Chemical Processes and Use of CO2: 4th Status Conference
Transcrição
Chemical Processes and Use of CO2: 4th Status Conference
imprint Imprint Published by Federal Ministry of Education and Research (BMBF) Resources and Sustainability Unit 53170 Bonn, Germany Orders In writing to the publisher: Postfach 30 02 35 53182 Bonn, Germany or by phone.: 01805 - 262 302 fax: 01805 - 262 303 (0.14 euros / min. from German landline) [email protected] Internet: www.bmbf.de Editing DLR Project Management Agency/ DECHEMA e.V., Frankfurt am Main Design/Layout PM-GrafikDesign, Peter Mück, Wächtersbach Printed by Seltersdruck GmbH, Selters Revision March 2014 Image credits: © Front cover: Thinkstock; Page 3: Bundesregierung/Denzel This publication is distributed free of charge by the German Federal Ministry of Education and Research as part of its public relations work. It is not intended for commercial sale. Use by political parties, candidates or campaign workers for election campaign purposes is prohibited. This applies to German national, state and local parliamentary/council elections and European Parliament elections. Misuse specifically includes distribution at election campaign events or political party information booths as well as the insertion, overprinting or affixing of information or advertising material which promotes political parties. Distribution to third parties as election campaign publicity is also prohibited. Irrespective of when, by what means and in what quantities it reaches the recipients and even if the timing bears no relationship to an upcoming election, this publication may not be used in a manner which could be construed as expressing support by the Federal Government for any political party. Technologies for Sustainability and Climate Protection - Chemical Processes and Use of CO2 4th Status Conference | www.chemieundco2.de FORSCHUNG BILDUNG 2 contents Contents Preface3 Dr. Georg Schütte, State Secretary at the Ministry of Education and Research CONFERENCE KEYNOTES Chemical Processes and Use of CO2 4 Lothar Mennicken Dr. sc., BMBF Five Years down the Road – Expectations and Results from the Industry Perspective6 Prof. Michael Röper Gas Innovation for the Future – Power to Gas8 Prof. Thomas Kolb, head of the DVGW Research Center at the University of Karlsruhe Engler Bunte Institute Opportunities for Carbon Dioxide Utilization at Bayer10 Dr. Martina Peters, Bayer Technology Services GmbH RESEARCH PROGRAM PROJECT EXTRACTS Session A: Chemical Energy Storage12 Session B: Energy-Efficient Processes22 Session C: Use of CO251 EUROPEAN ACTIVITIES SCOT – Smart Carbon Dioxide Transformation69 National Contact Point (NCP): the Horizon 2020 European Research and Innovation Framework Program 71 M4CO2 – EU Project to Reduce the Cost of CO2 Capture to Below € 15/Tonne73 CyclicCO2R: Production of Cyclic Carbonates from CO2 using Renewable Feedstocks74 POSTERS 77 preface 3 Preface Energiewende, climate protection and resource efficiency – all together are major societal challenges, we have to face. One key question in this regard is how chemical processes and techniques can be modified so that carbon dioxide emissions can be reduced and the combustion “waste product” (CO2) can become a “feedstock” for the chemical industry. Against this background, the Federal Ministry of Education and Research (BMBF) and Siemens organized a joint seminar on CO2 utilization potential at Petersberg/ Bonn in 2009. International and national representatives from science and industry who attended the seminar discussed the potential for protecting the climate through CO2 mitigation and the use of CO2 as well as where that potential can be realized and what the associated research needs are. Based on these results, that same year BMBF announced the call for “Technologies for Sustainability and Climate Protection – Chemical Processes and Use of CO2“ under the umbrella of the FONA (Research for Sustainable Development) program. Since then, BMBF has provided approximately 100 million euros in funding for technologies such as the use of carbon dioxide in basic chemicals, chemical storage of renewable energy and industrial energy efficiency in processes, which have high emissions reduction potential. This makes Germany the world leader in this innovative future technology. Private industry is providing approximately 50 million euros in additional funding for these research projects. Collaboration between industry, SMEs and research organizations on these projects promotes the development of young scientists and fully exploits the expertise of everyone involved. At the 4th status conference of the “Technologies for Sustainability and Climate Protection – Chemical Processes and Use of CO2” funding program at Petersberg, the research results and questions relating to practical implementation of innovative research results will be presented and discussed. The first results show how R&D and innovation can contribute to strengthen Germany as a business location and to reduce successfully CO2 emissions from the chemical industry. By making intelligent use of CO2, we can also expand the resource base in the chemical industry and provide a long-term replacement for oil which is a limited resource. Following the Energiewende and given the associated goals of saving energy along with the need to store renewable energy, for example through recycling of CO2 (Power-to-Gas, Power-to-Fuel), this BMBF research program also now has a high political priority. CO2 is not just a “problem”. It could possibly help resolve the societal challenges associated with climate protection, the Energiewende and resource efficiency. It is our intention to continue providing funding for creative approaches to research and innovation which have a reasonable likelihood of success and make the expand ing base of European and international expertise accessible. Dr. Georg Schütte, State Secretary at the Ministry of Education and Research 4 conference keynotes Chemical Processes and C02 Utilization The 33 (consortium) projects with 157 research schemes included in the BMBF “Technologies for Sustainability and Climate Protection – Chemical Processes and Use of CO2“ program are broadly organized into three thematic clusters: 1. Separation, activation and utilization of carbon dioxide (CO2) in basic organic chemicals and products which have new properties 2. Development of chemical energy storage for renewable energy using CO2 3.Increased energy efficiency in the chemical industry based on improved process, equipment and system technology in scenarios where significant potential exists to reduce CO2 emissions Capture, activation and utilization of carbon dioxide put CO2 in a different perspective. Up until this point, CO2 has been viewed almost exclusively as a “harmful” greenhouse gas. Recent R&D results should help change that perception. Based on our current understanding, utilization or rather recycling of CO2 will only make a limited contribution to a reduction in anthropogenic CO2 emissions, but it has considerable potential for reducing resource consumption and providing a substitute for oil, particularly in the chemical industry. The goal of the ACER project, for example, is to develop a catalytic closed-loop process to produce sodium acrylate from CO2 and ethene. Sodium acrylate is a key feedstock used in industrial-scale production of superabsorbers (millions of tonnes a year). These products are used in items such as diapers. Researchers working in the chemical energy storage cluster are looking at technologies for chemical storage of renewable energy. Two pathways, currently under investigation, are the production of hydrogen and methane (Power to Gas) as well as gasoline, diesel and kerosene (Power to Fuel, Power to Liquid). (Excess) electricity generated from renewable resources is used for water electrolysis to gain hydrogen. In a subsequent process, hydrogen is processed with CO2 to produce methane or liquid fuel. In the “SEE – Storage of Electrical Energy from Renewable Resources in the Natural Gas Grid” project for example, researchers are looking at all of the steps in the process sequence (electrolysis, methanation and conditioning to adjust the calorific value) used to produce methane (“synthetic natural gas”). The consortium, which is coordinated by the DVGW Research Center at the University of Karlsruhe, at the Engler Bunte Institute, consists of eight partners from science and industry. EnBW Energie Baden-Württemberg, a potential applicant, is evaluating the economic viability and is looking at possible sites for demonstrators. An innovative technique for using highly efficient high-temperature steam electrolysis and renewable energy to convert CO2 and H2O into liquid fuel is being developed on the Sunfire project. Eight partners are involved in this project with sunfire GmbH acting as coordinator. The primary objective is to eventually ramp up production to pre-industrial scale. To promote development in this field of technology, BMBF is currently funding six consortium projects in this research program and two projects in other research programs (Entrepreneurial PD Dr. sc. Lothar Mennicken Bundesministerium für Bildung und Forschung (BMBF) 724 Ressourcen und Nachhaltigkeit Heinemannstraße 2 und 6 53170 Bonn E-Mail:[email protected] www.bmbf.de conference keynotes Regions, Energy Storage). A flyer is available which contains further information. A number of possible pathways exist for enhancing energy efficiency in industrial production. These enhancements have significant emissions mitigation potential and they are an important economic factor as well. Therefore, most of the projects in the program are in this cluster (14 consortium projects), spanning a broad range of research activities. The work is directed at mitigating CO2 emissions and reducing energy and resource consumption. Initial indications are that this cluster has the potential to make a very substantial contribution to goal achievement because chemical processes are often very energy intensive. 5 These conference proceedings present all of the projects along with the latest results of the research program and outline the possible effects of real-world industrial application. The articles contain a wealth of very readable information on possible solutions to today’s pressing problems. No one knows what the future will bring. However, each one of us has an obligation to work towards a more sustainable future, make more efficient use of our limited resources and avoid placing unnecessary stress on the environment. Thirty years from now, science historians or our grandchildren may look back and realize that what we are doing now set the stage for a change in direction. Solvents are used in many chemical processes and they are normally recovered using conventional energy-intensive thermal separation. Technology for producing membrane modules used in organophilic nanofiltration was developed on the OPHINA (Organophilic Nanofiltration for Energy-Efficient Processes) project. No heat is needed for the recovery process which is based on these membranes. This BMBF research program makes a vital contribution by helping find solutions for the global challenges of resource scarcity (oil), sustainable energy supply and climate change. Collaboration between the academic, research and industrial sectors is intended to accelerate the pace of technological innovation and promote the professional development of young scientists. Graduates gain valuable initial experience working with industry and companies have the opportunity to recruit university graduates. PD Dr. sc. Lothar Mennicken 6 conference keynotes Five Years down the Road – Expectations and Results from the Industry Perspective Five years have now passed since the announcement of the Sustainability and Climate Protection Technologies - Chemical Processes and Use of CO2 funding program. This would appear to be an opportune time to look back at the genesis and implementation of the program, reflect on the successes and failures and think about where we go from here in light of current developments. Through its involvement in various DECHEMA and SusChemD committees, the chemical industry was involved in the development of the funding program and the content definition right from day one. The strategy papers “Energy Efficient Chemical Processes” and “CO2 Utilization” published in the autumn of 2007 along with the joint position paper “CO2 Utilization and Storage” published by VCI and DECHEMA in October 2008 should be mentioned in this context. The position paper “Evolution of the Resource Base”, which was jointly published by GDCh, DECHEMA, DGMK and VCI in January 2010, also identified CO2 utilization as a possible option. The results of the CO2 Utilization Potential seminar, which was jointly organized in Bonn/Petersberg by Siemens and BMBF in September 2009, played a role in a later phase of the funding program. The original announcement was released two years after the collapse of Lehman Brothers at a time when energy and raw material prices were falling in the wake of the worldwide economic crisis. It was clear to everyone involved, however, that these events did not really call into question the need for sustainable technologies. Under the circumstances, the fact that the 3 deadlines for submission of project outlines were spread out over a 16 month period turned out to be highly beneficial. It encouraged the formation of large, cross-industry con- Prof. Dr. Michael Röper Pegauer Str. 10 67157 Wachenheim Tel.: 06322 8518 E-Mail:[email protected] sortiums, and it would appear to be a good approach to take on future funding programs, because significant potential for enhanced sustainability is lurking precisely at the boundaries between resource and energy intensive branches of industry. Most of the funding program projects have either now been completed or have reached an advanced stage, and the results were presented at this status conference. Without jumping ahead, let it be said at this point that it is now much clearer which pathways to CO2 utilization are technically feasible. Whether