Parametrized theories: Making EM even ``gaugier

Transcrição

Parametrized theories: Making EM even ``gaugier
Parametrized theories:
Making EM even “gaugier”
Juan Margalef Bentabol
Joint work with F. Barbero (CSIC) and Eduardo J.S. Villaseñor (UC3M)
21st International Conference on
General Relativity and Gravitation
July 2016 - New York
Motivation: parametrized
(M ∼
= Σ × I, g) being
Σ 3-manifold
I = [t0 , t1 ]
Motivation: parametrized
(M ∼
= Σ × I, g) being
Σ 3-manifold
I = [t0 , t1 ]
Motivation: parametrized
(M ∼
= Σ × I, g) being
Σ 3-manifold
I = [t0 , t1 ]
Motivation: parametrized
(M ∼
= Σ × I, g) being
Σ 3-manifold
I = [t0 , t1 ]
Motivation: parametrized
(M ∼
= Σ × I, g) being
Z1
Σ 3-manifold
I = [t0 , t1 ]
Z2
Motivation: parametrized
(M ∼
= Σ × I, g) being
Z1
+
Diffsp (M ) :=
Σ 3-manifold
I = [t0 , t1 ]
Z2
T Z.∂t
future timelike
Z : M → M diff. /
Z(Σ × {t}) spacelike
Our model
J. Margalef Bentabol
Parametrized EM Field Action
SEM : Ω1 (M ) −→ R
Z
SEM [A] =
(dA)∧(?g dA)
M
d ?g (dA) = 0
J. Margalef Bentabol
2
Parametrized EM Field Action
SEM : Ω1 (M ) −→ R
Z
SEM [A] =
(dA)∧(?g dA)
M
d ?g (dA) = 0
J. Margalef Bentabol
P
+
SEM
: Ω1 (M ) × Diffsp
(M ) −→ R
Z
P
SEM
[A, Z] :=
(dA)∧(?Z ∗g dA)
M
d ?Z ∗g (dA) = 0
2
Parametrized EM Field Action
SEM : Ω1 (M ) −→ R
Z
SEM [A] =
(dA)∧(?g dA)
M
d ?g (dA) = 0
P
+
SEM
: Ω1 (M ) × Diffsp
(M ) −→ R
Z
P
SEM
[A, Z] :=
(dA)∧(?Z ∗g dA)
M
d ?Z ∗g (dA) = 0
Properties
If (A, Z) is a solution, then so is (Y ∗ A, Z ◦ Y ).
J. Margalef Bentabol
2
Parametrized EM Field Action
SEM : Ω1 (M ) −→ R
Z
SEM [A] =
(dA)∧(?g dA)
M
d ?g (dA) = 0
P
+
SEM
: Ω1 (M ) × Diffsp
(M ) −→ R
Z
P
SEM
[A, Z] :=
(dA)∧(?Z ∗g dA)
M
d ?Z ∗g (dA) = 0
Properties
If (A, Z) is a solution, then so is (Y ∗ A, Z ◦ Y ).
P
P
SEM
[Y ∗ A, Z ◦ Y ] = SEM
[A, Z]
J. Margalef Bentabol
2
Hamiltonian Framework
J. Margalef Bentabol
Hamiltonian Framework
P
SEM =
Z
M
(dA) ∧ (?Z ∗g dA)
M∼
=Σ×I
J. Margalef Bentabol
3
Hamiltonian Framework
P
SEM =
Z
M
(dA) ∧ (?Z ∗g dA)
M∼
=Σ×I
J. Margalef Bentabol
3+1
P
=⇒ SEM =
Z
Z
dt
I
(something)t
Σ
3
Hamiltonian Framework
Z
P
SEM =
M
(dA) ∧ (?Z ∗g dA)
M∼
=Σ×I
3+1
P
=⇒ SEM =
Z
Z
dt
I
(something)t
Σ
Lagrangian LPEM : D ⊂ T Q → R
J. Margalef Bentabol
3
Hamiltonian Framework
Z
P
SEM =
M
(dA) ∧ (?Z ∗g dA)
M∼
=Σ×I
3+1
P
=⇒ SEM =
Z
Z
dt
I
(something)t
Σ
Lagrangian LPEM : D ⊂ T Q → R
Fiber derivative F LPEM : D ⊂ T Q → T ∗ Q
J. Margalef Bentabol
3
Hamiltonian Framework
Z
P
SEM =
M
(dA) ∧ (?Z ∗g dA)
M∼
=Σ×I
3+1
P
=⇒ SEM =
Z
Z
dt
I
(something)t
Σ
Lagrangian LPEM : D ⊂ T Q → R
Fiber derivative F LPEM : D ⊂ T Q → T ∗ Q
P
Hamiltonian HEM
: F LPEM (D) → R
J. Margalef Bentabol
3
Hamiltonian Framework
Z
P
SEM =
M
(dA) ∧ (?Z ∗g dA)
M∼
=Σ×I
3+1
P
=⇒ SEM =
Z
Z
dt
I
(something)t
Σ
Lagrangian LPEM : D ⊂ T Q → R
Fiber derivative F LPEM : D ⊂ T Q → T ∗ Q
P
Hamiltonian HEM
: F LPEM (D) → R
Important things to retain
P
LPEM homogeneous of degree 1, hence HEM
= 0.
