivity constant bound αLB (µ) for all error and
effectivy bounds
Upper bound for continuity constant γUB (µ)
for
effectivity upper bound
16.9.2013
B. Haasdonk, RB-Tutorial
68
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Parameter Separability of Residual
Set Qr := Qf + NQa and define rq ∈ X , q = 1, . . . , Qr via
(r1 , . . . , rQr ) := f1 , . . . , fQf , a1 (ϕ1 , ·), . . . , aQa (ϕ1 , ·),
. . . , a1 (ϕN , ·), . . . , aQa (ϕN , ·))
N
Let uN (µ) = i=1 uNi ϕi be solution of (PN)
Define θqr (µ), q = 1, . . . , Qr via
f
f
r
a
a
(θ1r , . . . , θQ
)
:=
θ
,
.
.
.
,
θ
,
−θ
·
u
,
.
.
.
,
−θ
· uN1 ,
N1
1
1
Q
Qf
r
a
. . . , −θ1a
·
a
uNN , . . . , −θQ
a
· uNN
∈ X denote the Riesz-representers of r, rq
Let vr , vr,q
Then r, vr are parameter separable via
r(v; µ) =
Qr
q=1
16.9.2013
θqr (µ)rq (v),
vr (µ) =
Qr
θqr (µ)vr,q ,
q=1
µ ∈ P, v ∈ X
Proof: By definition and linearity
B. Haasdonk, RB-Tutorial
69
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Computation of Riesz-Representers
H
K
:=
(ψ
,
ψ
)
Recall: X = span{ψi }H
,
i
j
i,j=1
i=1
H
For g ∈ X the coefficient vector v = (vi )H
of its
i=1 ∈ R
H
Riesz-representer vg = i=1 vi ψi ∈ X is obtained by
solving the sparse linear system
Kv = g
with right hand side vector g = (g(ψi ))H
i=1
H
Proof: For any u = i=1 ui ψi with coefficient vector u = (ui )H
i=1
we verify
g(u) =
H
i=1
16.9.2013
ui g(ψi ) = uT g = uT Kv =
H
ui ψi ,
i=1
B. Haasdonk, RB-Tutorial
H
j=1
vj ψj
= vg , u
70
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Offline/Online Decomposition of Dual Norm of Residual
Offline: After the offline-phase of (PN) we compute the
Riesz-representers vr,q ∈ X of the residual components
rq ∈ X and define the matrix
r
Qr ×Qr
Gr := (rq (vr,q ))Q
q,q =1 ∈ R
Online: For given µ ∈ P and RB-solution uN (µ) compute
r
the residual coefficient vector θr (µ) := (θ1r (µ), . . . , θQ
(µ)) and
r
r(·; µ)X Proof: G is symmetric as rq (vr,q ) = vr,q , vr,q , then
r(·; µ)2X 16.9.2013
= θr (µ)T Gr θr (µ)
2
= vr =
Qr
r
(µ)vr,q ,
θ
q
q=1
Qr
q =1
θqr (µ)vr,q = θr (µ)T Gr θr (µ)
B. Haasdonk, RB-Tutorial
71
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Offline/Online Decomposition for l(·; µ)X Completely analogous as for dual norm of residual:
Offline: compute the Riesz-representers vl,q ∈ X of the
output functional components lq ∈ X and define
l
Ql ×Ql
Gl := (lq (vl,q ))Q
∈
R
q,q =1
Online: For given µ ∈ P compute the output coefficient
l
vector θl (µ) := (θ1l (µ), . . . , θQ
(µ)) and
l
l(·; µ)X 16.9.2013
= θl (µ)T Gl θl (µ)
B. Haasdonk, RB-Tutorial
72
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Offline/Online Decomposition for uN (µ)
Offline: After the basis generation, compute the reduced
inner product matrix
N×N
K N := (ϕi , ϕj )N
i,j=1 ∈ R
Online: For given µ ∈ P and RB solution uN (µ) with
coefficient vector uN (µ) ∈ RN we obtain
Remark
uN (µ) = uN (µ)T K N uN (µ)
Simple computation via basis matrix multiplication:
K N := ΦTN KΦN
16.9.2013
B. Haasdonk, RB-Tutorial
73
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
„Min-Theta“ Approach for Coercivity Lower Bound
One approach that can be applied in certain cases:
Assume that the components satisfy aq (u, u) ≥ 0, q = 1, . . . , Qa
and the coefficients fulfill θqa (µ) > 0, q = 1, . . . , Qa
Let µ̄ ∈ P such that α(µ̄) is available.