development continues on to market introduction depends on whether the technology is economically viable compared to existing products. The hurdles tend to be lower for products which can be phased in step-by-step in existing applications such as foam without major investment. The use of reduction agents such as hydrogen or methane for the conversion of CO2 to CO or syngas which in turn can then be converted to hydrocarbons, methanol or dimethyl ether looks very promising. It opens the door to high volume products which can be used as fuel or input materials for the chemical industry. This type of synthesis is also suitable for chemical energy storage. In order to be competitive in the global marketplace, the reduction agents used for all of the options would have to be available on a sustained basis at very low prices, which is unlikely to be the case in the foreseeable future. The CRI methanol plant in Iceland, which has access to cheap electricity from a geothermal power station, does however demonstrate the basic feasibility. Nevertheless, with a methanol output capacity of only around conference keynotes 2,000 t/a, the plant is far from world scale despite an expansion project which has been announced for the middle of 2014. CO2 utilization is a future option for the chemical industry, which will only really become feasible over the long term, but research is underway now to assess the potential. This includes unconventional high-risk projects which venture into uncharted territory. The first successful catalytic synthesis of acrylate from ethylene and CO2 is a welcome outcome of the BMBF funding program. Improved resource efficiency in the chemical industry and the resulting avoidance of CO2 emissions were a major facet of the funding program. The choice of solution pathways was intentionally left open, enabling research teams to take a variety of different approaches. They looked at new types of equipment, methodologies and process steps which offer greater efficiency. Membrane separation, processes with a smaller CO2 footprint, improved heat exchangers, new ways of using ionic fluids and unconventional reaction technology are some examples. Other projects were started to find ways of reducing the CO2 footprint in hydrogen production and develop computer-based optimization of chemical equipment and entire production sites. SME involvement was particularly high on these projects. DECHEMA provided valuable project support by ensuring the comparability of the CO2-savings potential. If the projects produce successful outcomes, the likelihood that the results will be used in real-world applications is high in cases where little or no new investment is needed. So from the industry perspective, the funding program has produced results which could be implemented in the medium term to improve resource efficiency in chemical production. Also there is now a better understanding of how to assess the potential for CO2 utilization. In deciding where to go from here, careful consideration must be given to changes in the world energy market, in particular the increased availability 7 of natural gas. Expansion of CO2 utilization beyond the current state will only happen if the products have tangible additional benefits for the customer or offer a bigger economic incentive than existing resources. Opportunities are likely to exist in chemical energy storage and cross-industry utilization of material flows with resource-intensive branches of industry. 8 conference keynotes Gas Innovation for the Future – Power to Gas The goal of Germany’s “Energiewende” policy is to migrate most of the country’s energy supply to renewables, conserve scarce fossil-based resources and limit anthropogenic climate change. Policy makers are taking action to reduce energy-related CO2 emissions. In line with the public consensus, the decision was also taken to phase out nuclear power. bile consumer applications. Storage of heat in thermal storage systems is largely limited to domestic applications. Chemical energy storage systems have by far the highest energy densities, and they form the backbone of our energy supply. The list includes coal stock piles at power stations, fuel in gasoline tanks and natural gas in pipelines. The challenge is daunting. Taking 977 million t CO2 in 1990 as the baseline, the goal is a 55% reduction in energy-related emissions to 440 million t CO2 by 2030 and a 80-95% reduction to no more than 195 million t CO2 by 2050. The plan is to increase the proportion of renewables in the power generation energy mix to 80%. In Power-to-Gas (PtG) technology, electrical energy is used for electrolysis of water to produce hydrogen as a chemical energy source. Oxygen is a valuable natural byproduct of this process. In a subsequent methanation stage, hydrogen together with carbon dioxide or carbon monoxide can be converted to synthetic natural gas (SNG). The energy infrastructure consisting of transportation and distribution networks and underground storage facilities is capable of handling the SNG along with limited amounts of hydrogen, transport them over long distances and store them for extended periods (seasonal). Integration of an increasing proportion of fluctuating energy such as solar thermal, photovoltaic and wind power, which are not suitable for base load generation, into a stable electricity supply system presents a major challenge. Solutions are needed for feed-in, distribution and network management. Better ways need to be found to balance energy supply and demand, and the efficient use of energy storage systems can make a major contribution. Storage capacity, storage time, roundtrip efficiency, storage losses and the efficiency of storage-related energy conversion are the main assessment criteria for energy storage systems. The energy density of the storage medium is another key criterion. Pumped water is currently the most widely used storage technology for electricity generation. Electrochemical storage systems provide power in emergency and mo- Beyond the transportation and storage functions, PtG products can be used in a wide variety of energy supply and industrial applications, and they could make an important contribution to the energy transition. Examples include re-conversion to electricity in centralized or distributed CHP systems, condensing boilers in the heating market, the use of hydrogen and natural gas in the chemical industry and gas mobility. At the present time, PtG is not cost competitive. Efficiency enhancements in the various process steps (particularly electrolysis), optimization of the process dynamics and material and energy process integration Prof. Dr.-Ing. Thomas Kolb DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT) Engler-Bunte-Ring 1 76131 Karlsruhe Tel.: +49 721 608 - 42561 Fax: +49 721 9640227 E-Mail:[email protected] conference keynotes are the main technical challenges. Integrative studies (electricity and gas) along with demonstration projects will be needed to assess the potential contribution which PtG could make to the transformation of the energy system. Monetary analysis of the transportation and storage function in the natural gas grid is another necessary step on the road to integration of PtG technology. 9 10 conference keynotes Opportunities for Carbon Dioxide Utilization at Bayer It seems rather obvious. If we are producing too much carbon dioxide (CO2) and disturbing the balance of the natural carbon dioxide cycle, why don’t we try to use at least a small portion of this harmless gas for some useful purpose? For a number of years, chemists have been looking for ways of using the carbon in CO2 to make high value-add products (the so-called dream reaction). A number of ideas have been put forward including suggestions for using CO2 to make urea and methanol. So, what about high value-add plastics? Is that possible? And does it even make sense from the ecological and economic perspective? The funding program on CO2 use initiated by the Ministry for Education and Research is looking for answers to these questions. It forms the basis for Bayer’s CO2 utilization projects. Catalysis has a key role to play because CO2 is relatively inert, and it is by necessity the starting point for all potential strategies. The Dream Reactions project initiated by Bayer is a joint effort involving a number of scientific partners. The researchers have succeeded in producing some initial ground-breaking lab-scale results. So what next? The next step is the Dream Production research project. In partnership with RWE Power and RWTH Aachen University, Bayer´s researchers are looking at ways of using CO2 to produce polyurethane, a high-quality plastic found in many everyday items such as upholstered furniture, sporting goods and auto parts. The secret is a new catalytic process which makes it possible to insert CO2 into the molecular chains of polyurethane precursors (polyols). Dr. Martina Peters Bayer Technology Services GmbH Head of Chemical Catalysis Leverkusen Tel.: +49 214 30 20063 Fax: +49 241 30 50261 E-Mail: [email protected] The new process is not limited to laboratory scale. A pilot plant has been operating at the Bayer site in Leverkusen since the beginning of 2011 as part of the Dream Production project. Extensive testing has been carried out on the material with so far very promising results. Industrial-scale production could get underway as early as 2016. The question is whether the products make sense from the ecological standpoint. Scientists at RWTH Aachen University have carried out a detailed lifecycle analysis on the process. They came to the conclusion that the new process for producing polyols which contain CO2 actually does reduce consumption of fossil resources and energy compared to the conventional production process. This results in an overall reduction in CO2 emissions, with the main factor being the use of CO2 in the new process as a substitute for epoxide, an energy and emissions intensive polyol synthesis feedstock. Further reductions are conceivable if ways can be found to use CO2 as a substitute for other reaction partners. These ideas play a crucial role in the Dream Polymers project. Consumption of fossil-based feedstock could be reduced even further by using chemical building blocks made from CO2. That is by no means all. There are a number of other ideas on how CO2 could be used as a chemical feedstock. Utilization of excess wind energy is one possibility. During power surges, the electricity which is not needed to satisfy demand could then be used together with CO2 to produce key chemical building blocks. Another cross-industry project is looking into this possibility. Bayer, Siemens and RWE Power along with a number of partners from academia have therefore joined forces in the CO2RRECT project consortium. conference keynotes So where are we? If ways are found to use carbon dioxide as a feedstock in energy-efficient industrial applications, new sustainable chemical production processes could be developed. This could reduce carbon resource consumption and make a limited but very welcome and economically attractive contribution to climate protection. Direct CO2 emissions into the atmosphere could be reduced and oil-based substances could be replaced with carbon dioxide. Bayer has developed some initial examples of plastics production to the point where an environmental and economic assessment can be made, but a significant level of long-term research will be needed for other reactions. There is no lack of ideas. 11 12 CHEMICAL ENERGY STORAGE iC4 – Intergrated Carbon Capture, Conversion and Cycling CO2 as a Building Block for Efficient, Sustainable Energy Storage Technology BMBF is providing 6.3 million euros in funding for the iC4: Integrated Carbon Capture, Conversion and Cycling consortium project. The goal is to efficiently capture CO2 from a variety of sources including biogas plants, power stations and the iron & steel and cement industries (carbon capture) and synthesize the gas into methane or other chemical building blocks such as formic acid, methanol, higher oxygenates and hydrocarbons (conversion). The technologies developed during the project could make a very substantial climate-neutral contribution to re-use of CO2 in the energy and material streams (cycling). The current status of the four iC4 subprojects – COOMem, AdCOO (CO2 capture), COOMeth and PhotoCOO (CO2 utilization) - is summarized below. COOMem The goal of the COOMem subproject is to develop innovative composite carbon capture membranes. Membrane technologies are used in the iC4 cluster for gas separation, e.g. to capture CO2 emissions from power plants and CO2/CH4 gas mixtures from biogas plants. The project team is conducting in-depth research on the membrane materials, membrane production and simulated system integration, and they are also carrying out an economic and environmental assessment of the technology. The composite membranes consist of a selective layer on a support membrane. Silicon elastomers with intrinsically high gas permeability are used as the support material for the asymmetric hollow-fiber membranes. Polyelectrolytes with high CO2 selectivity were chosen as the base material for the selective separation layer. Based on the development work done by the project team, large scale production of asymmetrically micro-porous hollow-fiber membranes is now feasible, and it is possible to make separation layers with CO2/ N2 selectivity of approximately 60. AdCOO The research team on the COOMeth subproject is trying to derive economic value from CO2 by using renewable hydrogen for methanation. The technology is highly dependent on the availability of hydrogen and CO2 at an affordable cost. Existing post-combustion capture techniques based on wet scrubbing with reactive amine reagents are very expensive and not particularly efficient. A technical/ economic feasibility study is being carried out in the AdCOO subproject to determine whether solid sorbents in combination with suitable process technology can improve energy efficiency. Therefore, various solid sorbents have been produced and characterized. Some are