Parametrized theories: Making EM even ``gaugier
Transcrição
Parametrized theories: Making EM even ``gaugier
Parametrized theories: Making EM even “gaugier” Juan Margalef Bentabol Joint work with F. Barbero (CSIC) and Eduardo J.S. Villaseñor (UC3M) 21st International Conference on General Relativity and Gravitation July 2016 - New York Motivation: parametrized (M ∼ = Σ × I, g) being Σ 3-manifold I = [t0 , t1 ] Motivation: parametrized (M ∼ = Σ × I, g) being Σ 3-manifold I = [t0 , t1 ] Motivation: parametrized (M ∼ = Σ × I, g) being Σ 3-manifold I = [t0 , t1 ] Motivation: parametrized (M ∼ = Σ × I, g) being Σ 3-manifold I = [t0 , t1 ] Motivation: parametrized (M ∼ = Σ × I, g) being Z1 Σ 3-manifold I = [t0 , t1 ] Z2 Motivation: parametrized (M ∼ = Σ × I, g) being Z1 + Diffsp (M ) := Σ 3-manifold I = [t0 , t1 ] Z2 T Z.∂t future timelike Z : M → M diff. / Z(Σ × {t}) spacelike Our model J. Margalef Bentabol Parametrized EM Field Action SEM : Ω1 (M ) −→ R Z SEM [A] = (dA)∧(?g dA) M d ?g (dA) = 0 J. Margalef Bentabol 2 Parametrized EM Field Action SEM : Ω1 (M ) −→ R Z SEM [A] = (dA)∧(?g dA) M d ?g (dA) = 0 J. Margalef Bentabol P + SEM : Ω1 (M ) × Diffsp (M ) −→ R Z P SEM [A, Z] := (dA)∧(?Z ∗g dA) M d ?Z ∗g (dA) = 0 2 Parametrized EM Field Action SEM : Ω1 (M ) −→ R Z SEM [A] = (dA)∧(?g dA) M d ?g (dA) = 0 P + SEM : Ω1 (M ) × Diffsp (M ) −→ R Z P SEM [A, Z] := (dA)∧(?Z ∗g dA) M d ?Z ∗g (dA) = 0 Properties If (A, Z) is a solution, then so is (Y ∗ A, Z ◦ Y ). J. Margalef Bentabol 2 Parametrized EM Field Action SEM : Ω1 (M ) −→ R Z SEM [A] = (dA)∧(?g dA) M d ?g (dA) = 0 P + SEM : Ω1 (M ) × Diffsp (M ) −→ R Z P SEM [A, Z] := (dA)∧(?Z ∗g dA) M d ?Z ∗g (dA) = 0 Properties If (A, Z) is a solution, then so is (Y ∗ A, Z ◦ Y ). P P SEM [Y ∗ A, Z ◦ Y ] = SEM [A, Z] J. Margalef Bentabol 2 Hamiltonian Framework J. Margalef Bentabol Hamiltonian Framework P SEM = Z M (dA) ∧ (?Z ∗g dA) M∼ =Σ×I J. Margalef Bentabol 3 Hamiltonian Framework P SEM = Z M (dA) ∧ (?Z ∗g dA) M∼ =Σ×I J. Margalef Bentabol 3+1 P =⇒ SEM = Z Z dt I (something)t Σ 3 Hamiltonian Framework Z P SEM = M (dA) ∧ (?Z ∗g dA) M∼ =Σ×I 3+1 P =⇒ SEM = Z Z dt I (something)t Σ Lagrangian LPEM : D ⊂ T Q → R J. Margalef Bentabol 3 Hamiltonian Framework Z P SEM = M (dA) ∧ (?Z ∗g dA) M∼ =Σ×I 3+1 P =⇒ SEM = Z Z dt I (something)t Σ Lagrangian LPEM : D ⊂ T Q → R Fiber derivative F LPEM : D ⊂ T Q → T ∗ Q J. Margalef Bentabol 3 Hamiltonian Framework Z P SEM = M (dA) ∧ (?Z ∗g dA) M∼ =Σ×I 3+1 P =⇒ SEM = Z Z dt I (something)t Σ Lagrangian LPEM : D ⊂ T Q → R Fiber derivative F LPEM : D ⊂ T Q → T ∗ Q P Hamiltonian HEM : F LPEM (D) → R J. Margalef Bentabol 3 Hamiltonian Framework Z P SEM = M (dA) ∧ (?Z ∗g dA) M∼ =Σ×I 3+1 P =⇒ SEM = Z Z dt I (something)t Σ Lagrangian LPEM : D ⊂ T