Then we have
0 < αLB (µ) ≤ α(µ),
µ∈P
with the lower bound
αLB (µ) := α(µ̄) ·
16.9.2013
min
q=1,...,Qa
θqa (µ)
θqa (µ̄)
(No symmetry required)
B. Haasdonk, RB-Tutorial
74
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Computation of α(µ) for (P)
In offline-phase some evaluations of α(µ) may be required,
e.g. for Min-theta or other procedures.
H
K
:=
(ψ
,
ψ
)
Let A := (a(ψj , ψi ; µ))H
and
i
j
i,j=1 be given.
i,j=1
Define symmetric part As := 12 (A + AT ) , then
α(µ) = λmin (K −1 As )
Proof: Assume K = LLT , use substitution v = LT u
in
a(u, u)
uT As u
vT L−1 As L−T v
α(µ) = inf
= infH T
= infH
u∈X u2
u
Ku
vT v
u∈R
v∈R
Hence, alpha minimizes Rayleigh-quotient, i.e.
α(µ) = λmin (L−1 As L−T )
K −1 As and L−1 As L−T are similar thus have identical λmin :
LT (K −1 As )L−T = LT L−T L−1 As L−T = L−1 As L−T
16.9.2013
B. Haasdonk, RB-Tutorial
75
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Remark: Prevent Inversion of K:
Inversion of K frequently badly conditioned, fill-in-effect,
etc., hence prevention of inversion is recommended:
Reformulation as generalized Eigenvalue problem:
K −1 As u = λu
⇔ As u = λKu
and determine smallest generalized eigenvalue
Remark: Computation of Continuity Constant & Bound
Similar: Computation of continuity constant via largest
singular value of suitable matrix.
Then one can formulate max-theta approach for a
continuity constant upper bound
Exercise 10: Formulate a Max-Theta approach for a continuity constant upper
bound γUB (µ), under the assumptions, that a(·, ·; µ) is symmetric, all aq (·, ·)
are positive semidefinite, θqa (µ) > 0 and γ(µ̄) is available for one µ̄ ∈ P
16.9.2013
B. Haasdonk, RB-Tutorial
76
Institut für Angewandte Analysis
und Numerische Simulation
Offline/Online Decomposition
Complexities of Error Estimators ∆u (µ), ∆s (µ)
(Including Min-theta)
3
2
2
2
Offline: O(H + H (Qf + Ql + NQa ) + H(Qf + NQa ) + HQl )
2
2
Online: O((Qf + NQa ) + Ql + Qa )
independent of H
Very clear: Online quadratic dependence on Qa , Qf , Ql ,
this can become prohibitive in case of too large
expansions
Remark: Successive Constraint Method [HRSP07]
16.9.2013
Alternative to Min-Theta
Offline: Computation of many α(µ(i) ), i = 1, . . . , M
Online: solution of a small linear program for computing
coercivity lower bound (or similar continuity upper bound)
B. Haasdonk, RB-Tutorial
77
Basis Generation
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Recall: „Lagrangian“ Reduced Basis
Let parameter samples be given SN = {µ(1) , . . . , µ(N) } ⊂ P
Define „Lagrangian“ RB-Space and Basis
XN := span{u(µ(i) )}N
i=1 = spanΦN ,
Remarks:
ΦN := {ϕ1 , . . . , ϕN }
Good approximation globally in P is possible, subject to
suitably distributed points.
This is in contrast to local approximation, e.g. first order
Taylor basis as used in early RB literature [FR83]:
ΦN := {u(µ(0) , ∂µi u(µ(0) , . . . , ∂µp u(µ(0) )))}
Central Questions:
16.9.2013
How to select sample points? How good will the basis be?
For which problems will it work?