made using different combinations of support materials impregnated with suitable receptor molecules while others are non-impregnated sorbents which have a defined pore structure such as zeolites and meso-porous silicas. The acquired analytical data is used by the technology partner Siemens Energy to assess the economic feasibility of alternative process technologies such as fixed bed and fluidized bed reactors. The project team is also looking at the suitability of various solid sorbent options under pre-combustion conditions for next-generation power station technologies. As things stand now, the results indicate that under fixed-bed based post-combustion capture conditions, there are no substantial energy efficiency or economic advantages compared to advanced wet scrubbing techniques. While solid sorbents do have the advantage of greatly reduced heat capacity, lower heat transfer means that compared to wet scrubbing, extraction of absorption heat for the subsequent desorption stage requires sophisticated and expensive heat exchanger technology. CHEMICAL ENERGY STORAGE As a result, the emphasis is on acquisition of data for assessing the economic feasibility of using solid sorbents in a fluidized-bed process or with structured reactor geometry. COOMeth Work on the COOMeth subproject is proceeding on schedule. During catalytic screening, nickel-based catalysts with various promoters have been produced at TUM using a variety of fabrication techniques. Nickeliron catalysts look very promising and have been studied in detail. The multi-reactor system used for catalytic screening has been transferred to TUM where it is now operational. The researchers have conducted experiments to assess the reaction kinetics based on benchmark catalysts supplied by Clariant, and they have also evaluated kinetic models for describing the experiment results. Pilot-scale trials have shown that under optimized reaction conditions, in-spec product gas suitable for feed-in can be produced in a single pass operation. Modifications have been identified which improve hydrothermal catalyst stability. Assuming that 10TWh of chemical energy storage will be needed by 2050, CO2 methanation could be expected to save a maximum 3,900 kto of CO2. The improvement in energy efficiency resulting from the envisioned CO2 methanation process improvements (reactor/catalyst optimization and heat coupling) is estimated to be 4.8 MWh/to SNG. In a regenerative scenario, CO2 capture (COOMem and AdCOO) in combination with CO2 methanation does not produce any additional CO2 mitigation, but ideally it does make CO2 capture economically feasible by reducing specific energy consumption. Project partners: • • • • • • • • Technische Universität München MAN Diesel & Turbo SE Wacker Chemie AG Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Linde Aktiengesellschaft Siemens Aktiengesellschaft Clariant Produkte (Deutschland) GmbH E.ON New Build & Technology GmbH 13 PhotoCOO Researchers are investigating various aspects of photochemical CO2 reduction. Calculations based on quantum mechanics provide indications of possible reaction paths, activation energies and equilibrium states. Experiments can then be set up to test the theoretical models, initiating an iterative process. Initial results based on this approach look promising. The team has synthesized various rhenium and iridium complexes which can be used to investigate the kinetics of selective CO2 reduction to CO. The researchers have gained an in-depth insight into the electron transfer mechanism and the deactivation steps. They have developed systems which are capable of making a large portion of the sunlight spectrum available for the reduction process. Photochemical water splitting is an additional aspect which is being investigated using GaN/ZnO based heterogeneous catalysts. Through selection of particle composition and size along with suitable promoters (Pt, Pd and Ag), the team is attempting to determine the reaction kinetics and thermodynamics. Initial results indicate that this approach is very promising. An Xe/Hg lamp which simulates sunlight is being used to make a detailed study of oxygen and hydrogen evolution. There are strong indications that promoter cluster size is crucial. With the aid of a DEMS (differential electrochemical mass spectrometer), the researchers are carrying out investigations on photoelectric CO2 reduction to make various products such as formic acid, formaldehyde and methanol with the aid of decorated silicon surfaces. Initial results indicate that covalent bonding of organocatalysts on the silicon surface tends to increase the activity of CO2 reduction. Contact: Prof. Bernhard Rieger Technische Universität München Wacker Lehrstuhl für Makromolekulare Chemie Lichtenbergstr. 4 85748 Garching Tel.: +49 (0)89 289-13570 E-Mail: [email protected] 14 CHEMICAL ENERGY STORAGE SEE – Storage of Electrical Energy from Renewable Resources in the Natural Gas Grid – H2O Electrolysis and Gas Component Synthesis Electricity output from wind and solar generation fluctuates significantly over time but feed-in and demand in the electricity grid must always be in balance. As more and more electricity is generated from renewable sources, there is an increasing need for highly flexible electricity storage and retrieval systems. The available capacity provided by existing electricity storage systems will not be sufficient to meet medium and long term needs. The goal of this consortium project is to develop technology to help manage the fluctuating supply of electricity from wind and solar power by storing energy as SNG (Substitute Natural Gas). CO2 will act as the carbon source.. Fig. 1: Process flow for production of SNG from excess electricity and CO2 Germany has an excellent natural gas storage and distribution infrastructure. The country’s pore and cavern natural gas reservoirs have a working gas volume of approximately 23 Giga m³ which is equivalent to about 250 TWhchem (the figure for pumped storage power stations is approx. 0.04 TWhel). Additional storage facilities with a volume of 7 Gm³ are currently under construction or at the planning stage. Leaving aside the natural gas grid, storage capacity of at least 326 TWhchem will then be available, which is roughly seven times the total amount of electricity generated from wind power in 2012. ionic liquids (IL)) - see Figure 2. Because the fluid has high heat capacity, a three-phase system is well suited for dynamic operation. As an alternative, the team is continuing to work on fixed-bed methanation in a staged reactor, looking particularly at the cost-effectiveness of small to medium size systems. Adjustment of the caloric value is needed following SNG production. Liquid fossil gas has been used up to this point for that purpose. To eliminate the dependency on fossil fuel in the process sequence, the intention is to produce C2 - C4 hydrocarbons from H2/CO2 feedstock using Fischer-Tropsch synthesis. In the planned process (Figure 1) a PEM pressure electrolyser with highly dynamic responding behaviour produces hydrogen, which is subsequently transformed into CH4 utilising CO2: CO2 + 4 H2 à CH4 + 2 H2O (g) ΔRH0 = -165 kJ/mol Three-phase (slurry) reactors have advantages compared to the two-phase methanation which has been the predominant pathway in the past. The reaction of gaseous educts takes place at a solid catalyst, suspended in a special heat transfer fluid (e.g. heat transfer oil or Fig. 2: Bubble formation in a three-phase reactor with various fluids at 200°C and 1 bar (X-BF: silicon oil, DBT: dibenzyltoluene, [BMMIM] [BTA]: ionic liquids (IL)) CHEMICAL ENERGY STORAGE 15 Based on this approach, a consortium made up of experts from various branches of the industrial and research community has taken on the challenge of designing a process which is technically and economically viable. h-tec GmbH has built a PEM electrolyzer. Fraunhofer ISE is carrying out dynamic operational control analysis in order to optimize the system. The DVGW Research Center at the Engler Bunte Institute which is part of Karlsruhe Institute of Technology (KIT) is carrying out investigations on methanation in a slurry reactor and is also in charge of the project. IOLITEC Ionic Liquids Technologies is responsible for IL development and syntheses. Outotec has responsibility for methanation in a staged reactor, and the Chemical Energy – Fuel Technology team at the KIT Engler Bunte Institute is in charge of syngas conditioning to adjust the calorific value. The three research institutes have joint responsibility for the dynamic performan ce of the overall system. EnBW Energie Baden-Württemberg, a potential user, is evaluating the economic viability and is looking at possible sites for demonstrators. Fig. 3: PEM pressure electrolyzer installed in the test environment used to investigate dynamic behavior and optimize operational performance in Power-to-Gas systems. The experimental work is currently in the final stages. Assessment of the market and CO2 mitigation potential will be carried out based on the results. Support for three doctoral dissertations and 15 Bachelor’s / Master’s theses is being provided on the project. Project partners: Contact: Dipl.-Ing. Dominic Buchholz DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie (KIT) Bereich Gastechnologie Engler-Bunte-Ring 1 76131 Karlsruhe Tel.: +49 (0)721 608 426 93 Fax: +49 (0)721 964 02 13 E-Mail:[email protected] 16 CHEMICAL ENERGY STORAGE HyCats: New Catalysts and Technologies for Solar Chemical Hydrogen Production The goal of the HyCats project was to develop photocatalytic water splitting technology to harness solar power for climate-neutral production of hydrogen. As photocatalysts, the team used semiconductors in suspension or in layered systems which produce hydrogen from water when they are exposed to sunlight in suitable solar reactors. Because existing photocatalytic systems were not economically viable, the team set out to provide scalable technology as a basis for development of marketable solar chemical systems for the production of hydrogen. The project delivered a toolbox which supports rapid development of economically viable photo-electrochemical hydrogen production systems. The toolbox consists of the following. • Quantum chemistry simulation tools for calculating band gaps, doping effects and surface reactions • Spectroscopic techniques to achieve an • understanding of the mechanisms involved • High throughput synthesis and activity measurements using a rapid screening system integrated into a synthesis robot • Production techniques for upscaling • photocatalyst synthesis • Photocatalyst activity tests for photocatalyst suspensions and electrodes in different types of reactors • SoCRatus (Solar Concentrator with a rectangular Flat Focus) test bed • Economic viability evaluation The thermodynamic stability, electronic structure and effect of substituents on the light absorption shift into the visible spectrum were calculated for different photocatalysts using quantum chemistry modelling based on density functional theory (DFT). The team investigated doping effects and water adsorption on the surface of the solid-state bodies and developed a semi-empirical method for calculating optical excitation spectrums of solid-state bodies. In some cases, disassociation of the adsorbed water was observed, which is the first step in the water splitting reaction. The researchers applied spectroscopic techniques to investigate the photocatalytic water splitting mechanism in the presence of sacrificial agents. They were able to identify the best catalysis to promote the formation of molecular hydrogen and molecular oxygen. Time-resolved laser pulse photolysis studies enabled the team for the first time to identify intermediary oxygen radicals during water oxidation and study their subsequent reaction kinetics in detail. They developed a synthesis robot with integrated rapid screening system (photo reactor with a gas chromatograph attached) for high throughput production and rapid testing of photocatalysts. The team prepared and tested approximately 620 tantalate and niobate based samples using a variety of synthesis techniques. The most promising photocatalysis were optimised under for conditions analogous to those in a production environment. The researchers analyzed the influence which different scalable production methods and parameters have on the physical properties, and hence the hydrogen formation rate, of the photocatalysts. A number of different co-catalysts were also tested. Successful test results for hydrogen production using particulate systems and electrodes were obtained with three different types of reactors. The solar efficiency and economic viability of various catalysts were evaluated. A solar concentrator test bed (SoCRatus=Solar Concentrator with a Rectangular Flat Focus) was set up and a suspension reactor with two separate reaction chambers along with the appropriate instrumentation was placed into operation. For parallel testing, the suspension reactor was mounted next to a photoelectrochemical cell in the focal plane of the SoCRatus. Hydrogen produced using renewable resources can make a major contribution to climate protection in a wide range of applications such as conversion of CO2 to hydrocarbons, fuel for domestic energy supply or vehicle fuel cells. Compared to other known renewable-based techniques, solar chemical production of hydrogen has the advantage of much simpler process technology, because water is split in a single low-temperature reactor. This can be an advantage in distributed applications. Hydrogen for domestic heating systems or fuel cells could be supplied under ideal conditions with simplified infrastructure. Hydrogen produced on a large scale at industrial solar parks could CHEMICAL ENERGY STORAGE be stored and distributed as an alternative to natural gas. Another objective of the HyCats project was to provide career development opportunities for young scientists. 