Lawrence Livermore National Laboratory Coupled
Transcrição
Lawrence Livermore National Laboratory Coupled
Lawrence Livermore National Laboratory Coupled-channels Neutron Reactions on Nuclei Ian Thompson with: Gustavo Nobre, Frank Dietrich, Jutta Escher (LLNL) and: Toshiko Kawano (LANL), Goran Arbanas (ORNL) Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551! This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-‐PRES-‐437553 Channel Couplings in Neutron-nucleus Collisions Neutrons incident on Spherical Nuclei Scidac Project UNEDF Use mean-field models with RPA excited states Use real effective interactions Calculate inelastic cross sections to all RPA states Calculate transfer cross sections to all one-nucleon-transfer states • Predict Reaction cross sections • Predict Optical Potentials: Nonlocal & Local-equivalent • • • • Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 2 1: UNEDF project: a national 5-year SciDAC collaboration Target A = (N,Z) UNEDF: VNN, VNNN… Structure Models Methods: HF, DFT, Ground state Excited states Continuum states RPA, CI, CC, … KEY: UNEDF Ab-initio Input User Inputs/Outputs Exchanged Data Related research Transition Density [Nobre] Transition Densities Veff for scattering UNEDF Reaction Work Folding Eprojectile [Escher, Nobre] Transition Potentials Deliverables Residues (N’,Z’) HauserFeshbach decay chains [Ormand] Partial Fusion Theory [Thompson] Inelastic production Compound emission Preequilibrium emission Neutron escape [Summers, Thompson] Global optical potentials Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! Voptical Coupled Channels [Thompson, Summers] Two-step Optical Potential or Elastic S-matrix elements Resonance Averaging [Arbanas] Optical Potentials [Arbanas] 3 Diagonal Density 90 Densities for Zr From M. Dupuis’ calculations 0.2 !Total !n - !p !p !n 0.18 0.16 -3 density [fm ] 0.14 Example of diagonal Density for 90Zr 0.12 0.1 0.08 0.06 RPA 0.04 0.02 0 0 1 2 3 4 5 r [fm] 6 7 8 9 10 Folding of densities with n-n interaction Transition potentials Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 4 Nuclear Excited States from Mean-field Models Mean-field HFB calculations using SLy4 Skryme functional Use (Q)RPA to find all levels E*, with transition densities from the g.s. 30 28 28 26 26 24 24 22 22 Excitation energy (MeV) Excitation energy (MeV) RPA levels in Zr 30 20 18 16 14 12 10 8 20 18 16 14 12 10 8 6 6 4 4 2 2 0 1 2 3 4 5 6 Spin of state QRPA states in 90Zr 90 90 Particle!hole levels in Zr 0 Collaboration with Chapel Hill: Engel & Terasaki 7 8 9 10 0 Uncorrelated particle-hole states 0 1 2 3 4 5 6 Spin of state 7 Correlated p-h states in HO basis 8 9 10 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 0 2 4 6 8 10 Correlated p-h states in 15 fm box Neutron separation energy is 9.5 MeV. Above this we have discretized continuum. Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 5 Transition densities to Transition potentials Diagonal folded potential Off-diagonal couplings RPA transition potentials from the gs to states E* < 10 MeV 10 HFB diagonal folded potential KD optical potential 0 0 Vf0(r) (MeV) Real central potential V(r) 20 !20 !10 90 n + Zr at 40 MeV !40 All potentials real-valued !60 0 1 2 3 4 5 6 Radius (fm) 7 8 9 10 !20 0 2 4 Radius r 6 (fm) 8 10 Natural parity states only: no spin-flip, so no spin-orbit forces generated. No density dependence. Direct terms only: no exchange contributions. (Yet.) Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 6 Cross Sections for Excited States 30 30 ! ! 5 20 10 10 0 200 0 200 150 150 ! 3 100 50 0 75 ! 1 50 25 60 0 40 50 0 75 ! 1 50 25 60 0 40 + 4 20 20 0 150 0 150 100 ! 3 100 Inelastic cross section (mb) Inelastic cross section (mb) 5 20 + 4 100 + 2 50 50 0 0 40 + 2 40 + 20 0 + 0 0 10 20 Excitation energy (MeV) Uncorrelated p-h 0 20 30 0 0 10 20 Excitation energy (MeV) 30 RPA Correlated states Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 7 Reaction Cross Sections with Inelastic Couplings (Q)RPA Structure Calculations for n,p + 40,48Ca, 58Ni, 90Zr and 144 Sm Couple to all excited states, E* < 10, 20, 30, 40 MeV Find what fraction of σR corresponds to inelastic couplings Not Converged yet! E* < 50, 60, 70, …? Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 8 Summed inelastics => Reaction Cross Section Use ‘doorway model’: these inelastic cross sections are sum of escape and compound-nucleus production rates. !R (mb) 200 Couplings to/from g. s. only L = 0, 2 L = 0, 2, 4 Elab = 10 MeV 100 40 p + Ca Elab = 20 MeV 100 300 Effects of Couplings between States 80 Elab = 20 MeV 200 100 0 60 40 0 2 p + Ca 4 6 8 Partial Wave Total Reaction Cross!sections 1000 40 20 0 800 0 1 2 3 4 5 6 Optical Model CC; QRPA E* < 10 MeV CC; QRPA E* < 20 MeV CC; QRPA E* < 30MeV 7 Partial Wave 600 !R (mb) !R (mb) 0 σR(L) CC; QRPA E* < 10 MeV CC; QRPA E* < 20 MeV CC; QRPA E* < 30 MeV !R (mb) 120 Convergence with E* But: long way from reaction cross section from optical model 400 200 0 10 15 20 25 30 35 40 Elab (MeV) Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 9 Pick-up Channel: Deuteron Formation 40Ca(d,d) elastic scattering N. Keeley and R. S. Mackintosh* showed the importance of including pick-up channels in coupled reaction channel (CRC) calculations. *Physical Review C 76, 024601 (2007) Physical Review C 77, 054603 (2008) d Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 10 Many Transfer Channels! NdN These give large contributions to the reaction cross sections. There are many nucleons in the target that can be picked out to make a deuteron. 300 Neutrons Finite Well N=2n+L With spin-orbit force 0g 0g7 / 2 nocc(j) Sum Closed shells (10) (2) 50 40 50 (6) (4) ! (8) ! (4) ! (2) ! (6) ! ! (2) ! (4) ! 38 32 ! 28 20 16 1d5 /2 0g9 /2 Protons 3!" ! ! 1p 0f 2!" ! ! 1s 0d 1!" ! ! 0p ! ! ! ! ! 0!" ! 0s nL N!" ! ! ! ! 0 f5 /2 ! 0 f7 /2 ! ! ! 0d 3/2 1s1/2 ! ! 0d5 /2 ! 0 p1/2 ! 0 p3/2 ! ! ! ! ! 0s1/2 ! nL ! 2 j +1 ! ! ! ! ! ! ! 1p1/2 1p3/2 ! j ! ! (2) ! ! Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! BG optical potl QRPA inelastic Inel+transfers crcn!da.reac 20 14 8 ! 6 2 " 2 j +1 ! Reaction cross section (mb) Harmonic Oscillator 200 90 n + Zr 40 MeV 100 8 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Partial Wave ! Effect depends on binding energy and Size of bound state wave functions. These are given by the mean-field model. 11 Comparison with Experimental Data Good description of experimental data! There is still possibility for improvements . Inelastic convergence when coupling up to all open channels Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 12 Several Projectiles, Targets and Energies Multiple targets More Proton data exists for reaction cross sections (normalised to nuclear area) Elab = 30 MeV r0 = 1.2 fm 2.0 J. F. Turner et al., 1964 R. F. Carlson et al., 1975 J. F. Dicello et al., 1970 400 1.5 1/3 2 40 p+ Ca "R/!(r0 A ) !R (mb) 800 0 1.0 !R (mb) 0.5 800 neutron as projectile R. F. Carlson et al., 1994 0.0 48 p+ Ca 400 proton as projectile 1.5 transfers J. J. Menet et al., 1971 J. F. Turner et al., 1964 T. Eliyakut!Roshko et al., 1995 800 58 p+ Ni 400 0 10 15 20 25 Elab (MeV) 30 35 40 Inel: dash +transfer: dash-dotted +tr+nono: short-dash optical model: solid "R/!(r0 A ) !R (mb) 1/3 2 0 optical potential 1.0 inelastic 0.5 0.0 50 70 90 1/3 2 110 130 !(r0 A ) Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 13 Non-Orthogonality and Fraction of σR Behaviour of non-orthogonality is sensitive to changes of the deuteron potential: Better definition needed! Using the Daehnick et al.§ potential for the deuteron. Using Johnson-Soper* prescription: Vd(R)=Vn(r)+Vp(R) Coupling to 90Zr(n,d,n) channel gives a large increment, approaching to the optical model calculation. Non-Orthogonality has an additional effect. αCC < αCC+CRC and αCC+CRC+NO *Physical §Physical Review C 1, 976 (1970) Review C 21, 2253 (1980) Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 14 Elastic Angular Distributions #! , • Provide complementary information on reaction mechanisms • Are sensitive to the effective interaction used #! #! * #! # #! ! -".-# #! + ,! /D'@E-E@)F&4GDB&H&+!789 #! + #! * #! # #! ! -".-# ,! //&0123&45&6&+!&789 /1/ /1/&:&;< /1/&:&=>?@!(AB?C /1/&:&;<&:&=>?@!(AB?C ! , "! #!! ( !$%&' ) Our approach predicts a variety of reaction observables. Data provides constraints on the ingredients. #"! ;5'?E-E?)B&F65A&G&+!78D /0&1234$56&7(-86&'9.&:1) ;<;&=&>1 ;<;&=&>1&=&:24?!(@A43 ;<;&=&>1&=&:1B&/0&5C&DA5@8 ;<;&=&>1&=&:1B&/0&5C&DA5@8&5?-&D- ! "! #!! #"! ( !