Modular eigenvalues of the variable exponent p-Laplacian

Transcrição

Modular eigenvalues of the variable exponent p-Laplacian
Modular eigenvalues of the variable exponent
p-Laplacian
Joint Meeting AMS-EMS-SPMM
Porto, June 2015
Osvaldo Mendez
University of Texas-El Paso
Table of contents
Section 1
Modular Spaces
Section 2
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
Section 3
Euler-Lagrange equations
Section 5
Existence of the rst eigenvalue
Section no. 6
Stability
Section 7
Remark
Section 7
Open problems
,
D. Edmunds, J. Lang, O.M.
Dierential Operators on Spaces of Variable Integrability
,
D. Edmunds, J. Lang, O.M.
Dierential Operators on Spaces of Variable Integrability
J. Lang, O. Mendez
,
D. Edmunds, J. Lang, O.M.
Dierential Operators on Spaces of Variable Integrability
J. Lang, O. Mendez
,
,
Nonlinear An., 2014
Journal of Di. Eq, 2015
Journal d'Analyse Mathematique, 2015
Preliminaries
Rn bounded, Lipschitz domain,
Borel-measurable.
p:
! (1; 1)
Preliminaries
Rn bounded, Lipschitz domain,
Borel-measurable.
p:
! (1; 1)
Z
p();
(f ) = jf (x )jp(x ) dx
is a left-continuous convex modular on M(
); M(
) being the
set of all Lebesgue-measurable, scalar-valued functions on ;
f = g i f = g a.e..
Preliminaries
Rn bounded, Lipschitz domain,
Borel-measurable.
p:
! (1; 1)
Z
p();
(f ) = jf (x )jp(x ) dx
is a left-continuous convex modular on M(
); M(
) being the
set of all Lebesgue-measurable, scalar-valued functions on ;
f = g i f = g a.e..
kf kp();
:= inf > 0 : p();
(f =) 1
is a norm on the space
Lp() (
) = f 2 M(
) : p();
(f ) < 1 for some > 0 :
Particular case of Musielak-Orlicz spaces.
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
o
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
kukW 1
( ) (
)
;p o
= kuk1;p() = kukp();
+ kjrujkp();
:
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
kukW 1
( ) (
)
;p o
= kuk1;p() = kukp();
+ kjrujkp();
:
W01;p() (
)
is the closure of C01(
) in W 1;p()(
).
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
kukW 1
( ) (
)
;p o
= kuk1;p() = kukp();
+ kjrujkp();
:
W01;p() (
)
is the closure of C01(
) in W 1;p()(
). If p 2 C (
) the embedding
is compact
E : W01;p() (
) ,! Lp() (
)
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
kukW 1
( ) (
)
;p o
= kuk1;p() = kukp();
+ kjrujkp();
:
W01;p() (
)
is the closure of C01(
) in W 1;p()(
). If p 2 C (
) the embedding
E : W01;p() (
) ,! Lp() (
)
is compact and Poincares inequality holds:
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
kukW 1
( ) (
)
;p o
= kuk1;p() = kukp();
+ kjrujkp();
:
W01;p() (
)
is the closure of C01(
) in W 1;p()(
). If p 2 C (
) the embedding
E : W01;p() (
) ,! Lp() (
)
is compact and Poincares inequality holds:
kukp() C (p; n; )kjrujkp():
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
kukW 1
( ) (
)
;p o
= kuk1;p() = kukp();
+ kjrujkp();
:
W01;p() (
)
is the closure of C01(
) in W 1;p()(
). If p 2 C (
) the embedding
E : W01;p() (
) ,! Lp() (
)
is compact and Poincares inequality holds:
kukp() C (p; n; )kjrujkp():
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
kukW 1
( ) (
)
;p o
= kuk1;p() = kukp();
+ kjrujkp();
:
W01;p() (
)
is the closure of C01(
) in W 1;p()(
). If p 2 C (
) the embedding
E : W01;p() (
) ,! Lp() (
)
is compact and Poincares inequality holds:
kukp() C (p; n; )kjrujkp():
kuk = kjrujkp()
Sobolev Spaces, Poincares inequality, Sobolev Embedding.
n
W 1;p() (
) = u 2 Lp() (
) : jru j 2 Lp() (
)
kukW 1
( ) (
)
;p o
= kuk1;p() = kukp();
+ kjrujkp();
:
W01;p() (
)
is the closure of C01(
) in W 1;p()(
). If p 2 C (
) the embedding
E : W01;p() (
) ,! Lp() (
)
is compact and Poincares inequality holds:
kukp() C (p; n; )kjrujkp():
kuk = kjrujkp()
is a norm on W01;p()(
) equivalent to the original one.