3 Bachelor’s Theses, 2 Master’s Theses and 3 doctoral dissertations directly related to the project 17 work were completed, two other doctoral dissertations were started which are expected to be completed next year and work done on a Bachelor’s Thesis supported the commissioning of a reactor. Fig. 2: Hydrogen bubbles rise during a photocatalyst lab test Fig. 1: Rapid screening system for parallel testing of photocatalysts Project partners: • • • • • • • H.C. Starck GmbH Leibniz Universität Hannover (Prof. Detlef Bahnemann) Leibniz-Institut für Katalyse e.V. (Dr. Uwe Rodemerck) Deutsches Zentrum für Luft- und Raumfahrt e.V. (Dr. Christian Jung) Universität Bonn (Prof. Thomas Bredow) ODB-Tec GmbH & Co. KG Zinsser Analytic GmbH Fig. 3: Solar reactor at DLR in Cologne Contact: Dr. Sven Albrecht H.C. Starck GmbH Im Schleeke 78 - 91 38642 Goslar Tel.: +49 (0)5321 751 3735 Fax: +49 (0)5321 751 6872 E-Mail:[email protected] www.hcstarck.com 18 CHEMICAL ENERGY STORAGE CO2RRECT – Utilization of CO2 as a Carbon Building Block Mainly Using Renewable Energy Challenges and Goals Scope and Emphasis The goal of the CO2RRECT project is to use hydrogen produced with renewable energy together with CO2 to make high-grade chemical products. A research alliance including Bayer, RWE, Siemens and ten partners from academia is working on the concept. Research on this project was organized into 5 work packages. Siemens designed a PEM electrolysis system for hydrogen production. Trials were run on a prototype with a peak rating of 300 kW at the Niederaußem power station during the CO2RRECT demonstration phase. Bayer developed a reactor concept and catalysts for the reaction of hydrogen with CO2 captured from the power station emissions to produce carbon monoxide for use as a reactive intermediate. The source of the carbon dioxide is RWE‘s lignite power station at Niederaußem near Cologne, where the gas is extracted, purified, liquefied and filled. At the end of the project, Bayer and Invite will validate the reactor concept at a pilot-scale plant in Leverkusen, which is scheduled to begin operating in 2014. Conventional power stations are demand-driven whereas generation from alternative resources fluctuates depending on weather conditions (e.g. wind and sunlight). Many EU countries want to greatly expand the use of renewable energy, thus, electricity storage systems can be used to balance supply and demand. Pumped storage power stations are currently the most widely used technology. Chemical energy storage is another option, for example production of hydrogen using water electrolysis. Hydrogen can be stored in large volumes. Fig. 1: Using hydrogen produced from renewable resources, CO2 can be converted to useful products in the chemical industry (photo: Bayer) CHEMICAL ENERGY STORAGE A special catalyst is needed to activate the CO2. Other project partners are contributing their expertise in catalyst research, process technology, reactor optimization and holistic process analysis. The consortium includes universities in Aachen, Bochum, Dortmund, Dresden and Stuttgart along with the Max Planck Society, the Leibniz Institute for Catalysis at the University of Rostock (LIKAT), the Karlsruhe Institute of Technology and the INVITE research center. 19 High-performance plastic polycarbonate can be made from the intermediate which is synthesized from CO2 for the production of items such as DVDs, LEDs, computer enclosures and eyeglasses. Isocyanate, a major constituent of polyurethane foam, can also be produced. The foam is found in many everyday products such as furniture, shoes, cars and building insulation material. In addition to the engineering and economic aspects, the researchers are also evaluating the potential for further reductions in greenhouse gas emissions compared to current process technology. Application, Exploitation of the Results, Economic and Environmental Benefits All of the technical goals for the project were achieved. However, technical and economic analysis shows that a very large amount of low-cost renewable energy will have to be available for the technology to be economically viable. Realization is not expected before 2020 at the earliest. The main advantages of the project are as follows: meaningful use can be made of excess electricity from wind power, and CO2 which is otherwise treated as a waste product can be used as a new feedstock and an alternative to feedstock produced by the petrochemical industry. Contact: Dr. Stefanie Eiden Bayer Technology Services GmbH BTS-TD-UP-CC Leverkusen, E 41 Tel.: +49 (0)214 30 22761 Fax: +49 (0)214 30 50262 E-Mail: [email protected] Fig. 2: Prototype Siemens electrolyzer with a peak rating of 0.3 MW at the RWE Niederaußem power station site near Cologne (Photo: Siemens/RWE) 20 CHEMICAL ENERGY STORAGE sunfire – Production of Liquid Fuels from CO2 and H2O Using Renewable Energy The sunfire project got underway in May 2012 and has two main goals: 1. Design and implementation of pressurized hightemperature steam electrolysis with an electrical efficiency (LHVH2/kWel) significantly greater than 90%. 2. Design and construction of a test system to produce liquid hydrocarbons from CO2 and H2O with an efficiency > 65% (LHVH2/kWel). The complete hydrocarbon production process consists of (1) steam electrolysis, (2) CO2 RWGS conversion1 and (3) Fischer-Tropsch synthesis. The researchers will optimize the three process steps before using them together in a continuous process on the test system. Scaling up benchtop steam electrolysis to an initial, pre-industrial 10 kW prototype presents a major challenge. Substantial improvements were achieved through focused material development. The diagrams below show the voltage rise (a degradation symptom) at the beginning of the project and about a year later2: Fig. 1: Steam electrolysis degradation at the start of the project (left) and one year later (right) The comparison shows that degradation is comparable to that of fuel cells and that the technology could be further developed for industrial use. Construction of the 10 kW prototype will get underway at the beginning of 2014. design was also developed. This reactor together with Fischer-Tropsch synthesis is being installed in a test system. Construction work began on July 22nd, 2013. The photo below shows how far construction had progressed as of December 2013. Detailed lab investigation of the reverse water-gas shift reaction (RWGS) was conducted at the University of Bayreuth including RWGS in combination with Fischer-Tropsch synthesis, and a new reactor Commissioning is scheduled for the middle of 2014. The goal is to produce one barrel (159 liters) of raw Fischer-Tropsch product which will be validated by Lufthansa and HGM Energy (an oil dealer). 1 Reverse water-gas shift reaction: endothermic reduction of CO2 to CO and oxidation of H2 zu H2O 2 Quelle: EIFER-Institut 2012/13 CHEMICAL ENERGY STORAGE 21 In parallel, the University of Stuttgart will carry out a lifecycle analysis for the entire value-add chain. It has already assessed the test system in its current state. That information will be used to estimate the environmental impact of industrial-scale fuel production. The project is the first step on the road to industrialization of the Power-to-Liquids process for production of infrastructure-compatible liquid fuels (gasoline, diesel, kerosene) using highly efficient steam electrolysis. The process can save up to 3.14 t of CO2 per ton of fuel. It can also help stabilize the electricity grid and provide a basis for regional wealth creation combined with high security of supply. 5 companies and 5 scientific institutions are working hand-in-hand on the project, particularly on material development and process characterization. 7 degree theses and doctoral dissertations have been completed up to this point within the context of the project. Fig. 2: Test facility sunfire – Herstellung von SUNFIRE – PRODUCTION OF FUEL Kraftstoffen aus Co2 und H2o FROM CO AND H O 2 2 CH2 CH2 gasoline, diesel, kerosene, Benzin, diesel, Kerosin, Methangas methane gas * Praxisevaluierung durch lufthansa HGM CO2 +H2O Co2 +H2o carbon dioxide Kohlenstoffdioxyd Wasser water Contact: Christian Olshausen Sunfire GmbH Gasanstaltstraße 2 01237 Dresden Tel.: +49 (0)351 89 67 97 908 E-Mail: [email protected] Further informationen under: www.sunfirefuel.com 22 ENERGY-EFFICIENT PROCESSING OPHINA – Organophilic Nanofiltration for Energy-Efficient Processes Avoidance of CO2 emissions is a key element in a broadbased strategy to reduce greenhouse gases. Finding substitutes for fossil fuel is one option. Reducing consumption of energy which is largely fossil-based can be another major factor in CO2 mitigation. Optimization of process energy efficiency can make an important contribution to CO2 avoidance. and BASF Personal Care & Nutrition). The researchers were also able to develop a range of membranes with different cut-off values. Two module generations were developed. Project partners carried out feasibility studies on flat sheets and additionally spiral-wound modules were also produced and made available to the partners. Solvents are often used in the chemical industry. It can take a lot of energy to recover the solvents at the end of the process. Energy-efficient recovery can significantly reduce process CO2 emissions. Organophilic nanofiltration is one such technology, because in contrast to thermal separation it works without heat. The goal of this project was to develop technology for producing OSN (organophilic solvent nanofiltration) membrane modules. Reproducibility and consistent high quality were two of the key deliverables for the new module production process. The solvent stability, permeate flux, rejection (selectivity) and long-term mechanical stability of the modules have to meet industrial-grade standards. To improve on commercially available membranes, the project team developed membranes which have a high-selectivity silicon-based filtration layer on a cross-linked polymer backing. The membranes were optimized to meet the requirements profile of industrial users (Evonik Industries, Bayer Technology Services The chemical resistance of the material composite in the spiral-wound modules was evaluated using process solvents. The results showed that the resistance of the membrane material guarantees good resistance of the module. The measurement results obtained by the project partners were forwarded to RWTH Aachen for modelling of mass transport through the membrane and in a spiral-wound module. Following the module development phase, the product carbon footprint of the membrane module was calculated. This data can be very helpful to customers who use the modules in their production operations and want to carry out a complete lifecycle assessment for their products. A number of different OSN applications were identified during trials which were conducted by the project partners. Fig. 1: Photo of a spiral-wound module ENERGY-EFFICIENT PROCESSING The cost-effectiveness of the OSN applications was carefully scrutinized, because low membrane flux performance can result in high investment costs for large membrane surfaces. However, the use of OSN in the process can also have other advantages besides a re- 23 duction in recycling costs and CO2 emissions. Recovery with OSN membranes can enhance product purity and product quality and reduce thermal stress on the products. The consortium project ended on April 30th, 2013. Fig. 2: Contribution of a spiral-wound module to the product carbon footprint broken down by class. Project partners: • • • • Evonik Industries AG Bayer Technology Services GmbH BASF Personal Care and Nutrition GmbH RWTH Aachen Contact: Dr. Daniela Kruse Creavis Technologies & Innovation Evonik Industries AG Paul-Baumann-Straße 1 45772 Marl 24 ENERGY-EFFICIENT PROCESSING InReff – Integrated Resource Efficiency Analysis to Reduce the Climate Impact of Chemical Plants Project goals and content The goal of the InReff consortium project is to develop an IT-based modeling and analysis environment which can provide answers for a wide range of resource efficiency and climate protection issues in the chemical industry. Integrated analysis and optimization of complex production systems including raw material and energy consumption and informed management of the associated costs and environmental/climate impact are needed to reduce greenhouse gas emissions in the chemical industry. Various tools and techniques including lifecycle analysis, thermodynamic simulation, heat integration studies, costing models and optimization methodologies are used to quantify the climate impact and resource efficiency of production systems in the chemical industry (Fig 1). This holistic approach necessitates but also facilitates methodological and technological innovation in system modeling and analysis as well as in real-world production at project partner chemical sites. Fig. 1: Elements included in the integrated resource efficiency analysis The following are members of the consortium: software development - ifu Hamburg; scientific research - the Institute for Industrial Ecology (INEC, Pforzheim University) and the Chemical and Thermal Process Engineering Institute (ICTV, TU Braunschweig); chemical industry - H.C. Starck GmbH and Sachtleben Chemie. Wacker Chemie, BASF SE and Worlée-Chemie (a mid-tier company) are also involved in the project as associate members. Funding for the three-year project is being provided by the Federal Ministry of Education and Research (BMBF). Project status Last year, the project team achieved some important conceptual and technical results. They developed a methodology model for integrated resource efficiency analysis which describes the interaction between the different analytical methods used in the application. While doing so, they defined the specific IT support requirements and developed the initial prototypes. Material flow modeling plays a key role as the unifying overall model (Fig. 2). Complementary methodologies ENERGY-EFFICIENT PROCESSING 25 P3: emissions Material flow network (Umberto) 710304.6523437 kJ 1527354.652344 kJ T4: heat recovery 3, water P2: heating steam 125700 kJ P1: water return 8709114 kJ T5:pump 1975309.339844 kJ T3: heat recovery 2, water T2: heat recovery 1, steam 8395136.71875 kJ 1767804.6875 kJ T1 P4: auxiliaries Flow sheet (ChemCAD) T1: boiler 2289286.621094 kJ 8990754.911402 kJ Interaction via Interaction transition scriptvia transition script Fig. 2: Sample integrated model of a steam generator such as flow sheet simulation and heat integration analysis can be used to refine the model. It also provides a basis for standardized visualization, evaluation and optimization of partial results using a variety of analytical tools. In that context, the team developed a prototype interface which creates a link between a material flow modeling tool and a sample flow sheet simulator. They also added simulation-based optimization algorithms and looked at possible ways of creating linkages to heat integration calculation tools. Using this approach, the researchers were able to provide an initial demonstration showing the feasibility of integrated analysis in a largely automated process. Further progress was also made on modeling of typical processes at industry partner sites, and detailed research work continued on the methodological and practical aspects of simulation-based resource efficiency optimization. 