B. Haasdonk, RB-Tutorial
79
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Optimal RB Space
XN := arg
min
Y ⊂X
dim(Y )=N
E(XN )
E(XN ) := sup u(µ) − uN (µ)
µ∈P
Highly nonlinear optimization problem for N-dimensional
space, practically infeasible
Modifications for practical „Greedy Procedure“:
16.9.2013
Iterative relaxation: Instead of one optimization problem
for complete basis, incrementally search „next best
vector“ and extend existing basis
Instead of optimization over parameter space perform
maximum search over training set of parameters
Allow general error indicator ∆(Y, µ) ∈ R+ as substitute for
u(µ) − uN (µ) (using XN := Y )
B. Haasdonk, RB-Tutorial
80
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Greedy Procedure [VPRP03]
Let Strain ⊆ P be a given training set of parameters and
εtol > 0 a given error tolerance. Set Φ0 := ∅, X0 := {0}, S0 := ∅
and define iteratively
max ∆(Xn , µ) > εtol
while εn :=
µ∈Strain
µ(n+1) := arg max ∆(Xn , µ)
µ∈Strain
(n+1)
Sn+1 := Sn ∪ {µ
ϕn+1 := u(µ(n+1) )
}
Φn+1 := Φn ∪ {ϕn+1 }
Xn+1 := Xn + span{ϕn+1 }
end while
Finally set N := n + 1
16.9.2013
B. Haasdonk, RB-Tutorial
81
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Remarks:
First use of Greedy in RB in [VPRP03]
In literature also frequently first „search“ is skipped by
arbitrarily choosing µ(1)
The training set is mostly chosen as random or structured
finite subset of P
Orthonormalization by Gram-Schmidt can be added in loop
Termination: Simple criterion: If for all µ ∈ P and all
subspaces Y ⊂ X holds
u(µ) ∈ Y ⇒ ∆(Y, µ) = 0
16.9.2013
then the Greedy algorithm terminates in at most |Strain |
steps. Reason: No sample will be selected twice.
Basis is hierarchical: Φn ⊂ Φm , n < m
B. Haasdonk, RB-Tutorial
82
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Choice of Error Indicators
i) Orthogonal projection error as indicator
∆(Y, µ) := inf v∈Y u(µ) − v = u(µ) − PY u(µ)
Motivation: If projection error is small then with „Cea“
also RB-error is small
-Expensive to evaluate, high dimensional operations
-All snapshots for all training parameters must be
computed and stored, |Strain | thus limited.
+Termination criterion trivially satisfied
+Approximation space decoupled from RB scheme
+Can be applied without RB-scheme and without aposteriori error estimators
16.9.2013
B. Haasdonk, RB-Tutorial
83
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Choice of Error Indicators
ii) True RB error as indicator
∆(Y, µ) := u(µ) − uN (µ)
Motivation: This directly is the error measure used in
E(XN )
-Expensive to evaluate, high dimensional operations
-All snapshots for all training parameters must be
computed and stored, |Strain | thus limited.
+Termination criterion satisfied in case of „Reproduction
of Solutions“ property
+Can be applied without a-posteriori error estimators
16.9.2013
B. Haasdonk, RB-Tutorial
84
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Choice of Error Indicators
iii) A-posteriori error estimator as indicator:
∆(Y, µ) := ∆u (µ)
(or energy or relative error bounds)
Motivation: Minimizing this ensures that true RB-error
also is small, if bounds are „rigorous“
+Cheap to evaluate, only low dimensional operations
+Only N snapshots must be computed, |Strain | can be
very large.
+Termination criterion satisfied in case of „Vanishing
Error Bound“ and „Reproduction of Solutions“ property
-If a-posteriori error bound is overestimating the RB
error much then the space may be not good
16.9.2013
B. Haasdonk, RB-Tutorial
85
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Goal-Oriented Indicators:
When using output-error or output error estimators
∆(Y, µ) := |s(µ) − sN (µ)|
in the greedy procedure, the procedure is called „goal
oriented“. The basis will be possibly quite small, very
accurately approximating the output, but not necessarily
approximating the field variable well.
When using field-oriented indicators
en
∆(Y, µ) := ∆u (µ), ∆rel
u (µ), ∆u (µ)
in the greedy procedure, the basis may be larger, well
approximating both the field variable and the output.