Q → R Fiber derivative F LPEM : D ⊂ T Q → T ∗ Q P Hamiltonian HEM : F LPEM (D) → R Important things to retain P LPEM homogeneous of degree 1, hence HEM = 0. J. Margalef Bentabol 3 Hamiltonian Framework Z P SEM = M (dA) ∧ (?Z ∗g dA) M∼ =Σ×I 3+1 P =⇒ SEM = Z Z dt I (something)t Σ Lagrangian LPEM : D ⊂ T Q → R Fiber derivative F LPEM : D ⊂ T Q → T ∗ Q P Hamiltonian HEM : F LPEM (D) → R Important things to retain P LPEM homogeneous of degree 1, hence HEM = 0. In fact, this is true for any parametrized theory. J. Margalef Bentabol 3 The geometric arena J. Margalef Bentabol Configuration space + Ω1 (M ) × Diffsp (M ) q (4) : Σ × I → T ∗ (Σ × I) Z :Σ×I →Σ×I (Σ × I, g) Z J. Margalef Bentabol 4 Configuration space + Ω1 (M ) × Diffsp (M ) q (4) : Σ × I → T ∗ (Σ × I) Z :Σ×I →Σ×I Xt : Σ ,→ Σ × I (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space + Ω1 (M ) × Diffsp (M ) q (4) : Σ × I → T ∗ (Σ × I) (q⊥ )t : Σ → R Z :Σ×I →Σ×I Xt : Σ ,→ Σ × I (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space + Ω1 (M ) × Diffsp (M ) q (4) : Σ × I → T ∗ (Σ × I) Z :Σ×I →Σ×I (q⊥ )t : Σ → R qt : Σ → T ∗ Σ Xt : Σ ,→ Σ × I (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space + Ω1 (M ) × Diffsp (M ) QEM = C ∞ (Σ) × Ω1 (Σ) × Emb(Σ, M )sp q (4) : Σ × I → T ∗ (Σ × I) (q⊥ )t : Σ → R qt : Σ → T ∗ Σ Z :Σ×I →Σ×I Xt : Σ ,→ Σ × I (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space + Ω1 (M ) × Diffsp (M ) QEM = C ∞ (Σ) × Ω1 (Σ) × Emb(Σ, M )sp q (4) : Σ × I → T ∗ (Σ × I) (q⊥ )t : Σ → R qt : Σ → T ∗ Σ Z :Σ×I →Σ×I Xt : Σ ,→ Σ × I (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space + Ω1 (M ) × Diffsp (M ) QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M ) q (4) : Σ × I → T ∗ (Σ × I) (q⊥ )t : Σ → R qt : Σ → T ∗ Σ Z :Σ×I →Σ×I Xt : Σ ,→ Σ × I (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M ) T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M ) (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M ) T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M ) (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M ) ∼ = T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M ) C ∞ (Σ)×C ∞ (Σ) (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M ) ∼ = T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M ) C ∞ (Σ)×C ∞ (Σ) (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M ) ∼ = ∼ = T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M ) C ∞ (Σ)×C ∞ (Σ) Ω1 (Σ)×Ω1 (Σ) (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 Configuration space QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M ) ∼ = ∼ = T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M ) C ∞ (Σ)×C ∞ (Σ) Ω1 (Σ)×Ω1 (Σ) (Σ × I, g) Z Xt it (Σ, γXt = Xt∗ g) J. Margalef Bentabol 4 T Emb(Σ, M ) TM VX Σ X M (Σ × I, g) VX ∈ TX Emb(Σ, M ) {Xλ } / X0 = X Ẋ0 = VX σ1 b X0 b b X0 (Σ) b Σ J. Margalef Bentabol σ2 VX = Ẋ0 5 Back to the Hamiltonian J. Margalef Bentabol 5 Hamiltonian vector field Symplectic form j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω ~ X , Zp ) If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z J. Margalef Bentabol 6 Hamiltonian vector field Symplectic form j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω ~ X , Zp ) If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z ıZ j ∗ Ω = dH = 0 J. Margalef Bentabol 6 Hamiltonian vector field Symplectic form j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω ~ X , Zp ) If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z ıZ j ∗ Ω = dH = 0 pa • (Zq )a = LZ T qa + √ ZX⊥ − d q⊥ ZX⊥ X γX √ • Zpa = LZ T pa + γX ∇b ZX⊥ (dq)ba X ⊥ b • ZX (∇b p ) = 0 • ZXT arbitrary • Zq⊥ − LZ T q⊥ + qa ∇a ZX⊥ ∇b pb = 0 X J. Margalef Bentabol 6 Hamiltonian vector field Symplectic form j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω ~ X , Zp ) If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z ıZ j ∗ Ω = dH = 0 pa • (Zq )a = LZ T qa + √ ZX⊥ − d q⊥ ZX⊥ X γX √ • Zpa = LZ T pa + γX ∇b ZX⊥ (dq)ba X ⊥ b • ZX (∇b p ) = 0 • ZXT arbitrary • Zq⊥ − LZ T q⊥ + qa ∇a ZX⊥ ∇b pb = 0 X J. Margalef Bentabol 6 Hamiltonian vector field Symplectic form j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω ~ X , Zp ) If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z ıZ j ∗ Ω = dH = 0 • (Zq )a = LZ T qa X • Zpa = LZ T pa X ⊥ • ZXT arbitrary • ZX = 0 • Z q ⊥ = L Z T q⊥ X J. Margalef Bentabol 6 M. Bauer, P. Harms, P.W. Michor, Almost local metrics on shape space of hypersurfaces in n-space, SIAM J. Imaging Sci. (2012) 5.1. J.F. Barbero, J. Margalef-Bentabol, E.J.S. Villaseñor, Hamiltonian dynamics of the parametrized electromagnetic field, Classical and Quantum Gravity (2016) 33 [arXiv: 1511.00826] J.F. Barbero, J. Margalef-Bentabol, E.J.S. Villaseñor, Hamiltonian dynamics of the parametrized electromagnetic field, Classical and Quantum Gravity (2016) 33 [arXiv: 1511.00826] K. Kuchař, Geometry of hyperspace. I, J. Math. Phys. (1976) 17. J. Margalef Bentabol Thanks for your attention M. Bauer, P. Harms, P.W. Michor, Almost local metrics on shape space of hypersurfaces in n-space, SIAM J. Imaging Sci. (2012) 5.1. J.F. Barbero, J. Margalef-Bentabol, E.J.S. Villaseñor, Hamiltonian dynamics of the parametrized electromagnetic field, Classical and Quantum Gravity (2016) 33 [arXiv: 1511.00826] J.F. Barbero, J. Margalef-Bentabol, E.J.S. Villaseñor, Hamiltonian dynamics of the parametrized electromagnetic field, Classical and Quantum Gravity (2016) 33 [arXiv: 1511.00826] K. Kuchař, Geometry of hyperspace. I, J. Math. Phys. (1976) 17. J. Margalef Bentabol