J. Margalef Bentabol
3
Hamiltonian Framework
Z
P
SEM =
M
(dA) ∧ (?Z ∗g dA)
M∼
=Σ×I
3+1
P
=⇒ SEM =
Z
Z
dt
I
(something)t
Σ
Lagrangian LPEM : D ⊂ T Q → R
Fiber derivative F LPEM : D ⊂ T Q → T ∗ Q
P
Hamiltonian HEM
: F LPEM (D) → R
Important things to retain
P
LPEM homogeneous of degree 1, hence HEM
= 0.
In fact, this is true for any parametrized theory.
J. Margalef Bentabol
3
The geometric arena
J. Margalef Bentabol
Configuration space
+
Ω1 (M ) × Diffsp
(M )
q (4) : Σ × I → T ∗ (Σ × I)
Z :Σ×I →Σ×I
(Σ × I, g)
Z
J. Margalef Bentabol
4
Configuration space
+
Ω1 (M ) × Diffsp
(M )
q (4) : Σ × I → T ∗ (Σ × I)
Z :Σ×I →Σ×I
Xt : Σ ,→ Σ × I
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
+
Ω1 (M ) × Diffsp
(M )
q (4) : Σ × I → T ∗ (Σ × I)
(q⊥ )t : Σ → R
Z :Σ×I →Σ×I
Xt : Σ ,→ Σ × I
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
+
Ω1 (M ) × Diffsp
(M )
q (4) : Σ × I → T ∗ (Σ × I)
Z :Σ×I →Σ×I
(q⊥ )t : Σ → R
qt : Σ → T ∗ Σ
Xt : Σ ,→ Σ × I
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
+
Ω1 (M ) × Diffsp
(M )
QEM = C ∞ (Σ) × Ω1 (Σ) × Emb(Σ, M )sp
q (4) : Σ × I → T ∗ (Σ × I)
(q⊥ )t : Σ → R
qt : Σ → T ∗ Σ
Z :Σ×I →Σ×I
Xt : Σ ,→ Σ × I
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
+
Ω1 (M ) × Diffsp
(M )
QEM = C ∞ (Σ) × Ω1 (Σ) × Emb(Σ, M )sp
q (4) : Σ × I → T ∗ (Σ × I)
(q⊥ )t : Σ → R
qt : Σ → T ∗ Σ
Z :Σ×I →Σ×I
Xt : Σ ,→ Σ × I
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
+
Ω1 (M ) × Diffsp
(M )
QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M )
q (4) : Σ × I → T ∗ (Σ × I)
(q⊥ )t : Σ → R
qt : Σ → T ∗ Σ
Z :Σ×I →Σ×I
Xt : Σ ,→ Σ × I
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M )
T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M )
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M )
T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M )
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M )
∼
=
T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M )
C ∞ (Σ)×C ∞ (Σ)
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M )
∼
=
T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M )
C ∞ (Σ)×C ∞ (Σ)
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M )
∼
=
∼
=
T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M )
C ∞ (Σ)×C ∞ (Σ)
Ω1 (Σ)×Ω1 (Σ)
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
Configuration space
QEM = C ∞ (Σ) × Ω1 (Σ) × Embsp (Σ, M )
∼
=
∼
=
T QEM = T C ∞ (Σ) × T Ω1 (Σ) × T Embsp (Σ, M )
C ∞ (Σ)×C ∞ (Σ)
Ω1 (Σ)×Ω1 (Σ)
(Σ × I, g)
Z
Xt
it
(Σ, γXt = Xt∗ g)
J. Margalef Bentabol
4
T Emb(Σ, M )
TM
VX
Σ
X
M
(Σ × I, g)
VX ∈ TX Emb(Σ, M )
{Xλ } /
X0 = X
Ẋ0 = VX
σ1
b
X0
b
b
X0 (Σ)
b
Σ
J. Margalef Bentabol
σ2
VX = Ẋ0
5