26 ENERGY-EFFICIENT PROCESSING Economic, environmental and societal leverage effects Up until this point, a holistic approach to technical and economic analysis and optimization of production systems has been lacking in the chemical industry. This is particularly the case in the SME sector. Based on a limited information base, it seems reasonable to assume that opportunities for reducing the environmental impact are of a similar magnitude as opportunities to reduce cost. A holistic approach which includes quantitative analysis of the economic and environmental optimization potential enhances the likelihood that companies will accept the need to take action to protect the climate and increase resource efficiency and by doing so promote their own long-term business development. The InReff project is providing new insights and delivering practicable solutions. Project partners: • • • • • ifu Institut für Umweltinformatik Hamburg GmbH Sachtleben Chemie GmbH Technische Universität Braunschweig Hochschule Pforzheim - Gestaltung, Technik, Wirtschaft und Recht H.C. Starck GmbH Contact: Nicolas Denz ifu Hamburg GmbH Max-Brauer-Allee 50 22765 Hamburg Germany Tel.: +49 (0)40 480009-0 E-Mail: [email protected] ENERGY-EFFICIENT PROCESSING 27 InnovA2 – Innovative Equipment and System Design for Increased Production Process Efficiency Project goals and content The InnovA2 consortium project is looking at ways of increasing energy efficiency based on innovative equipment and system designs. The emphasis is on structured tubes, plate equipment, special thermo plate heat exchangers and multi-flow plate heat exchangers in vaporization and condensation applications. This class of equipment has very high heat integration and energy efficiency potential. The universities which are members of the consortium run initial suitability testing on the new equipment designs to identify suitable applications and carry out operational fluid dynamics and heat engineering assessments. Working from this basis, the next step is to run trials which support transfer of the lab / test center results to scalable pilot systems Fig. 1: Test bed with thermo plate natural circulation evaporator (© ICTV, TU Braunschweig) at industrial sites operated by consortium members. Using the results including key performance characteristic relationships identified during the experiments in both test series, it is possible to derive engineering design methodologies which provide direction for the design of innovative equipment in a given process application. In parallel, the team is developing techniques for economic evaluation and general estimation of the existing potential. Design engineers and potential users can take that information and make their own judgments about the advantages of using these equipment technologies. Lifecycle analysis of the process alternatives which include or exclude the new equipment designs contributes to the development of highly eco-friendly process and equipment design. Project status All of the test systems are operational and are delivering a large volume of experimental results. The example in Fig. 1 shows a test system with thermo plate natural circulation evaporator at TU Braunschweig and in Fig.2 a setup for condensation of isopropyl alcohol at a finned carbon steel tube at the TU München is presented. The data is collected and analyzed using standardized methods. Agreement was reached on uniform methods for representing the complex geometry of the heat transfer surfaces being evaluated to ensure comparability of the results later on. Models taken from the literature are used to describe the experimental data, and enhancements are added where needed. All of the investigations have shown that the innovative designs are functionally superior to standard smooth tube designs. Evaluations continue to determine which solutions are economically and ecologically viable. Geometric transfer experiments have been completed on pilot systems at Linde for finned tube equipment and at BTS for thermo plate equipment. Once again, the evidence shows that the innovative designs perform better than standard designs. A new modular modelling technique based on the three-level model is used for lifecycle assessment of the sample processes. This technique is particularly well suited for multi-product system modeling, the reason being that different production methods can be used in combination in modular systems and subsystems. All of the consortium goals are 28 ENERGY-EFFICIENT PROCESSING Fig. 2: Increment factors for condensation of iso-propanol, n-pentane and isooctane in a finned tube made of carbon steel and comparison to literature models (© LAPt, TU München) expected to be achieved by the time the project comes to an end (September 30th, 2014). Economic, environmental and societal leverage effect The economic and environmental leverage effect of the InnovA2 consortium project will be evident in a number of different areas. Chemical plant operators will be the main beneficiaries. Innovative equipment technologies will create opportunities to increase energy efficiency in production. The reduction in fossil fuel consumption could cut CO2 emissions by around 0.1 t CO2e/t product. The research results will also enable equipment manufacturers and engineering service providers to expand their product and service portfolios. The innovative designs point in new directions compared to existing state-of-the-art equipment, creating an incentive to take a serious look at the potential advantages. One very positive aspect of the InnovA2 consortium project is the opportunities it creates for young scientists to develop their professional skills and become actively involved. Nine doctoral candidates at the universities involved are working on the project as part of their degree programs. In addition, many young pro- fessionals are working in R&D at consortium member companies. More than 30 student research papers (project papers and Bachelor‘s and Master’s Theses) have been written in the context of the project. Some of the graduates have been hired by consortium companies. To support networking and information sharing among the doctoral candidates, one-day workshops are organized specifically for them immediately following the semi-annual consortium meetings. A number of the companies involved in the project are mid-tier engineering service providers or equipment manufacturers. By generating performance data which has been verified in trials and making that data publicly available, the project gives these companies a fast-track route to market penetration and enhances their innovative strength and competitiveness. This in turn provides job security for existing employees and creates an incentive to take on new staff. So far, information about the results of the InnovA2 project has been shared on posters and in talks at national and international events including the 50th European Two-Phase Flow Group Meeting in 2012 in Udine/I, a discussion corner at ACHEMA 2012 in Frankfurt/Main and the Fluid Dynamics and Separation Technology Association’s annual conference in 2013 in Würzburg. A number of articles are planned or ENERGY-EFFICIENT PROCESSING 29 have already been submitted to peer-reviewed professional journals for 2014. A special Chemie Ingenieur Technik magazine supplement entitled “Innovative Equipment and System Design” is planned for the autumn of 2014 for whith the InnovA2 project will contribute the bulk of the articles. Project partners: • • • • • • • • • • • • Technische Universität Braunschweig Universität Kassel Helmut-Schmidt-Universität – Universität der Bundeswehr Hamburg Technische Universität München Universität Paderborn Wieland-Werke Aktiengesellschaft Evonik Industries AG LANXESS Deutschland GmbH Linde Aktiengesellschaft MERCK Kommanditgesellschaft auf Aktie DEG Engineering GmbH Bayer Technology Services GmbH Contact: Prof. Dr.-Ing. Stephan Scholl Technische Universität Braunschweig Institut für Chemische und Thermische Verfahrenstechnik ICTV Langer Kamp 7 38106 Braunschweig Tel.: +49 (0)531 391 2780 Fax: +49 (0)531 391 2792 E-Mail: [email protected] www.ictv.tu-bs.de www.innova2.de 30 ENERGY-EFFICIENT PROCESSING HY-SILP – Development of new Resource-Efficient Hydroformylation Technologies using Supported Ionic Liquid Phase (SILP) Catalysts The goal of the HY-SILP project is to develop new, resource-efficient hydroformylation technology using SILP catalysts. SILP catalyst technology (Fig. 1) is an innovative approach to immobilization of homogeneous catalysts, combining the advantages of homogeneous and heterogeneous catalysis. A SILP process, for example, eliminates all of the steps which demand a sol- vent for the catalyst system. Specific solubility in ionic liquids (ILs) creates pathways for selective processing of complex educt mixtures. This can significantly reduce the hydroformylation carbon footprint and process design modifications can reduce energy consumption compared to current technology. Abb. 1: SILP-catalyst concept. Researchers at universities in Darmstadt and ErlangenNuremberg are working closely with Evonik on 10 work packages. The results of WP3 should give the researchers a better understanding of how the different components of a SILP catalyst influence the behavior of the catalyst in continuous gas-phase hydroformylation. The results so far clearly show that interaction between the precursor, ligand and ionic liquid (IL) in the substrate’s pore network is highly complex. The complexation behavior of the precursor and ligand as well as the type of IL or substrate have a pivotal influence on the activity, stability and selectivity of the catalysts. When different ILs were used, a correlation was found to exist between catalyst activity and the solubility of the substrate in the IL. The gas solubility of ultra-pure substances was measured using a magnetic suspension balance and COSMO-RS modelling. Various diphosphite-based ligands provided by Evonik (WP 2) were used to produce SILP catalysts. The ligand benzopinacol proved to be the most stable in continuous operation trials and showed outstanding stereoselectivity (> 99%) for linear aldehyde. Initial substrate screening trials have shown that the substrate is not an inert component in the SILP system. Substrate morphology and acidity influence the initial behavior, stability and product selectivity of the SILP catalyst.[1] A quad screening system was designed and built to enhance the efficiency of the project trials. Virtual IL screening [2] techniques 1 Schönweiz et al. Ligand-modified rhodium catalysts on porous silica in continuous gas phase hydroformylation of short-chain alkenes – catalytic reaction in liquid supported aldol product, ChemCatChem 2013, 5(10), 2955–296. 2 Franke et al. Accurate pre-calculation of limiting activity coefficients by COSMO-RS with molecular-class based parameterization, Fluid Phase Equilibria 2013, 340, 11-14. 3 Y. Hou; R. E. Baltus, Experimental Measurement of the Solubility and Diffusivity of CO2 in Room-Temperature Ionic Liquids Using a Transient Thin-LiquidFilm Method. Industrial & Engineering Chemistry Research 2007, 46, 24, 8166-8175. ENERGY-EFFICIENT PROCESSING and ligand systems (WP 1) are being developed to speed up the WP3 screening process. Several ligand systems which look very promising have been identified, and sufficient quantities have been made available to the consortium (WP2). Based on the factors which limit the performance of SILP catalysts, investigations are underway in WP4-6 to define the best formulations for production of SILP catalysts. IL wetting and fluid distribution on and in the substrate is crucial for precise characterization of SILP catalysts (WP4). Using substrate/IL systems, the researchers investigated the effect which the IL has on texture. Systems with different mass fractions were produced and the BET surface area and pore size were measured using N2 sorption. The investigations confirmed that linear correlation exists between the mass fraction and the surface area. The researchers carried out TEM, HREM and HREM-EDX measurements on the substrate and on unused and used SILP catalysts. HREM imaging provides qualitative information about the distribution and texture of the exterior surface. Comparison of unused and used SILP catalyst shows a distinct surface change. A test bed with Berty reactor was built to carry out kinetic investigations (WP5 and 6). The system was used to study the initial behavior of the catalysts. The results show that SILP catalyst activity continually increased during the first 72 hours. The rate of increase was lower for larger amounts of catalyst (up to 400 mg). Using a defined SILP catalyst with benzopinacol ligands, kinetic measurements were taken at varying partial pressure, absolute pressure, dwell time and temperature. Modelling using a simple formal kinetics model (exponential) shows an acceptable level of agreement with the experimental results, producing reaction orders of 0.3 (H2), -0.1 (CO) and 0.8 (1-butene). The average activation energies for the formation of n-aldehyde and isoaldehyde are 52 and 47 kJ/mol respectively. 