16.9.2013
B. Haasdonk, RB-Tutorial
86
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Monotonicity
\
∆(Xn+1 , µ) ≤ ε
In general ∆(Xn , µ) ≤ ε ⇒
This means, that greedy error sequence (εn )n≥1 may be
non monotonic
If relation to best-approximation holds
∆(Xn , µ) ≤ C inf v∈Xn u(µ) − v
at least a boundedness or even asymptotic decay can be
expected
Monotonicity, however, can be proven in special cases:
Exercise 11: Prove that the Greedy algorithm produces monotonically
decreasing error sequences (εn )n≥1 if
i) ∆(Y, µ) := u(µ) − PY u(µ), i.e. indicator chosen as orth. projection error
ii) in compliant case ( a(·, ·; µ) symmetric and l = f ) and ∆(Y, µ) := ∆en
u (µ) ,
i.e. indicator chosen as energy error estimator.
16.9.2013
B. Haasdonk, RB-Tutorial
87
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Remark: Overfitting, Quality Measurement
In terms of statistical learning theory, Strain is a „training
set“ of parameters and εN is the „training error“
Strain must represent P well, should be chosen as large
as possible
If training set is chosen too small or unrepresentative
„overfitting“ will occur, i.e.
maxµ∈P ∆(XN , µ) εN
16.9.2013
=> Low training error is a necessary but not a sufficient
criterion for a good model (example „notepad“)
=> Never compare models only by training error. Use
error on independent „test-set“ instead.
B. Haasdonk, RB-Tutorial
88
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Practice/Theory Gap:
Rb_tutorial(8): B1 = B2 = 2, µ ∈ P = [0.5, 2]4
Greedy with random
Strain ⊂ P
|Strain | = 1000
Estimator ∆(Y, µ) := ∆u (µ)
Gram-Schmidt orth.
Test-error/estimator:
maximum over
random test set
Stest ⊂ P
|Stest | = 100
Exponential error decay
observed
16.9.2013
So Greedy is a well performing heuristic procedure
Formal convergence statements for analytical foundation?
B. Haasdonk, RB-Tutorial
89
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Kolmogorov n-width dn(M)
Maximum approximation error of best linear subspace
dn (M) :=
inf
Y ⊂X
dim(Y )=n
sup u − PY u
u∈M
Decay indicates „approximability by linear subspaces“
(dn (M))n∈N is a monotonically decreasing sequence
Examples
Unit balls: bad approximation, no decay
M = {u | u ≤ 1} ⊂ H 1 ([0, 1])
„Cereal Box“: good approximation, exponential decay
[−2−i , 2−i ] ⊂ l2 (R)
i∈N
16.9.2013
dn (M) = 1, n ∈ N
B. Haasdonk, RB-Tutorial
dn (M) ≤ C · 2−n , n ∈ N
90
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Greedy Convergence Rates [BCDDPW10], [BMPPT09]
If M is well approximable by linear spaces, then the
Greedy procedure will provide a quasi-optimal subspace:
Let Strain = P be compact and the greedy selection
criterion guarantee (for suitable γ ∈ (0, 1] )
u(µ(n+1) ) − PXn u(µ(n+1) ) ≥ γ sup u − PXn u
u∈M
Then we can obtain algebraic convergence:
dn (M) ≤ Mn−α , n > 0
⇒
εn ≤ CMn−α , n > 0
Or exponential convergence:
−anα
dn (M) ≤ Me
,n > 0
⇒
−cnβ
εn ≤ CMe
,n > 0
(For suitable constants)
16.9.2013
B. Haasdonk, RB-Tutorial
91
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Strong vs. Weak Greedy
If γ = 1 it is a „Strong Greedy“
If γ < 1 it is a „Weak Greedy“
Strong Greedy can be realized by ∆(Y, µ) := u(µ) − PY u(µ)
Error Estimator ∆(Y, µ) := ∆u (µ) Results in Weak Greedy!
Thanks to Cea, Effectivity and error bound properties:
(n+1)
(n+1) (n+1)
) − PXn u(µ
) = inf u(µ
) − v
u(µ
v∈XN
α(µ) α(µ)
(n+1)
(n+1) ≥
) − uN (µ
) ≥
∆u (µ(n+1) )
u(µ
γ(µ)
γ(µ)ηu (µ)
α(µ)
α(µ)
=
sup ∆u (µ) ≥
sup u(µ) − uN (µ)
γ(µ)ηu (µ) µ∈P
γ(µ)ηu (µ) µ∈P
α(µ)
ᾱ2
sup u(µ) − PXN u(µ) ≥ 2 sup u(µ) − PXN u(µ) .
