slides - Terena
Transcrição
slides - Terena
Implementation of a new Optical Platform in X-WiN Peter Kaufmann/DFN TERENA Network Architects Workshop 22. November 2012 Agenda • Reasons & Requirements • Results • Status of Implementation Page 2 Reasons & Requirements (1) Why change? • Capacity: Less than 50% of our lambdas are in use! • Upgrade towards 40/100G only with new h/w • Current equipment is approaching end of life (from 2006) (investments into old h/w not usefull) Most important • Operational inflexibilities very annoying – as lambdas has to be changed – as more native lambda services are provided/added – as transponders are dedicated/configured for each connection Page 3 Reasons & Requirements (2) Add flexibility • Transparent lambdas between any core nodes (no OEO) • Protected lambdas • Easy and quick channel setup – rapid service delivery – flexible use of transponders – ability to reroute lambdas easily in case of serious link problems • Optical switching facilities at fiber junctions • Sub-Lambda switching facilities (OTN) (due to 10/100) Page 4 Reasons & Requirements (3) But also: Increase transport capacity • compensate traffic growth • native 100G/channel capability for our most demanding users Page 5 Reasons & Requirements (4) New optical transmission system • • • • About 80 lambdas Support for native 10G & 100G services Transparent lambdas between any core nodes (~1000km reach) ROADM: directionless & colorless (not fully contentionless, no flexgrid), integrated OTN-Switching • Migration philosophy – On top of current fiber infrastructure (only few add. fibers) – 100G transponders where needed, when needed – Smooth migration, no operational „shut down“ Seite 6 Results • Call for tender (non open, 2 stages): November 2011 – After stage one, reduction to „some serious“ participants • Acceptance of tender: 10. May 2012 • Winner – – – – ECI Telecom, http://www.ecitele.com Israelien company, founded 1961 about 2500 employes New player in „NREN environment“ • Contract & order for migration: 14. May 2012 • Product family „Apollo“ – Optimized Multilayer Transport (OMLT) – integrated DWDM-/Switching-equipment – DFN: OPT9624 at all core nodes (plus OPT9608 for some clients) Seite 7 Results: ECI OPT96xx „Apollo“ 24/48 universal I/O slots OPT9624/48 for Metro Core and Core/Regional/LH Tbit/s Universal Switch: ODU X-connect/Packet Switching Flexible configuration: Photonics, ODU-XC, Packet switching 8 universal I/O slots OPT9608 for Metro Edge Flexible configuration: standalone WDM, 100G MPLS switching capacity OPT9604 for Metro Edge OPT9603 for Metro access and In-Line amplifier Artemis 4 universal I/O slots 50G MPLS switching capacity OPT9603 - 2U height with 3 universal slots Artemis: passive cages Quelle: ECI Telecom Seite 8 Results: Fiber set-up • High Capacity – 88 Lambdas per Fiber – Bandwidth up to 100 Gbit/s per Lambda • Flexible Routing of Connections – Reconfigurable Optical Add-Drop Multiplexer (ROADM) – Colourless/Directionless Add-Drop – Tunable Transponder • Switching Functions – Optional: 1Tbit/s Switching-Fabric per Node – Currently: Usage as ODU Cross-Connect – Future: In addition usage as MPLS- and Ethernet-Switch Seite 9 Capacities in Generations of WiN Bandwidth in Core of WiN (Wissenschaftsnetzes): X-WiN 2012: 8.800 Gbit/s X-WiN 2006: 400 Gbit/s G-WiN 2000: 10 Gbit/s B-WiN 1995: 0,622 Gbit/s Seite 10 Results: Fiber set-up Amplifier • Raman amplifiers compensate excessive attenuation on long spans • New: Mixture of Raman, EDFA • Requires additional maintenance procedures Redundancy • Customer connection: Redundant fiber with two Core Nodes (nearly all customers, 77% had not even 1 second interruption in 2011) • Further extension of redundant fiber connectivity Seite 11 Results: ROADM • High Capacity – 88 Lambdas per Fiber – Bandwidth up to 100 Gbit/s per Lambda • Flexible Routing of Connections – Reconfigurable Optical Add-Drop Multiplexer (ROADM) – Colourless/Directionless Add-Drop – Tunable Transponder • Switching Functions – Optional: 1Tbit/s Switching-Fabric per Node – Currently: Usage as ODU Cross-Connect – Future: In addition usage as MPLS- and Ethernet-Switch Seite 12 Results: ROADM ROADM functionality • • Colourless: Flexible A/D on any available Lambda Directionless: Flexible mapping on any required Direction (But still uni-directional use of each part of fiber pair) • Contentionless: Blocking-free switching of same colours, requires add. WSS • (Not that important for DFN, partially possible, not 100%) Flexgrid/Super Channels: Not required for DFN use cases during life time of gear • • • Each ROADM configuered with at least: 4 degrees + 2 A/D blocks, extension to 9 degrees possible OTN-Switch complements sub-lambda switching done in routers Restoration by ROADM: Switch time 1sec Seite 13 ROADM: Optical Architecture Source: ECI Telecom Page 14 ROADM: L1 Service Cards Client: Multi service 10G Muxponder or AoC Multi service 10G double Transponder Multi service 40G RZ-DQPSK Muxponder AoC10 SFP 16 x SFPs STM-1/4/16, OC3/12/48 FC1/2/4, GbE, SDI, HD-SDI, DVB-ASI OTU1 Client: TR10_4 CMB40 SFP OTN Mapper XFP 2 lines OTU-2/2e SFP SFP XFP SFP XFP 10G LAN, STM64/OC192, FC8/10, OTU-2/2e XFP Client: XFP OTN Mapper XFP 2 lines OTU-2/2e 10G LAN, STM64/OC192, FC8/10, OTU-2/2e XFP XFP OTN Mapper QPSK XFP Line OTU-3e XFP OTN Mapper OTU3 Regenerator REG40 QPSK QPSK Line OTU-3e Transponder/ Muxponder 100G Line OTU-3e OTN Mapper TR100 QPSK Line 100GbE QPSK Line OTU4 Source: ECI Telecom Page 15 ECI: ROADM/Service-Cards North West East Local A/D Without Fabric: L1 Service Cards AoC10: 16*SFP -> 2*XFP-OTU2 TR10_4: 2*XFP -> 2*XFP-OTU2/2e TR100: 1*CFP -> 1*CFP-OTU4 (later) With Fabric: L1 Fabric Cards Fabric FIO10_5: 5*XFP -> Fabric FIO100: 1*CFP -> Fabric (later) FIO10_5: 5*XFP -> Fabric (later) FIOMR_16: 16*SFP -> Fabric Client page 16 Results: Switching • High Capacity – 88 Lambdas per Fiber – Bandwidth up to 100 Gbit/s per Lambda • Flexible Routing of Connections – Reconfigurable Optical Add-Drop Multiplexer (ROADM) – Colourless/Directionless Add-Drop – Tunable Transponder • Switching Functions – Optional: 1Tbit/s Switching-Fabric per Node – Currently: Usage as ODU Cross-Connect – Future: In addition usage as MPLS- and Ethernet-Switch Seite 17 Optical Transport Network (OTN) Source: Alcatel-Lucent Seite 18 OTN-Hierarchy Source: Alcatel-Lucent page 19 Switching: OTN-BB of X-WiN KIE • Operation of 1Tbit/s-Fabric (blue-red) DKR DES AWI – Initially at 14 core nodes – Optimized with current network structure and latency – If needed: extensible GRE ROS HAM EWE BRE ENS HAN BIE MUE DUI • OTN-Backbone (yellow) FZJ – Start: 2-3 OTU2-Connections per link – Future: Extension towards OTU3/4 PAD DOR WUP BIR AAC BON – All interfaces use OTH-framing – Single or redundant OTU2e-connection to next one/two core nodes with fabric BRA KAS MAR FRA FZK STB KEH BAS HUB ADH LEI DRE CHE ILM WUE SAA SLU ZEU POT ZIB MAG JEN GIE KAI FFO GOE GSI • Access from User/Simple Core Node to Fabric PEP TUB BAY ERL ESF REG HEI STU FHM GAR Seite 20 Switching: L1 Fabric Cards Low rate client interface Multi service 10G client line