31 to gain a better understanding of the interplay between substance transport and the chemical reaction. Experiments are being carried out to determine the diffusion coefficients of the pure educts and the products in selected ILs. The team selected a suitable method (Transient Thin Liquid Film Method)[3] and they then installed and validated the necessary instrumentation. This method can also provide solubility data. Initial results for H2 and CO systems in [BMIM] [NTf2] are now available. In both systems, the speed of diffusion increases with increasing temperature (faster for H2 than CO). The diffusion coefficients are in the range 2·10-9 m2s-1 to 4·10-9 m2s-1 (H2) and 6·10-10 m2s-1 to 12·10-10 m2s-1 (CO). The researchers in WP 7 investigated promising SILP catalysts using technically relevant feed mixtures. Relatively high activity (TOF > 130 h-1) was obtained even with highly diluted mixtures (> 90 % inerts). Traces of water or 1,3 butadiene caused deactivation of the SILP catalyst. Thermogravimetric analysis showed that the ligand is the most temperature-stabile component. The WP8 research team was able to reactivate a thermally deactivated SILP catalyst by adding fresh ligand. The long-term stability of selected SILP systems developed in WP3 was evaluated in WP9. Under technically relevant conditions using technical educts and benzopinacol ligands, a catalyst system was developed which has long-term stability > 1,000 hours and n/ iso-selectivity as good as that of homogeneous catalyst systems. The researchers were able to demonstrate a dwell time > 2,000 hours with a new ligand class which was identified in WP1 and synthesized in WP2. Besides optimizing the variables which have a crucial effect on the reactions, researchers in WP6 are working In parallel with the experimental work and based on the long-term stability results obtained in WP9, a potential emissions reduction of 0.108 t CO2e/t n-Pentanal (based on a total capacity of 1.6 Mio t) has been identified. Looking at the societal leverage effects of the HY-SILP project, up to this point work on four doctoral dissertations has started and four Bachelor’s and Master’s theses have been completed. Project partners: Contact: • • • Evonik Industries AG Friedrich-Alexander-Universität Erlangen-Nürnberg Technische Universität Darmstadt PD Dr. Robert Franke Evonik Industries AG Performance Intermediates Tel.: +49 (0)2365 49 2899 E-Mail:[email protected] 32 ENERGY-EFFICIENT PROCESSING Multi-Phase – Increased Energy Efficiency and Reduced Greenhouse Gas Emissions Based on Multi-Scale Modelling of Multi-Phase Reactors A gas and/or liquid or solid phase is dispersed in a continuous phase fluid during the production and downstream processing of many chemicals and biochemicals. Designing multi-phase reactors is a highly complex undertaking due to the complex interplay between the hydrodynamics, kinetics, substance transfer and heat transfer. It has not been possible up to this point to provide a complete numerical description of an industrial-scale scenario. Besides the amount of computing power needed to handle the large mathematical models, another limiting factor is the availability of validated models for simulating the different phenomena involved. Most of the literature is limited to modeling of aqueous multi-phase systems with air as the dispersed phase. The derived model equations are not applicable to typical industrial substance systems in organic media at elevated temperature and pressure. To address this issue, three main goals were defined for the project. Fig. 1: Pressurized bubble column at the Evonik Industries Test Center. • Develop models and methods for designing, or enhancing the design of, multi-phase equipment. • Suitable measurement techniques are needed to provide the underlying experimental data. Development of these techniques is another aspect of the project. • A pilot-scale test reactor at Evonik is used to evaluate the measurement techniques and obtain measurement data (Fig. 1). The measurement techniques have now been developed and thoroughly tested on the pilot reactor at Evonik Industries (Fig. 2). The researchers are using the results to identify, validate and enhance suitable calculation models. The experimental data and calculation models are being archived in a web-accessible database. Other project work packages will be looking at the potential for CO2 mitigation in an industrial process. The ENERGY-EFFICIENT PROCESSING improved techniques for multi-phase reactor design are being implemented in CFD code. More efficient multi-phase reactor designs can reduce greenhouse gas emissions and conserve resources, and these two factors are key economic aspects of the project. In parallel, the acquisition of new expertise can give German companies a competitive advantage in the global marketplace and help ensure job security at 33 home. Networking between universities and industrial partners promotes intensive information sharing in both directions. The results are communicated at conferences and in trade journals on an ongoing basis. Student internships and the provision of a suitable context for Bachelor’s and Master’s theses and doctoral dissertations promote the development of young professionals, which is another positive aspect of the project. Fig. 2: Testing a laser endoscope to measure bubble size Project partners: • • • • • • • • Evonik Industries AG BRUKER OPTIK GMBH Eurotechnica GmbH ILA Intelligent Laser Applications GmbH PreSens Precision Sensing GmbH Helmholtz-Zentrum Dresden-Rossendorf e.V. Ruhr-Universität Bochum TU Hamburg-Harburg Contact: Dr. Marc Becker Evonik Industries AG Rellinghauser Str. 1-11 45128 Essen Tel.: +49 (0)2365 49-6737 E-Mail:[email protected] 34 ENERGY-EFFICIENT PROCESSING CO2 Compressor – Development of a Miniaturized Oil-Free CO2 Compressor with Built-In CO2-Cooled Electric Motor Drive for Large CO2 Heat Pumps Project goals and content The goal of the project is to develop a miniaturized oilfree CO2 compressor with built-in CO2-cooled electric motor drive for high-capacity CO2 heat pumps and chillers. The project deliverable is a functional demonstration showing the feasibility of using CO2 in a turbo machine as the working medium in the compressor, the lubricant in the gas bearings and the coolant in an electric motor drive unit. The technology will be based on an innovative design, and the defined operating environment is a high-capacity heat pump with 4.0 COP. Various simulation-based methodologies are being developed in the Fluid Mechanics and Hydraulic Machinery Dept. at the University of Applied Sciences in Kaiserslautern to quantify the power losses caused by shear forces between the rotor and the stator and determine the correct dimensioning of the gas bearings. The models are verified on test beds installed at a subcontractor’s site (KSB) and in the Department of Thermo and Fluid Dynamics at Mannheim University. The results are used during development of functional prototypes for the compressor stages, the rotor, the stator and the electric motor drive unit. Project status The methods used to make the design calculations for the hydraulic stages have progressed to the point where an initial compressor stage consisting of an impeller and diffuser has been evaluated in the simulator. Rotordynamic analysis has been performed for the shaft, and the results obtained through iterative simulation have been verified during trials. At speeds up to around 180,000 RPM, vibration resulting from the rotor’s rigid and deformable body modes made it necessary to redesign the rotor and stator in the electric motor drive unit. A drive unit with oil-lubricated rolling bearings has run at speeds up to 170,000 RPM during trials. The speed was kept below 180,000 RPM due to the characteristics of the rolling bearings. The compressor will have gas bearings, so that aspect is of no practical consequence. The fluid mechanics characteristics of the CO2-lubricated gas bearings are being modeled. The current models have not yet been verified in trials, primarily because it has not been possible to create a consistent model for the axial bearings and axial thrust compensation. It is also not yet clear what material should be used for the gas bearing shells. The researchers have succeeded in developing a satisfactory model of the losses in the stator cavity caused by shear forces in the CO2 induced by the rotation of the rotor. The current models have not yet been consistently verified in trials due to the complex manner of dilution of the CO2 medium. It is important to know the magnitude of these losses in order to ensure that the high capacity heat pump delivers 4.0 COP. Economic, environmental and societal leverage effect In the short term, the oil-free CO2 compressor will make it possible to design cost-effective high-capacity heat pumps (50 – 1000 kW thermal capacity) which use CO2 as the working medium. Large manufacturers in the heating equipment industry have entered the market for high-capacity heat pumps. The high-capacity CO2 heat pump will make a significant contribution to energy-efficient space and water heating in existing residential and commercial buildings, because CO2 has very good specific heating characteristics along with low space requirements due to the high energy density of the medium. Compared to current working media, CO2 places fewer demands on system safety design. There is market demand for high-capacity heat pumps which deliver reliable cooling power (e.g. for food) with working media which are less dangerous than those which are currently used. In the medium term, it may be possible to use the electric motor drive in vehicles which have higher power density (e.g. e-boost for combustion engines in the automobile industry). The long-term vision includes product features on drives with very high power density in transportation and CO2 utilization applications. ENERGY-EFFICIENT PROCESSING 35 ig. 1: Test bed shear force losses University of Mannheim Fig. 2: Test bed single-stage CO2 compressor KSB/awtec Development of the oil-free CO2 compressor is also significant from the environmental standpoint because the potential greenhouse effect of the halogenated working media currently in use is up to 6,000 times greater than CO2. The use of CO2 as the working medium in high-capacity heat pumps/chillers can play an important role in climate protection. In addition, high-capacity heat pumps/chillers are able to use or store electricity produced from renewable resources. For society in general, development of a CO2 compressor which can help heat existing residential homes and buildings at a relatively affordable cost and provide security of supply to meet the basic human need for heat is a very significant step forward. Involvement by the universities in Stuttgart, Kaiserslautern and Mannheim in the project provides opportunities for students to complete degree course requirements, which is another important social contribution made by the project. Project partners: Contact: • • • • KSB Aktiengesellschaft Universität Stuttgart Hochschule Mannheim Technische Universität Kaiserslautern Herr Dr.-Ing. Gerd Janson KSB Aktiengesellschaft 67227 Frankenthal Tel.: +49 (0)6233 86-1829 E-Mail: [email protected] www.ksb.com 36 ENERGY-EFFICIENT PROCESSING EP-WÜT – Energieeffiziente Polymerwärmeübertrager The goal of the project is to develop an energy-efficient heat exchanger for the chemical industry, for example to condense organic solvents. The heat exchanger is intended as an alternative to current equipment made of glass or plastic, and it will be made entirely of plastic. The unit is basically a plate heat exchanger in which thin sheets of plastic film (75 – 150 µm) act as the heat exchange surfaces. Fig. 1 shows a simplified diagram. The baseplates (yellow) have rectangular dimples on the condensation side to stabilize the highly flexible sheets of film (blue). The heat exchanger features a modular design, and more elements can be added as needed. Fig. 1: Simplified diagram of a heat exchanger The heat exchanger must meet very demanding requirements (pressure up to 6 bar, temperatures up to 90°C, aggressive organic media such as toluene, hexane and tetrahydrofuran). Researchers have invested two years of intensive work studying the chemical, mechanical and thermal resistance of polymer materials. Besides investigating the creep resistance of the film under the specified operating conditions, they also looked at how the foil behaves when exposed to vibration stress. Tests showed that film made of polytetrafluoroethylene and polyimide meets the resistance requirements if it is properly supported. Heat transfer performance was determined by experiment and numerical analysis. A simple model heat exchanger was set up in the department to run experiments on different configurations (cross-flow, counter-flow, parallel flow). Data collected during the experiments was used to validate numerical models which were then used to define the final geometry. Because the film is highly susceptible to pressure deformation, FSI (fluid solid interaction) was used for numerical simulation of heat transfer. With this approach, it is possible to model the geometric changes which take place during ongoing operation and understand the effect which these changes have on flow and heat transfer. Nine student papers were completed during the project including 2 Bachelor’s theses and 2 Master’s theses. 