Back to the Hamiltonian
J. Margalef Bentabol
5
Hamiltonian vector field
Symplectic form
j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω
~ X , Zp )
If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z
J. Margalef Bentabol
6
Hamiltonian vector field
Symplectic form
j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω
~ X , Zp )
If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z
ıZ j ∗ Ω = dH = 0
J. Margalef Bentabol
6
Hamiltonian vector field
Symplectic form
j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω
~ X , Zp )
If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z
ıZ j ∗ Ω = dH = 0
pa
• (Zq )a = LZ T qa + √ ZX⊥ − d q⊥ ZX⊥
X
γX
√
• Zpa = LZ T pa + γX ∇b ZX⊥ (dq)ba
X
⊥
b
• ZX (∇b p ) = 0
• ZXT arbitrary
• Zq⊥ − LZ T q⊥ + qa ∇a ZX⊥ ∇b pb = 0
X
J. Margalef Bentabol
6
Hamiltonian vector field
Symplectic form
j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω
~ X , Zp )
If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z
ıZ j ∗ Ω = dH = 0
pa
• (Zq )a = LZ T qa + √ ZX⊥ − d q⊥ ZX⊥
X
γX
√
• Zpa = LZ T pa + γX ∇b ZX⊥ (dq)ba
X
⊥
b
• ZX (∇b p ) = 0
• ZXT arbitrary
• Zq⊥ − LZ T q⊥ + qa ∇a ZX⊥ ∇b pb = 0
X
J. Margalef Bentabol
6
Hamiltonian vector field
Symplectic form
j F LPEM (D), j ∗ Ω ,−→ T ∗ QEM , Ω
~ X , Zp )
If Z ∈ X(F LPEM (D)) then Z = q⊥ , q, X, p; Zq⊥ , Zq , Z
ıZ j ∗ Ω = dH = 0
• (Zq )a = LZ T qa
X
• Zpa = LZ T pa
X
⊥
• ZXT arbitrary
• ZX = 0
• Z q ⊥ = L Z T q⊥
X
J. Margalef Bentabol
6
M. Bauer, P. Harms, P.W. Michor, Almost local metrics on shape space
of hypersurfaces in n-space, SIAM J. Imaging Sci. (2012) 5.1.
J.F. Barbero, J. Margalef-Bentabol, E.J.S. Villaseñor, Hamiltonian
dynamics of the parametrized electromagnetic field, Classical and
Quantum Gravity (2016) 33 [arXiv: 1511.00826]
J.F. Barbero, J. Margalef-Bentabol, E.J.S. Villaseñor, Hamiltonian
dynamics of the parametrized electromagnetic field, Classical and
Quantum Gravity (2016) 33 [arXiv: 1511.00826]
K. Kuchař, Geometry of hyperspace. I, J. Math. Phys. (1976) 17.
J. Margalef Bentabol
Thanks for your attention
M. Bauer, P. Harms, P.W. Michor, Almost local metrics on shape space
of hypersurfaces in n-space, SIAM J. Imaging Sci. (2012) 5.1.
J.F. Barbero, J. Margalef-Bentabol, E.J.S. Villaseñor, Hamiltonian
dynamics of the parametrized electromagnetic field, Classical and
Quantum Gravity (2016) 33 [arXiv: 1511.00826]
J.F. Barbero, J. Margalef-Bentabol, E.J.S. Villaseñor, Hamiltonian
dynamics of the parametrized electromagnetic field, Classical and
Quantum Gravity (2016) 33 [arXiv: 1511.00826]
K. Kuchař, Geometry of hyperspace. I, J. Math. Phys. (1976) 17.
J. Margalef Bentabol