≥
γ(µ)ηu (µ) µ∈P
γ̄ µ∈P
16.9.2013
Hence, weakness factor γ = (ᾱ/γ̄)2 ∈ (0, 1]
B. Haasdonk, RB-Tutorial
92
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Problem Reformulation
For which instantiations of (P) do we get exponential
decaying Kolmogorov n-width?
Clearly not for all (P): imagine M a „sphere filling curve“
Positive example given by ([MPT02],[PR06]), specialization
for the thermal block:
Global Exponential Convergence for p=1
16.9.2013
Consider (P) to be the thermal block with B1 = 2, B2 = 1, µ1 = 1
and single parameter µ = µ2 ∈ P
Let P := [µmin , µmax ] and N0 be sufficiently large
Choose µmin = µ(1) < . . . < µ(N) = µmax logarithmically
equidistant and XN the corresponding RB-space
Then
u(µ) − uN (µ)µ
− N−1
u(µ)µ
≤e
N0 −1
, µ ∈ P, N ≥ N0 .
B. Haasdonk, RB-Tutorial
93
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Training Set Treatment
16.9.2013
Multistage greedy [Se08]
(0)
(m)
⊂ . . . ⊂ Strain := Strain .
Decompose in coarser sets Strain
Run Greedy on coarsest set, then start greedy on next
larger set with first basis as starting basis, etc.
Adaptive Extension [HDO11]
Large coarse
Stop greedy when overfitting
train set
Locally extend training set
Full Optimization: [UVZ12]
Optimization in greedy loop
Randomization [HSZ13]
Adaptive
refined
In each greedy step new
random training set
B. Haasdonk, RB-Tutorial
94
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Parameter Domain Partitioning
16.9.2013
Complex problems may require infeasibly large basis
N ≤ Nmax , εN ≤ εtol can not simultaneously be satisfied
Solution: Partitioning of P, one basis per subdomain
hp-RB [EPR10]:
P-Partitioning: [HDO11]:
adaptive bisection
adaptive hexahedral
refinement
B. Haasdonk, RB-Tutorial
95
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Gramian Matrices Revisited
For {ui }ni=1 ⊂ X we define the Gramian matrix
G := (ui , uj )ni,j=1 ∈ Rn×n
We have seen such matrices play an important role in
offline/online decomposition
They allow to perform some further operations
independent of H
They have some nice properties: exercise
Exercise 12: Show that the following holds for the Gramian matrix:
i) G is symmetric and positive semidefinite
ii) rank(G) = dim(span({ui }n
i=1 ))
G is positive definite
iii) {ui }n
i=1 are linearly independent ⇔
16.9.2013
B. Haasdonk, RB-Tutorial
96
Institut für Angewandte Analysis
und Numerische Simulation
Basis Generation
Orthonormalization: Gram Schmidt
Useful for improving condition of the RB system matrix
Let basis ΦN = {ϕi }N
i=1 ⊂ X be given with Gramian matrix K N
Set C := (LT )−1 with L being a Cholesky factor of K N = LLT
Define the transformed basis Φ̃N := {ϕ̃i }N
i=1 ⊂ X by
ϕ̃j :=
N
i=1 Cij ϕi
Then Φ̃N is the Gram-Schmidt orthonormalization of ΦN
Exercise 13: Prove that the above indeed performs Gram-Schmidt
orthonormalization, i.e. set for i = 1, . . . , N
vi := ϕi −
i−1
j=1 ϕ̄j , ϕi ϕ̄j
And show that ϕ̄j = ϕ̃j , j = 1, . . . , N
16.9.2013
ϕ̄i := vi / vi B. Haasdonk, RB-Tutorial
97
Primal-Dual RB Approach
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Recall:
For nonsymmetric, noncompliant case, we could only
obtain an output-error estimator ∆s (µ), that only scaled
linear with rX , and we showed the impossibility of
obtaining effectivity bounds without further assumptions
In contrast, for the compliant case, the output error
estimator ∆s (µ) scaled quadratically in rX and we
obtained effectivity bounds.