Interface 40G RZ-DQPSK line card 100G PM-QPSK line card FIOMR_16 FIO10_5 16 x SFPs STM-1/4/16, OC3/12/48 FC1/2/4 GBE, SDI,HD-SDI, DVB-ASI OTU1 SFP SFP 1Tbps ODU-XC SFP SFP SFP XFP 5 x XFPs 10G LAN, STM64/OC192, FC8/10, OTU-2/2e OTN Mapper XFP OTN Mapper 1Tbps ODU-XC XFP XFP XFP OTN Mapper FIO40 1Tbps ODU-XC QPSK Line OTU-3e OTN Mapper FIO100 QPSK Line OTU-4 1Tbps ODU-XC Source: ECI Telecom Page 21 ECI: ROADM/Fabric-Cards North West East Local A/D Without Fabric: L1 Service Cards AoC10: 16*SFP -> 2*XFP-OTU2 TR10_4: 2*XFP -> 2*XFP-OTU2/2e TR100: 1*CFP -> 1*CFP-OTU4 (later) With Fabric: L1 Fabric Cards Fabric FIO10_5: 5*XFP -> Fabric FIO100: 1*CFP -> Fabric (later) FIOMR_16: 16*SFP -> Fabric FIO10_5: 5*XFP -> Fabric (later) Client page 22 Universal Switch Fabric The fabric can support ODU-XC, MPLS switch or any mix of both (depending on the service cards installed in the system). Scalable to 4Tbit and future 16Tbit switching capacity (in multi-shelf Architecture) ODU-XC (ODU-0-4, Flex) 10GbE / STM1-64 / FC10 / OTU-2 10G OTN OTN OTN OTN OTN OTN Packet Packet Packet Packet Packet Packet STM1 / 4 / 16 / FC1 / 2 / 4 / GbE 40G 100GbE 100G ODUk and ODU-Flex XC Transparency of timing and OH; Each ODUk container carries its own timing Each line card is configured to work towards the fabric in either OTN mode or data mode 100GbE 100G 10GbE 10G 1GbE 100G Packet Switching Source: ECI Telecom Seite 23 Status: Migration Work • Core Nodes (54) – about 100 new chassis (power, etc.) • Intermediate Line Amplifier: 45 Locations • Fiber links (85) – Total length about 10.500 km – 33 parallel lines between central Core Nodes • Lambda connections (167) – Currently: Gigabit-Ethernet and 10-Gigabit-Ethernet – With max. 18 hops and 2140 km fiber length Page 24 Status of Implementation Planning ECIComponents Provision and Operation ECIComponents Planning parallel Fiber Infrastruktur Provision Parallel Fiber Infrastruktur Planning LocationInfrastructure Implementation Location Infrastructure Training of DFNEmployes Preparation of Network Monitoring and Adaption of Information Systems 05 06 07 08 09 10 11 12 Seite 25 Conclusion: Seen from Customer • Increase of Bandwidth – 100Gbit/s-Connections for VPN-service and DFNInternet (IP) • Reduction of Provisioning Time for (new) Services – Equipment is property of DFN: Better reserve of often required components – Flexibility: Components may used again for other connections • New Switching Service – Now: OTN, Mux of several 1Gb VPN over one 10Gb access – Later: MPLS and Ethernet • Reduction of Cost – Components for 1Gbit/s- and 10Gbit/s-Connections much cheaper Page 26 Questions ...? ? ? ? Seite 27 ROADM – classical • coloured – For each „colour“ a specific port per Add/Drop-Block • Directed – Exactly one outgoing direction erreichbar per Add/Drop-Block T / R T / R Add/ Drop North DWDMKnoten Add/ Drop West Add/ Drop East T / R T / R T / R X T / R Seite 28 ROADM – „modern“ • Colourless – each „colour“ at any Add/Drop-Port • Directionless – each Ausgangsrichtung erreichbar at any Add/Drop-Port DWDMKnoten Add/Drop T / R T / R T / R T / R T / R Seite 29 Gigabit AoC / Client-Card 2xXFP OTU2 colored uplinks 16xSFP colored uplink Source: ECI Telecom Seite 30 10G Transponder / Fabric Card 2xXFP FC8/10,STM-64/OC192/10GBE/OTU2/2e B&W or colored I/Fs 2xXFP OTU2/2e/2f colored uplinks 5xXFP FC8,STM-64/OC-192/10GBE/OTU2/2e B&W or colored I/Fs Source: ECI Telecom Seite 31 Variants of „Apollo“ Pure WDM Application 24 universal slots Photonics modules Service cards L1 service cards Metro Core / Regional / LH