$%&' ) Density-dependent effective interaction: • Resulting coupling potentials improve large-angle behavior, still need improvements for small angles. • Work in progress to treat and then test UNEDF Skyrme functionals. Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 15 Optical Potentials Define: The one-channel effective interaction to generate all the previous reaction cross sections Needed for • direct reactions: use to give elastic wave function • Hauser-Feshbach: use to generate reaction cross sections = Compound Nucleus production cross sec. In general, the ‘exact optical potential’ is • Energy-dependent • L-dependent, parity-dependent • Non-local Empirical: • local, L-independent, slow E-dependence • fitted to experimental elastic data Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 16 Two-Step Approximation We found we need only two-step contributions • These simply add for all j=1,N inelastic & transfer states: VDPP = ΣjN V0j Gj Vj0. Gj = [En - ej – Hj]-1 : channel-j Green’s function Vj0 = V0j : coupling form elastic channel to excited state j • Gives VDPP(r,r’,L,En): nonlocal, L- and E-dependent. In detail: VDPP(r,r’,L,En) = ΣjN V0j(r) GjL(r,r’) Vj0(r’) = V + iW • Quadratic in the effective interactions in the couplings Vij • Can be generalised to non-local Vij(r,r’) more easily than CCh. • Treat any higher-order couplings as a perturbative correction Tried by Coulter & Satchler (1977), but only some inelastic states included Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 17 Previous examples of Non-local Potentials Coulter & Satchler NP A293 (1977) 269: Real Part Imaginary Part Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 18 Calculated Nonlocal Potentials V(r,r’) now Real Imaginary 7 6 5 4 3 2 1 0 -1 -2 7 6 5 4 3 2 1 0 -1 -2 9 8 7 6 5 4 3 2 1 0 0 4 3 2 1 6 5 7 8 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 8 7 6 9 4 3 2 1 0 0 1 2 3 4 5 6 7 8 8 7 9 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 1 1 0 L=9 -1 0 -2 -1 -3 -2 -4 -3 -5 -4 -5 9 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 9 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 9 L=0 4 3 2 1 0 -1 -2 -3 -4 -5 -6 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 19 Low-energy Equivalents: Vlow-E(r) = ∫ V(r,r’) dr’ Imaginary Real 15 5 KD optical potential Increasing L 0 Imag Vlow!E (MeV) VlowE (MeV) 10 5 0 !5 !5 Increasing L !10 0 2 4 6 Radius (fm) 8 10 !15 0 2 4 6 Radius (fm) 8 10 See strong L-dependence that is missing in empirical optical potentials. Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 20 Comparison of (complex) S-matrix elements 1 Koning!Delaroche optical potential Becchetti!Greenless optical potential CRC + NONO 0.5 2 1 0 33 8 Imag(SL) 888 9 9 9 44 55 0 7 7 6 6 !0.5 5 77 5 01 2 0 1 3 2 4 3 66 4 10 1010 11 11 11 12 12 13 14 15 16 17 18 19 20 Comparison of CRC+NONO results with Empirical optical potls (central part). See more rotation (phase shift). Labeled by partial wave L !1 !1 !0.5 0 Real(SL) 0.5 1 Room for improvements! Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 21 Exact equivalents: fitted to S-matrix elements Fit real and imaginary shapes of an optical potential to the S-matrix elements. 2 Imag part of fitted optical potential (MeV) Real part of fitted optical potential (MeV) 20 30 MeV 36 MeV 39 MeV 40 MeV KD optical potential 0 !20 !40 !60 !80 0 1 2 3 4 5 6 Radius (fm) 7 8 9 10 0 !2 !4 !6 30 MeV 36 MeV 39 MeV 40 MeV KD optical potential !8 !10 0 2 4 6 Radius (fm) 8 10 Again: too much attraction at short distances Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 22 Further Research on Optical Potentials 1. 2. 3. 4. Compare coupled-channels cross sections with data Reexamine treatment of low partial waves: improve fit? Effect of different mean-field calculations from UNEDF. Improve effective interactions: • • • Spin-orbit parts spin-orbit part of optical potential Exchange terms in effective interaction small nonlocality. Density dependence (improve central depth). 5. Examine effect of new optical potentials: • • Are non-localities important? Is L-dependence significant? 6. Use also ab-initio deuteron potential. 7. Do all this for deformed nuclei (Chapel Hill is developing a deformed-QRPA code) Lawrence Livermore National Laboratory LLNL-‐PRES-‐437553 and 438113! 23