Goal of this section:
16.9.2013
Improved output estimation for general nonsymmetric
and/or noncompliant case by primal-dual techniques
(but still no output effectivity bounds)
(P) and (PN) are still required as „primal“ problems
B. Haasdonk, RB-Tutorial
99
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Definition: Full „Dual“ Problem (Pdu)
For µ ∈ P
find a solution udu (µ) ∈ X
a(v, udu (µ); µ) = −l(v; µ),
satisfying
∀v ∈ X
Remark:
16.9.2013
Obviously, the (negative) output functional is used as
right hand side and the „arguments“ are exchanged on
the left.
Well-posedness (existence, uniqueness and stability)
follow identical to „primal“ Problem (P)
The dual problem only is required formally as reference,
to which the dual error will be measured. Additionally, it
can be used in practice to generate dual snapshots.
B. Haasdonk, RB-Tutorial
100
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Dual RB Space
We assume to have a dual RB-space
du
⊂ X,
XN
16.9.2013
dim XN = N du
that approximates the dual solutions udu (µ) well,
/ N
possibly N du =
du
= XN
Possible choice (without guarantee of success!) XN
Alternatives: Greedy procedure for (Pdu) using snapshots
of the full dual problem; Further alternative: combined
approach; details explained at end of this section.
B. Haasdonk, RB-Tutorial
101
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Definition: Primal-Dual Reduced Problem (PN)
For µ ∈ P find the solution uN (µ) ∈ XN of (PN),
du
a solution udu
N (µ) ∈ XN satisfying
a(v, udu
N (µ); µ) = −l(v; µ),
du
∀v ∈ XN
and the corrected output sN (µ) ∈ R
sN (µ) := l(uN (µ); µ) − r(udu
N (µ); µ)
Remarks:
16.9.2013
Well-posedness holds again via Lax-Milgram
„dual-weighted-residual“ treatment as in goal-oriented
FEM literature
B. Haasdonk, RB-Tutorial
102
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Dual A-posteriori Error and Effectivity Bound
We introduce the dual residual rdu (·; µ) ∈ X rdu (v; µ) := −l(v; µ) − a(v, udu
N (µ); µ)),
v∈X
and obtain the a-posteriori error bound
du
du
r (·; µ)X du
du
u (µ) − uN (µ) ≤ ∆u (µ) :=
αLB (µ)
with effectivity bound
16.9.2013
du
∆
γUB (µ)
γ̄
u (µ)
du
ηu (µ) := du
≤
≤
du
αLB (µ)
ᾱ
u (µ) − uN (µ)
Proof: Completely analogous to the primal problem
B. Haasdonk, RB-Tutorial
103
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Improved Output A-posteriori Error Bound
For µ ∈ P holds
du
−
)
=
l(u
u
)
+
r(u
Proof: s − sN = l(u) − l(uN ) + r(udu
N
N
N)
du
r(·; µ)X r (·; µ)X |s(µ) − sN (µ)| ≤ ∆s :=
αLB (µ)
du
= −a(u − uN , udu ) + f(udu
N ) −a(uN , uN )
a(u,udu
N )
Then
|s − sN |
16.9.2013
du
= −a(u − uN , udu − udu
N ) =: −a(e, e )
du ≤ |a(e, e )| = |r(e )| ≤ rX e du du
≤ rX ∆u ≤ rX r X /αLB
du
du
B. Haasdonk, RB-Tutorial
104
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Remark: Squared Effect
We see the desired „squared“ effect by the product of the
residual norms.
Remark: No Effectivity for Output Error Bound ∆s
Without further assumptions, one cannot get output
effectivity bounds for ∆s , as s − sN may be zero, while
∆s =
/ 0 , hence the quotient is not well defined.