OMLT Photonic layer 4 slots for 1Tbps TR100 Mux100 TR40 Mux40 TR10 AoC10 modules Service cards Photonic layer TR100 Mux100 TR40 Mux40 TR10 AoC10 L1 service cards L2/3 Data cards 1GbE L2/3 100G Data Fabric Line 100G 10G Line/Client Client 100G L1 service cards 1GbE L2/3 L2/3 Data cards 10GbE L2/3 Line 40G ODU-XC 10G Line/Client Packet Switching 100GbE L2/3 CESR Application fabric cards 22 universal slots Photonics Low Rate 20 universal slots Photonics modules Service cards Metro OMLT Application 2 slots for 100G Photonic layer universal fabric cards 4 slots for 1Tbps universal fabric cards 20 universal slots Service cards Photonic layer 1GbE L2/3 10GbE L2/3 100GbE L2/3 Packet Switching L2/3 Data cards 1GbE L2/3 10GbE L2/3 100GbE L2/3 10GbE L2/3 Source: ECI Telecom Seite 32 Service Restoration 3rd Restoration Path Main Path E A F 1st Restoration Path C G 2nd Restoration Path H A S P L I T Restoration by ROADM. Switch time 1sec R O A D M C Seite 33 Deutsches Forschungsnetz Bereitstellung Glasfaserstrecken KIE Glasfaserpaar ,(Bestand, nicht parallel) DKR DES AWI Glasfaserpaar (vorhanden) GRE ROS HAM EWE Glasfaserpaar (parallel, beauftragt) ENS Glasfaserpaar (parallel, Übergabe erfolgt) HAN MUE DUI Glasfaserpaar (parallel, Fertigstellung bis Ende Oktober) FZJ AAC BON BIE BOC DOR WUP BIR GIE PAD KAS MAR FZK STB KEH BAS HUB ADH LEI DRE JEN CHE ILM FRA KAI BRA POT ZIB MAG SLU GOE WUE GSI SAA FFO TUB ZEU BRE HEI BAY ERL REG STU FHM GAR Seite 35 Stand Installation der Technik KIE Glasfaserpaar ,(Bestand, nicht parallel) Glasfaserpaar (vorhanden) ROS FFO TUB ZEU BRE ENS HAN Kernnetzknoten (bereits aufgebaut) MUE DUI Kernnetzknoten (geplant KW42) Kernnetzknoten (geplant KW44) HAM EWE Glasfaserpaar (parallel, beauftragt) Kernnetzknoten (geplant KW43) GRE DKR DES AWI FZJ AAC BON BIE BOC DOR WUP BIR GIE PAD KAS MAR KAI FZK STB KEH BAS LEI DRE JEN CHE ILM WUE GSI SAA HUB ADH GOE FRA Kernnetzknoten (geplant KW45) BRA POT ZIB MAG SLU HEI BAY ERL REG STU FHM GAR Seite 36 Beteiligte Einrichtungen • DFN Geschäftsstellen in Berlin und Stuttgart • ECI Telecom – beschäftigt zusätzlich Montagefirma für Aufbau DWDM-Technik (7 Teams) – zusätzlich 6 eigene Teams für die Inbetriebnahme • Glasfaserprovider – stellen parallele Faserstrecken bereit und Stellflächen/DC-Versorgung an ILA-Standorten – insgesamt 10 Firmen • Dimension Data – Installationen an Kernnetzknoten (koordiniert zusätzlich Montagefirmen für Schrankaufbau und Installation von Vorverkabelungen) – Ersatzteillogistik (Zentrallager plus 10 regionale Depots) • Gastgebende Einrichtungen an Kernnetzknoten – zusätzlich Elektriker für die Installation von Stromversorgungen Seite 37 Installationen an Kernnetzknoten • 48V/DC Netzteile – je 1-2 Chassis für USV/NS – Kapazität je Gerät 4kW (zzgl. 2kW Spare) • Fibre-Spooler/Cable Guides – „saubere“ Führung von Glasfaserkabeln • Passivgehäuse „Artemis“ – Aufnahme von passiven Modulen (bspw. optische Splitter) • Apollo 9624 – 1-4 Geräte je Standort – Aufnahme der aktiven Komponenten (Verstärker, ROADM, Line-/Fabric-Karten) Seite 38 Installation am Standort JEN • KNK Universität Jena (JEN) – drei Kernnetzfasern – zehn 10G-Verbindungen – drei ECI OPT9624 Chassis • Stellflächen – Aufbau in nur einem Datenschrank, Bestückung von Vorder- und Rückseite – bisher wurden 3 Stellflächen genutzt • Spannungsversorgung – komplett redundant bzgl. Equipment und Versorgungszweig – kann zukünftig überwacht werden Seite 39 Installation am Standort JEN • Separates Chassis für ODU-XC – drei 5-Port 10G-Karten – je 2-3 OTU2 Trunks zu anderen XCs Seite 40