3 other students are currently working on papers. A final dissertation is expected to be completed at the beginning of 2015. Information on the economic findings from the project in material science, heat transfer and fluid mechanics is being shared with the public at conferences and congresses. There is constant demand in the chemical industry for small heat exchangers, many of which are used at test ENERGY-EFFICIENT PROCESSING 37 centers. Polymer film heat exchangers have the advantage of lower CO2 consumption during equipment manufacturing (up to 30 t CO2e/yr compared to glass heat exchangers). Other advantages include lighter weight and significantly lower material costs due to the low thickness of the heat transfer surfaces. The new technology can give manufacturers a competitive edge and contribute to job security. The lower costs can also help manufacturers reduce their equipment production costs. Project partners: • • • Technische Universität Kaiserslautern MERCK KGaA Calorplast Wärmetechnik GmbH Contact: Dmitrij Laaber TU Kaiserslautern Gottlieb-Daimler Straße 67663 Kaiserslautern Tel.: +49 (0)631 205-2124 E-Mail: dmitrij.laaber[at]mv.uni-kl.de 38 ENERGY-EFFICIENT PROCESSING Mixed-Matrix-Membranen für die Gasseparation Project goals and content Progressive climate change creates the need for greater resource and energy efficiency. Optimization of industrial production can make an important contribution. Gas separation is used in many industrial applications. Conventional techniques are complex and very energy-intensive. Gas permeation membrane technology is an energy-efficient alternative. To make the technology economically competitive with conventional techniques, the membrane material must have sufficiently large cross-membrane flow and selectivity. There is growing demand for separation of long chain hydrocarbons, e.g. in natural gas upgrading. The goal of the project is to develop high-performance membrane material for separation of long-chain hydrocarbons from continuous gas flows. The new material should scale down the size of gas purification membrane systems, reducing energy consumption and CO2 emissions. The project is based on the development of mixed matrix membranes made of a polymer matrix with embedded activated carbon particles which have higher hydrocarbon selectivity compared to polymer-only membranes. When production advances to pilot scale, it will be possible to validate the results in a bypass at an industrial plant. A material transport model based on the experimental data is being developed to support process simulation later on in the project. The objective is to demonstrate the economic viability of the process which uses the new membranes and to provide a basis for lifecycle analysis. right combination of filler content and particle size presents a major challenge. Besides the morphological parameters, operating conditions such as pressure, temperature and composition have a crucial influence on the separation performance of the membrane. During material development, the researchers investigated the influence which various factors have on the separation performance of mixed matrix membranes. They discovered a material combination which delivers better selectivity for long-chain hydrocarbons compared to polymer-only membranes. Extended trials lasting about 5 weeks provided evidence that the improved separation performance remains stable as shown in Fig. 1. Production is now possible on an industrial scale. More than 100 m² of mixed matrix membrane is already available for pilot testing (see Fig. 2). Plans are being drawn up for a pilot test in a bypass at an industrial plant. The system is currently under construction and is expected to be available in the spring of this year. A rigorous mechanistic transport model has been developed for the mixed matrix membrane. It describes the solubility of the permeating components in the polymer material, the diffusion process in the polymer, transition between the polymer and activated carbon phase and transport in the activated carbon’s pore sys- Project status The polymer matrix is made of rubbery, silicon-based polymers which facilitate the transport of long-chain hydrocarbons. In order to support solubility controlled transport in the polymer matrix, modified hydrocarbon-selective activated charcoal is being developed on the project as an active filler. A number of factors influence the separation performance of the hybrid material. The materials must have good compatibility to avoid non-selective defects at the interfacial surface. The particles should also be well distributed in the polymer matrix to derive maximum benefit from the filler’s properties. Determining the Fig. 1: Mixed matrix membrane stability over a 5 week period in an n-Pentan/oxygen system (1.5 vol%/88.5 vol% on the high pressure side) at 20°C, 30 bar feed pressure and 1.1 bar permeate pressure. ENERGY-EFFICIENT PROCESSING 39 tem. The latter is further broken down into transport processes during the gas phase and the adsorbed phase. The model provides a very good description of the permeation process for the individual components and it is currently being enhanced for multi-material systems. Economic, environmental and societal leverage effect The assumption is that the membrane technology will become even more competitive and that new market opportunities can be exploited. A rough estimate of the market potential shows that demand for the new mixed matrix technology could be as high as 1,000 systems between now and 2030. Based on current results, energy consumption would be 16.8% lower compared to systems with conventional membranes. That equates to a reduction of 16 ktCO2/yr. That figure could increase, but the differential would be difficult to quantify. If events were to unfold as just described, the result would be greater job security in membrane production and system manufacturing, and it would further stimulate innovation in Germany. To our knowledge, mixed matrix membranes have never been used up to this point for gas permeation in industrial applications. Fig. 2: Industrial-scale mixed matrix production Three doctoral candidates on the project are working toward completion of their degree courses. Six Bachelor’s theses and two other theses have also been completed. Project partners: • • • Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Technische Universität Berlin Sterling Industry Consult GmbH Contact: Dipl.-Ing. Torsten Brinkmann Ph. D. Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Institut für Polymerforschung Max-Planck-Straße 1 21502 Geesthacht Tel.: +49 (0)4152 87 2400 E-Mail: [email protected] 40 ENERGY-EFFICIENT PROCESSING EE Management – Energy Efficiency Management and Benchmarking for the Process Industry The ability to improve energy efficiency has long been a major competitive factor in the chemical industry. In addition, a reduction in greenhouse gas emissions is becoming an increasingly important aspect of sustainable climate protection policy. Besides finding ways of improving energy efficiency, one of today’s major challenges is to minimize energy consumption and greenhouse gas emissions as soon as possible using technologies which are sustainable over the long term. Power generation and distribution obviously need to be optimized. Beyond that, often the most effective strategy is to maximize energy efficiency in production. Possible pathways for achieving that include operating parameter enhancements, equipment optimization, interconnection of heat flows and process engineering improvements. More and more companies are using energy management systems to track and control energy consumption, set energy goals and identify opportunities to save energy. The diversity of process technologies and energy sources, the lack of benchmarks and quite simply the definition and measurability of energy efficiency often create unsurmountable obstacles which reduce the utility of these systems. Fig. 1: Energy loss cascade The STRUCTese® energy management system developed by Bayer to facilitate continuous, sustained maximization of energy efficiency forms the basis of the project. In contrast to conventional energy management systems, STRUCTese® not only reports and tracks (specific) energy consumption over time, it also compares specific primary energy consumption to various theoretical optima. The losses (actual vs. optimum) caused by suboptimal equipment, partial load, the product mix, external factors and suboptimal operation are presented in a clear and transparent manner. Using this approach, energy efficiency becomes measurable. STRUCTese® provides an optimization pathway and removes the obstacles mentioned above. Advanced development work is being done on the project to transform the method into a standardized energy efficiency management and benchmarking tool which many companies can use for different process scenarios. The method was implemented in a number of real-world processes and enhanced so that it can model a very broad spectrum of process scenarios, e.g. parallel production lines, production of multiple products and batch-continuous transitions. The researchers worked closely with universities to define the theoretical optima. They did this to ensure that the bench- ENERGY-EFFICIENT PROCESSING 41 marks have been objectively defined and that they are based on the most advanced techniques from the world of science and technology. The project demonstrated that the method can be applied across an entire site. Case studies have shown that an intelligent management system can reduce energy consumption by more than 20%. The system has already helped Bayer save more than 1 million MWh of primary energy and reduce CO2 emissions by a good 300,000t /yr. Project partners: • • • • • • • • • Bayer Technology Services GmbH Bayer MaterialScience AG BASF Personal Care and Nutrition GmbH Inosim Consulting GmbH instrAction GmbH bitop Aktiengesellschaft (bitop AG) RWTH Aachen Technische Universität Dortmund Clariant Produkte (Deutschland) GmbH Contact: Dr. Christian Drumm Bayer Technology Services GmbH Tel.: +49 (0)214 30 41978 E-Mail:[email protected] 42 ENERGY-EFFICIENT PROCESSING EffiCO2 – New Absorbents for More Efficient CO2 Separation Worldwide anthropogenic CO2 emissions resulting from the use of fossil resources were estimated at 34 Gt in 2011 (German Ministry of Economics and Technology, 2013). Fossil fuel will continue to be our major source of energy in the future (BP, 2013). In order to reduce CO2 emissions despite rising energy demand, technologies are needed for efficient CO2 capture from industrial and other waste gas streams. CO2 capture from flue gas can make an important contribution. However, efficiency losses during CO2 capture from power station flue gas can currently be as high as 12%. The goal of the consortium project was to conduct research on new and improved absorbents for carbon Fig. 1: Test system following detailed engineering capture to reduce energy and resource consumption. The project deliverables also included a demonstration of the efficiency gains through simulation of the entire power station and CO2 capture process and lifecycle assessments to evaluate the sustainability of the new processes. All substance classes in the Evonik product portfolio were included during development of chemically stable absorbents which require less energy for regeneration. The researchers used synthesis techniques to modify the absorbents at the molecular level. They then conducted lab studies to analyze the CO2 absorption behavior and thermodynamics. A test system connected to the flue gas stream at the coal-fired CHP Fig. 2: Test system in the chimney base at the power plant in Herne ENERGY-EFFICIENT PROCESSING 43 plant in Herne gave the researchers the opportunity to study the absorbents under real-world conditions. Only the most promising absorbents were included in the test system trials. The team collected thermodynamic and process engineering data and analyzed and evaluated the ability of the absorbents to withstand secondary constituents in the flue gas. Based on the results of lab and test system trials, a simulation was run to see how the absorbents would perform in a large-scale power station process and to assess the economic viability. The simulation showed that energy consumption could be reduced by around 40% compared to existing CO2 absorption using monoethanolamine. This equates to a reduction in CO2 emissions of approximately 120 kg CO2/t CO2. At the reference power plant, the emissions reduction potential exceeds 240,000 t CO2e/a. The technology is not limited to flue gas applications. It could also be used, for example, in natural gas upgrading, chemical production, cement and lime manufacturing and the iron and steel industry. Besides efficient CO2 capture, it also provides access to high-purity CO2 which can be used for high value-add products. The consortium project ended on September 30th, 2013. Project partners: • • • Evonik Industries AG Universität Erlangen-Nürnberg Universität Duisburg-Essen Contact: Dr. Jens Busse Paul-Baumann-Straße 1 45764 Marl Tel.: +49 (0)2365 49-86509 E-Mail: [email protected] 44 ENERGY-EFFICIENT PROCESSING IL WIND – Development of IL-Based Lubricants for Wind Turbines Project goal As the rated capacity of wind turbines continues to increase, the designs place greater specific stress on all of the subsystems. The rolling bearings are particularly susceptible to failure which is often caused by inadequate lubrication. The primary failure mechanism damages the microstructure, resulting in early failure. This significantly reduces the availability of the wind turbines. The economic and environmental benefits decrease, and there is a negative impact on the overall CO2 cycle. The goal of the IL Wind project is to develop high-efficiency IL-based lubricants which are capable of neutralizing the damage mechanism. Higher system availability decreases the cost and increases the environmental benefits of wind power generation, particularly on multi-megawatt turbines. tific support. Responsibility for engineering feasibility was placed in the hands of industry partners Merck and Schaeffler Technologies, with consultancy provided by the end user Senvion SE (formerly REpower Systems). Project status The research team on the IL WIND project developed halogen-free ionic liquids (ILs) with a target solubility of 5 wt% in petroleum-based oil and evaluated their thermal properties. COSMO-RS was used to help identify the required structural elements of the ILs. The tribologic properties (friction and wear surfaces) of the ILs in contact with 100Cr6 steel in air, argon and CO2 atmospheres were assessed and compared with standard oils. The corrosion behavior of the ILs was also evaluated using six different metals and alloys. The consortium partners took responsibility for different aspects of the overall development effort. The University of Erlangen-Nürnberg provided basic scien- The researchers conducted screening trials to demonstrate the tribologic suitability of the structures for subsequent rolling bearing trials. A basic test bed was set up which uses IR spectroscopy for in situ investigation of the damage mechanism. Fig. 1: Rolling bearing (© Schaeffler Technologies GmbH & Co. KG) Fig. 2: Wind turbine (© Senvion SE) ENERGY-EFFICIENT PROCESSING The IL additive was shown to be effective in preventing damage during rolling bearing trials at Schaeffler. Adding just 1% of the IL substance to a reference oil resulted in a four-fold increase in runtime to failure. Lubrication trials were run to further demonstrate the basic tribologic properties of the new lubrication formulation prior to release for scale-up of the formulation to 1,000 liters by Merck. This quantity was sufficient to run extended testing with large bearings, which was completed after 3,000 hours without damage. The trials demonstrated the basic suitability and damage prevention potential of the bearing lubricant. 