du
Example: Choose
vl ⊥ vf ∈ X, XN = XN
⊥ {vf , vl }
a(u, v) := u, v ,
then u = vf ,
udu = vl ,
f(v) := vf , v ,
uN = 0,
udu
N =0
e = vf , edu = vl ⇒ r =
/ 0, rdu =
/ 0
but s − sN = −a(e, edu ) = vf , vl = 0
16.9.2013
l(v) := − vl , v
⇒
∆s =
/ 0
Reminder: „compliant“ case gave output effectivity bounds
B. Haasdonk, RB-Tutorial
105
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Remark: Dual Problem is Redundant for Compliant Case
For the compliant case, we claimed
2
r(·;
µ)
X
0 ≤ s(µ) − sN (µ) ≤ ∆s (µ) :=
αLB (µ)
The right ineq. is exactlya consequence
of the primal-dual
error bound, as rX = rdu X and sN = sN :
With l = f and symmetry we obtain u = −udu , uN = −udu
N
and therefore r = −rdu ⇒ rX = rdu X Further, r(udu
N ) = −r(uN ) = 0 ⇒ sN = sN
The left ineq. Follows by coercivity:
s − sN = s − sN = −a(e, edu ) = a(e, e) ≥ 0
16.9.2013
The primal-dual approach only can lead to improvements
in the non-compliant case, otherwise the simple primal
approach is sufficient.
B. Haasdonk, RB-Tutorial
106
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Remark: Output Effectivity Bound for Compliant Case
For the compliant case we claimed
γUB (µ)
γ̄
∆
s (µ)
ηs (µ) :=
≤
≤
s(µ) − sN (µ)
αLB (µ)
ᾱ
Proof: Cauchy-Schwarz and norm equivalence:
vr 2 = vr , vr = r(vr ) = a(e, vr ) = e, vr µ ≤ eµ vr µ ≤ eµ
⇒ rX = vr ≤ eµ
√
γUB vr √
γUB
Then we conclude using definitions
ηs =
16.9.2013
∆s
=
s − sN
r2X r2X γUB e2µ
/αLB
γ̄
≤
≤
=
a(e, e)
ᾱ
αLB e2µ
αLB e2µ
B. Haasdonk, RB-Tutorial
107
Institut für Angewandte Analysis
und Numerische Simulation
Primal-Dual RB Approach
Remarks: Offline/Online, Basis Generation
16.9.2013
Offline/online procedure analogous to primal problem
Use of error estimation for basis generation:
du
Run separate greedy procedures for XN , XN using
∆u , ∆du
u with the same tolerance. Then the maximal
primal and dual residuals will have similar order,
indeed leading to a „squared“ effect in the output error
estimator ∆s
Alternative is a combined generation of primal and dual
space: Run a greedy with the error bound ∆s and
enrich both spaces simultaneously with corresponding
snapshots of currently worst parameter.
B. Haasdonk, RB-Tutorial
108
Conclusion/Extensions
Institut für Angewandte Analysis
und Numerische Simulation
Conclusion/Extensions
Summary:
Extensions within this Summerschool:
RB for Linear coercive problems: Methodology, Analysis,
Error-control, Basis-Generation, Offline/Online, Software
Noncoercive Problems: Lecture G. Rozza
Systems, Flow Problems, Geometry: Lecture G. Rozza
Nonlinear Problems: Lecture by M. Grepl
Time-dependent Problems: Lectures M. Grepl, S. Volkwein
Optimization, Opt. Control : Lectures M. Grepl, S. Volkwein
Further Extensions that could not be addressed here:
16.9.2013
Domain Decomposition, Multiphysics, Multiscale Approaches,
Stochastic Problems ⇒ augustine.mit.edu, www.morepas.org
B. Haasdonk, RB-Tutorial
110
Institut für Angewandte Analysis
und Numerische Simulation
References
[An05] A.C. Antoulas: Approximation of Large-scale Dynamical Systems, SIAM, 2005.
[BCDDPW10] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtazczyk.
Convergence rates for greedy algorithms in reduced basis methods. IGPM report,
RWTH Aachen, 310, 2010.
[BMPPT09] A. Buffa, Y. Maday, A.T. Patera, C. Prud‘homme, G. Turinici. A priori
convergence of the greedy algorithm for the parametrized reduced basis. M2AN,
submitted 2009.
[DH13] M. Dihlmann, B. Haasdonk: Certified PDE-constrained parameter
optimization using reduced basis surrogate models for evolution problems, SimTech
Preprint, University of Stuttgart, 2013.
[DH13b] M. Dihlmann, B. Haasdonk: Certified Nonlinear Parameter Optimization with
Reduced Basis Surrogate Models, SimTech Preprint, University of Stuttgart, 2013.