The THERMISTOR PROBLEM (Zhikov, 1996)
p()u := div jrujp(x ) 2ru = 0
The THERMISTOR PROBLEM (Zhikov, 1996)
p()u := div jrujp(x ) 2ru = 0
Existence, uniqueness and regularity of the solution!!!
The THERMISTOR PROBLEM (Zhikov, 1996)
p()u := div jrujp(x ) 2ru = 0
Existence, uniqueness and regularity of the solution!!!
Fan-Zhang, 2003
The THERMISTOR PROBLEM (Zhikov, 1996)
p()u := div jrujp(x ) 2ru = 0
Existence, uniqueness and regularity of the solution!!!
Fan-Zhang, 2003
Modeling of Non-Newtonian uid hydrodynamics,
Electrorheological uids.
The THERMISTOR PROBLEM (Zhikov, 1996)
p()u := div jrujp(x ) 2ru = 0
Existence, uniqueness and regularity of the solution!!!
Fan-Zhang, 2003
Modeling of Non-Newtonian uid hydrodynamics,
Electrorheological uids.
Electrorheological uids: Modeling and Mathematical Theory.
R_ucika
Modular Eigenvalue problem
p()u = jujp()
2u
(1)
Modular Eigenvalue problem
p()u = jujp()
(Fan-Zhang-Zhao, 2005)
2u
(1)
Modular Eigenvalue problem
p()u = jujp()
(Fan-Zhang-Zhao, 2005)
Z
8h 2 C01(
):
Z
2u
jrujp() 2rurh = jujp() 2uh
(1)
(2)
Modular Eigenvalue problem
p()u = jujp()
(Fan-Zhang-Zhao, 2005)
Z
8h 2 C01(
):
2u
Z
jrujp() 2rurh = jujp() 2uh
If p is constant ! rst positive eigenvalue:
1 :
=
kE kp
(1)
(2)
Modular Eigenvalue problem
p()u = jujp()
(Fan-Zhang-Zhao, 2005)
Z
8h 2 C01(
):
2u
Z
jrujp() 2rurh = jujp() 2uh
If p is constant ! rst positive eigenvalue:
1 :
=
kE kp
If p has either a local min or a local max in ..........
(1)
(2)
Modular Eigenvalue problem
p()u = jujp()
(Fan-Zhang-Zhao, 2005)
Z
8h 2 C01(
):
2u
Z
jrujp() 2rurh = jujp() 2uh
If p is constant ! rst positive eigenvalue:
1 :
=
kE kp
If p has either a local min or a local max in ..........
R
p (x )
inf1 ( ) R
jrjuu(x(x)j)pj(x ) = 0!!!!:
06=u2W0 (
) (Fhang-Zhang-Zhao (2005).)
;p (1)
(2)
The modular eigenvalue problem as Euler-Lagrange
Equations
Does the modular eigenvalue problem have a solution (; u)?
The modular eigenvalue problem as Euler-Lagrange
Equations
Does the modular eigenvalue problem have a solution (; u)?
Abstract theory of Ljusternik-Schnirelman:
The modular eigenvalue problem as Euler-Lagrange
Equations
Does the modular eigenvalue problem have a solution (; u)?
Abstract theory of Ljusternik-Schnirelman: k = 1; 2; 3:::
R
k
jrujp() :
R
= Cinf
sup
2C v 2C ju jp()
k
The modular eigenvalue problem as Euler-Lagrange
Equations
Does the modular eigenvalue problem have a solution (; u)?
Abstract theory of Ljusternik-Schnirelman: k = 1; 2; 3:::
R
k
jrujp() :
R
= Cinf
sup
2C v 2C ju jp()
k
Ck =: fC W01;p()(
) ; C closed ; (C ) k g:
The modular eigenvalue problem as Euler-Lagrange
Equations
Does the modular eigenvalue problem have a solution (; u)?
Abstract theory of Ljusternik-Schnirelman: k = 1; 2; 3:::
R
k
jrujp() :
R
= Cinf
sup
2C v 2C ju jp()
k
Ck =: fC W01;p()(
) ; C closed ; (C ) k g:
: Krasnoselskii genus:
The modular eigenvalue problem as Euler-Lagrange
Equations
Does the modular eigenvalue problem have a solution (; u)?
Abstract theory of Ljusternik-Schnirelman: k = 1; 2; 3:::
R
k
jrujp() :
R
= Cinf
sup
2C v 2C ju jp()
k
Ck =: fC W01;p()(
) ; C closed ; (C ) k g:
: Krasnoselskii genus:
Not a tangible description of the eigenfunctions.
The modular eigenvalue problem as Euler-Lagrange
Equations
Does the modular eigenvalue problem have a solution (; u)?
Abstract theory of Ljusternik-Schnirelman: k = 1; 2; 3:::
R
k
jrujp() :
R
= Cinf
sup
2C v 2C ju jp()
k
Ck =: fC W01;p()(
) ; C closed ; (C ) k g:
: Krasnoselskii genus:
Not a tangible description of the eigenfunctions.
There are eigenvalues "per se" that are NOT obtained via
Ljiusternik-Schnirelmann. (Bining-Rynne(2008))
Opt for an ad-hoc treatment (Sobolev embedding)
F : W01;p() (
) ! R
R
()
F (u ) = jrup((xx))j dx
p x
Opt for an ad-hoc treatment (Sobolev embedding)
F : W01;p() (
) ! R
R
()
F (u ) = jrup((xx))j dx
p x
G : Lp() (
) ! R
R
()
G (u ) = ju(px()xj ) dx
p x
Then
hF (u); hi =
0
and
Z
hG (u); hi =
0
jru(x )jp(x ) 2ru(x )rh(x ) dx
Z
ju(x )jp(x ) 2u(x )h(x ) dx
(3)
(4)
The modular eigenvalue problem is the Euler-Lagrange equation
for the constrained problem
max G (u) subject to F (u) = constant
(5)
Existence of the rst eigenvalue
Existence of the rst eigenvalue
r > 0 ) 9(u0 ; 0 )
solution of modular eigenvalue problem:
Existence of the rst eigenvalue
r > 0 ) 9(u0 ; 0 )
Z
solution of modular eigenvalue problem:
ju0(x )jp(x ) dx =
p (x )
R
jru
sup( )
( )j
()
x
p x
p x
Z
dx r ju(x )jp(x ) dx :
p (x )
Existence of the rst eigenvalue
r > 0 ) 9(u0 ; 0 )
Z
solution of modular eigenvalue problem:
ju0(x )jp(x ) dx =
p (x )
R
Z
jru
sup( )
( )j
()
x
p x
p x
Z
dx r jru0(x )jp(x ) dx = r
p (x )
ju(x )jp(x ) dx :
p (x )
Stability
( p ; u p )
(q ; uq )
eigenvalues corresponding to p; q;
Stability
( p ; u p )
(q ; uq )
eigenvalues corresponding to p; q;
)
pq
Stability
( p ; u p )
(q ; uq )
eigenvalues corresponding to p; q;
)
pq
p
q ??
Stability
( p ; u p )
(q ; uq )
eigenvalues corresponding to p; q;
)
pq
p
q ??
up uq ??
(Lindqvist (1990), p constant.)
Holder's inequality:
Holder's inequality:
Z
jf (x )g (x )j dx (1 + 1=p
1=p+) kf kp kg kp :
0
Holder's inequality:
Z
jf (x )g (x )j dx (1 + 1=p
Not suitable for "stability" analysis.
1=p+) kf kp kg kp :
0
Holder's inequality:
Z
jf (x )g (x )j dx (1 + 1=p
1=p+) kf kp kg kp :
Not suitable for "stability" analysis.
However: If
p (x ) q (x ) p (x ) + " a.e. in :
0
(6)
Holder's inequality:
Z
jf (x )g (x )j dx (1 + 1=p
1=p+) kf kp kg kp :
Not suitable for "stability" analysis.
However: If
p (x ) q (x ) p (x ) + " a.e. in :
q (f ) 1; then
p (f ) " j
j + " " :
0
(6)
Holder's inequality:
Z
jf (x )g (x )j dx (1 + 1=p
1=p+) kf kp kg kp :
Not suitable for "stability" analysis.
However: If
p (x ) q (x ) p (x ) + " a.e. in :
q (f ) 1; then
p (f ) " j
j + " " :
Edmunds-Lang-Nekvinda, 2009
0
(6)
Holder's inequality:
Z
jf (x )g (x )j dx (1 + 1=p
1=p+) kf kp kg kp :
0
Not suitable for "stability" analysis.
However: If
p (x ) q (x ) p (x ) + " a.e. in :
q (f ) 1; then
p (f ) " j
j + " " :
Edmunds-Lang-Nekvinda, 2009
This is the substitute of Holder's inequality for the stability
analysis.