[EPR10] J.L. Eftang, A.T. Patera, and E.M. Rønquist: An "hp" Certified Reduced Basis
Method for Parametrized Elliptic Partial Differential Equations. SIAM Journal on
Scientific Computing, 32(6):3170-3200, 2010.
[FR83] J.P. Fink and W.C. Rheinboldt. On the error behaviour of the reduced basis
technique for nonlinear finite element approximations. ZAMM, 63:21-28, 1983.
[Ha11] B. Haasdonk: Reduzierte-Basis-Methoden, Vorlesungsskript SS 2011, IANSReport 4/11, University of Stuttgart, 2011.
[HDO11] Haasdonk, B.; Dihlmann, M. & Ohlberger, M.: A Training Set and Multiple
Basis Generation Approach for Parametrized Model Reduction Based on Adaptive
Grids in Parameter Space, Mathematical and Computer Modelling of Dynamical
Systems, 2011, 17, 423-442.
16.9.2013
B. Haasdonk, RB-Tutorial
111
Institut für Angewandte Analysis
und Numerische Simulation
References
[HSZ13] J.S. Hesthaven, B. Stamm, S. Zhang: Eficient Greedy Algorithms for High-Dimensional
Parameter Spaces with Applications to Empirical Interpolation and Reduced Basis Methods,
M2AN, Accepted, 2013.
[Ho33] H. Hotelling: Analysis of a Complex of Statistical Variables with Principal Components.
Journal of Educational Psychology, 1933.
[HRSP07] D.B.P. Huynh, G. Rozza, S. Sen, and A.T. Patera, A Successive Constraint Linear
Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants.
CR Acad Sci Paris Series I 345:473–478, 2007.
[Jo02] I.T. Joliffe: Principal Component Analysis. Springer Series in Statistics, 2002.
[MPT02] Y. Maday, A.T. Patera, G. Turinici: A-priori convergence theory for reduced basis
approximations of single-parameter symmetric coercive elliptic partial differential equations. C.R.
Acad. Sci. Paris, Der. I, 335:289-294, 2002.
[PR06] A.T. Patera and G. Rozza: „Reduced Basis Approximation and A Posteriori Error
Estimation for Parametrized Partial Differential Equations, Version 1.0, Copyright MIT 2006, to
appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering.
[Se08] S. Sen, Reduced-Basis Approximation and A Posteriori Error Estimation for ManyParameter Heat Conduction Problems. Numerical Heat Transfer, Part B: Fundamentals
54(5):369–389, 2008.
[VPRP03] K. Veroy, C. Prud‘homme, D.V. Rovas, A.T. Patera. A-posteriori error bounds for
reduced basis approximation of parametrized noncoercive and nonlinear elliptic partial
differential equations. In Proc. 16th AIAA computational fluid conference, 2003, paper 2003-3847
[Vo13] S. Volkwein: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling.
Univerity of Constance, 2013.
[UVZ12] K. Urban, S. Volkwein, O. Zeeb: Greedy Sampling Using Nonlinear Optimization.
Preprint, University of Ulm, 2012.
16.9.2013
B. Haasdonk, RB-Tutorial
112
Institut für Angewandte Analysis
und Numerische Simulation
Computer Exercises
1. Installation
Install and start RBmatlab according to instructions given in
class
2. Reproduction of scripts/rb_tutorial.m
Reproduce the results of scripts/rb_tutorial.m, steps 1 to 8
some lines are missing in the file scripts/rb_tutorial_buggy.m,
which must be filled.
3. Own Experiments: Create new steps 9, 10:
Take Basis from step 4. Run full and reduced simulation for
mu=(1,0.2,0.2,0.2) and mu=(1.0,0.1,1.0,0.1), determine output
s, s_N, errors s-s_N, |u-u_N|, estimators Delta_u, Delta_s.
Explain the results with the theoretical findings.
Run the greedy procedure (with error-estimator as criterion) for
increasing block numbers, i.e. (B1,B2) = (2,2),(3,3),(4,4) and
plot the resulting training error estimator decays, how do they
compare? (Hint: detailed_data.RB_info.max_err_est_sequence
contains error indicator sequence after greedy)
16.9.2013
B. Haasdonk, RB-Tutorial
113