(6)
(pi )i C (
)
pi increases uniformly to q
inf
q > n;
(pi )i C (
)
pi increases uniformly to q
inf
q > n;
Then, there exists a solution to the q-eigenvalue problem,
such that
and
(q ; uq )
up * uq
i
in W01;q (
)
(pi )i C (
)
pi increases uniformly to q
inf
q > n;
Then, there exists a solution to the q-eigenvalue problem,
such that
and
Moreover:
(q ; uq )
up * uq
i
up
i
in W01;q (
)
! uq in Lq (
)
(pi )i C (
)
pi increases uniformly to q
inf
q > n;
Then, there exists a solution to the q-eigenvalue problem,
such that
and
Moreover:
and
(q ; uq )
up * uq
i
up
i
in W01;q (
)
! uq in Lq (
)
R
jrujq dx
q
L R
q
q+
ju j dx
L;
q 2
L q;1 L:
q+
(7)
(pi )i C (
)
pi increases uniformly to q
inf
q > n;
Then, there exists a solution to the q-eigenvalue problem,
such that
and
Moreover:
and
(q ; uq )
up * uq
i
up
i
in W01;q (
)
! uq in Lq (
)
R
jrujq dx
q
L R
q
q+
ju j dx
L;
q 2
L q;1 L:
q+
Similar result for (pi ) decreasing uniformly to p.
(7)
For
p; q 2
the convergence is actually strong in the corresponding Sobolev
Space.
Remarks
The norm on W01;p()(
),
u
! kjrujkp() = kuk1;p()
is Frechet dierentiable with derivative given by
p (x ) kjrf jkp(p)(x ) jjrf (x )jjp(x ) 1 sgn rf (x )
(grad kjf jk1;p())(x ) = R
:
p (x ) kjrf jkp(p)(x ) 1 jrf (x )jp(x ) dx
Remarks
The norm on W01;p()(
),
u
! kjrujkp() = kuk1;p()
is Frechet dierentiable with derivative given by
p (x ) kjrf jkp(p)(x ) jjrf (x )jjp(x ) 1 sgn rf (x )
(grad kjf jk1;p())(x ) = R
:
p (x ) kjrf jkp(p)(x ) 1 jrf (x )jp(x ) dx
Dinca-Mathei (2009)
Remarks
The norm on W01;p()(
),
u
! kjrujkp() = kuk1;p()
is Frechet dierentiable with derivative given by
p (x ) kjrf jkp(p)(x ) jjrf (x )jjp(x ) 1 sgn rf (x )
(grad kjf jk1;p())(x ) = R
:
p (x ) kjrf jkp(p)(x ) 1 jrf (x )jp(x ) dx
Dinca-Mathei (2009) Therefore:
Z
Z
grad ku0k1;p() (x )rh(x ) dx = p grad ku0kp() (x )h(x ) dx ;
with p = kE1 k :
Remarks
The norm on W01;p()(
),
u
! kjrujkp() = kuk1;p()
is Frechet dierentiable with derivative given by
p (x ) kjrf jkp(p)(x ) jjrf (x )jjp(x ) 1 sgn rf (x )
(grad kjf jk1;p())(x ) = R
:
p (x ) kjrf jkp(p)(x ) 1 jrf (x )jp(x ) dx
Dinca-Mathei (2009) Therefore:
Z
Z
grad ku0k1;p() (x )rh(x ) dx = p grad ku0kp() (x )h(x ) dx ;
with p = kE1 k :
is the Euler-Lagrange equation corresponding to the maximal
functions of the Sobolev embedding!!!!
Remarks
The norm on W01;p()(
),
u
! kjrujkp() = kuk1;p()
is Frechet dierentiable with derivative given by
p (x ) kjrf jkp(p)(x ) jjrf (x )jjp(x ) 1 sgn rf (x )
(grad kjf jk1;p())(x ) = R
:
p (x ) kjrf jkp(p)(x ) 1 jrf (x )jp(x ) dx
Dinca-Mathei (2009) Therefore:
Z
Z
grad ku0k1;p() (x )rh(x ) dx = p grad ku0kp() (x )h(x ) dx ;
with p = kE1 k :
is the Euler-Lagrange equation corresponding to the maximal
functions of the Sobolev embedding!!!! Bennewitz (2007),
Lindqvist-Francina (2013)
Open problems
Open problems
Strong convergence in general?
Open problems
Strong convergence in general?
Uniqueness of positive eigenfunction?
Open problems
Strong convergence in general?
Uniqueness of positive eigenfunction? Implied by the uniform
convexity of
W01;p (
)
with respect to the norm
u ! kjru jkp :
Open problems
Strong convergence in general?
Uniqueness of positive eigenfunction? Implied by the uniform
convexity of
W01;p (
)
with respect to the norm
u ! kjru jkp :
Other boundary conditions? (e.g. Neumann, Robin??)
MUITO OBRIGADO!
MUITO OBRIGADO!
THANKS!