45 The intention is to run field verification trials and continue development of the lubricant right up through market introduction The project outcome would of course not have been possible without productive collaboration between industry and the university. 10 Bachelor’s theses, 4 Master’s theses and four doctoral dissertations were completed during the project. Economic, environmental and societal leverage effect Early bearing failure on wind turbines reduces the supply of CO2-free power and the expected environmental and economic benefits. The excellent tribologic properties and intrinsic conductivity of the lubricant with IL additive which was developed on the IL WIND project inhibits the bearing failure mechanism and prevents turbine downtime. Less conventional fossil-based fuel is needed to compensate for the loss of generation capacity. Project partners: • • • Merck KGaA Schaeffler Technologies GmbH & Co. KG Friedrich-Alexander-Universität ErlangenNürnberg Assoziierter Partner: • Senvion SE Contact: Prof. Dr. P. Wasserscheid Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Chemische Reaktionstechnik Egerlandstr. 3 91058 Erlangen Tel.: +49 (0)9131 85-27420 Fax: +49 (0)9131 85-27421 E-Mail: [email protected] 46 ENERGY-EFFICIENT PROCESSING LICIL – A New Process for Extracting Lignin, Cellulose and Hemicellulose from Biogenic Materials with the Aid of New Ionic Liquids A new energy and resource efficient technique for extracting lignin, cellulose and hemicellulose from softwood and hardwood is currently under development. Pure ionic fluids (alkoxymethyleniminium salts) which are able to solubilize lignin and hemicellulose with relatively good selectively at 80°C were used initially. Difficulties which occurred when filtering out the cellulose were resolved by adding co-solvents to the solvent solution, but that had a negative impact on selectivity and yield. Researchers have now found out how and to what extent the constitution of the ionic liquids influences solubilization efficiency. Other organic solvents were also identified which can be combined with the ionic liquids during solubilization. By varying the reaction conditions, the researchers demonstrated that qualitatively and quantitatively the solubilization result is heavily dependent on the process temperature. The sum of these findings enabled the researchers to create solvent solutions which only contain relatively small amounts of ionic liquids. At temperatures between 80°C and 160°C and reaction times between 2 and 8 hours, the solute – solvent ratio was in the range 1:2 - 1:5. Project partners: • • • • Hochschule Aalen Universität Hamburg J. Rettenmaier & Söhne GmbH + Co KG Bayer Technology Services GmbH Under these conditions, fibrous low-lignin cellulose, syrupy hemicellulose and low molecular weight lignin which dissolves in organic solvents can be extracted nearly quantitatively from 1 kg of spruce wood chippings. As things stand now, approx. 200-250 g of lignin, approx. 500-600 g of cellulose, approx. 200-250 g of hemicellulose and 30-50 g of resin can be extracted from 1 kg of chippings using this process. The industry partners on the project (J. Rettenmaier & Söhne and Bayer Technology Services) are currently evaluating the usability of the lignins and cellulose which can be extracted. Should the investigations produce a favorable outcome, industrials-scale trials will be run and the plan is then to build a pilot system. 2 Bachelor’s theses and a Master’s thesis were completed during the project. Work on a doctoral dissertation began when the project started and it is expected to be completed by the end of 2014. Contact: Prof. Dr. Willi Kantlehner Hochschule Aalen Beethovenstr. 1 73430 Aalen Tel.: +49 (0)7361 576-2152 oder (0)7366-6766 Fax: +49 (0)7361 576-2250 E-Mail: [email protected] ENERGY-EFFICIENT PROCESSING 47 Utilization of Low-Temperature Heat with Absorption Loops for Generation of Cooling Power and Heat Transformation – New Material Pairings Large low-temperature waste heat flows between 80°C and 120°C are generated in many industries (e.g. chemicals, food and metallurgy). In the past, the heat has simply been released into the surroundings, but it actually has significant potential to reduce primary energy consumption. Higher solvent viscosity is one issue which needs to be addressed. Also, the researchers want to increase system power capacity. As a result, they are working on the development of new material exchange subsystems to increase efficiency without the need to add wetting enhancers. The goal of the project funded by the German Ministry of Education and Research (BMBF) is to develop absorption loops with a power rating > 10 MW for proportionate transformation of the heat to a higher and useable temperature or for chilling. The use of alternate material pairings incorporating ionic fluids creates opportunities to increase operating reliability and efficiency. The researchers took on the task of identifying suitable material pairings, collecting material data and conducting lab trials. The material data can be used to simulate the heat loop and study the operating parameters. Over the course of nearly three years, the consortium members have identified a Dream Polymers which look very promising. Thermo-physical data and simulation tools are used to design absorption loops and compare different material pairings. By looking at the internal heat and material transitions, the research team is able to simulate what happens when external loops are connected. Fig. 1: Diagram of an absorption heat transformer A fully operational pilot-scale (4 kW useful heat output) absorption heat transformer was built at the Karlsruhe 48 ENERGY-EFFICIENT PROCESSING Institute for Technical Thermodynamics and Refrigeration (KIT) - see Fig. 1. A water – ionic liquid material pairing is currently being evaluated on the system under various operating conditions. The experimental results are used to evaluate predictions generated by a simulation program and interpret the differences. New equipment design features with highly promising operating characteristics have been built into the lab system. A patent application is being prepared in partnership with API Schmidt-Bretten for the fluid distribution system of the new absorber. In parallel, the suitability of a different absorber design is under evaluation at BASF SE, and the suitability of the new material pairing is also being assessed under various operating conditions. The researchers have identified additional heat sources and the company is considering using the process at its integrated site in Ludwigshafen as well as at other sites. The ionic fluids can be regenerated and reused. Recycling would further reduce costs and enhance the sustainability of the sorption system lifecycle. Manufacturers of sorption systems would not be the only ones to benefit from the use of sorption technology to recover waste heat. The technology could also create new market opportunities for the recycling industry. Given the magnitude of the potential opportunities, demand for the materials would probably be measured in tonnes. Four Bachelor’s theses, two Master’s theses and three degree dissertations were completed during the course of the project, and the research has generated greater interest in this approach to energy recovery. A doctoral dissertation on absorption heat transformation using the water - ionic fluid material pairing is being written this year. Information on the research results was shared with the scientific community on posters and during talks at various conferences. The results achieved at KIT so far indicate that megawatt range absorption heat transformers using the material pairings which are currently under investigation could be economically viable. Measurements and initial estimates by BASF SE suggest that the economic advantages are more likely to be significant if operating conditions are favorable. As energy costs continue to rise and CO2 emissions regulations become more stringent, absorption loops and heat flow integration could become more attractive. Initial estimates indicate that annual savings by 2030 could be in the region of 500,000 t CO2e. Project partners: • • • • Karlsruher Institut für Technologie (KIT) API Schmidt-Bretten GmbH & Co. KG IoLiTec Ionic Liquids Technologies GmbH BASF SE Contact: Nina Merkel Karlsruher Institut für Technologie (KIT) Institut für Technische Thermodynamik und Kältetechnik (ITTK) Engler-Bunte-Ring 21 76131 Karlsruhe Tel.: +49 (0)721 608 42733 E-Mail:[email protected] ENERGY-EFFICIENT PROCESSING 49 SIT – Utilization of Low-Calorific Industrial Heat by Means of Sorption Heat Pump Systems using Ionic Liquids and Thermochemical Accumulators (SIT) Project goals and content Large volumes of heat are constantly being released by German industry into the surroundings without being used, either because the heat temperature is too low or there is no need for the heat at the time when it is available. In recent years particularly in the chemical industry, the deployment of heat integration technology at integrated sites has increased production energy efficiency to the point where further improvement will not be possible without the introduction of innovative technology. Additional heat flows can only be utilized by bringing them up to a useable temperature with the aid of a heat pump. High-density chemical heat storage can be used to store the higher-temperature heat and make it available on demand in the form of thermal energy, significantly reducing primary energy consumption and greenhouse gas emissions. Fig. 1: Scenario for utilizing low-calorie industrial waste heat. New working fluid pairs based on ionic liquids are being developed for absorption heat pumps. By tailoring suitable ternary working fluid pairings, it is possible to enhance overall performance and create advantages compared to conventional working fluid pairings. Process engineering assessment and validation are carried out using pilot-scale heat pumps as well as commercially available heat pumps. In order to develop a thermo-chemical heat storage system with high energy storage density, the researchers are working to identify and evaluate suitable reac- tion systems. A reactor design is being developed which is optimized for these materials and is suitable for this heat pump – heat storage combination. Development of a pilot-scale heat storage system will provide the basis for commercial upscaling at a later date. Project status The project came to an end on October 31st, 2013. Two different working fluid pairings were identified for use in absorption heat pump systems. These pairings are suitable for different temperature ranges. The systems have been used successfully on a demonstration-scale and in commercially available absorption heat pump systems. Lifecycle analysis was carried out for production of an ionic liquid based working fluid pairing which reduces resource and energy consumption compared to conventional working fluid pairings. Possible storage materials were evaluated for use in chemical heat storage systems, and lab-scale testing was carried out on a material which the researchers identified. They also identified and tested various reactor designs for a chemical heat storage system. Important knowledge was gained during the project, which provides a foundation for further development of full-scale chemical heat storage systems. A carbon footprint estimate derived from the research results provides a basis for gauging the possible reduction in CO2 emissions and resource consumption. Economic, environmental and societal leverage effect As of 2007, 406 TWh of waste heat potential was available each year at industrial sites in Germany alone. If this potential were exploited, it would be possible to reduce primary energy consumption and greenhouse gas emissions and also save money. That would give Germany a competitive advantage as a business location 50 ENERGY-EFFICIENT PROCESSING and generate long-term growth in the country. Development of thermochemical heat storage systems is still at an early stage and it is not yet possible to operate an absorption heat pump and heat storage system in combination at full scale. The work done during the project did however demonstrate that this technology could create opportunities to reduce CO2 emissions. Close collaboration between university research organizations and industrial partners created opportunities to align innovative research with application-related needs. Young scientists involved in the project completed 4 doctoral dissertations and a number of Bachelor’s and Master’s theses. Fig. 2: Chemical heat storage test system (Source: DLR e.V.) Project partners: • • • • Evonik Industries AG Friedrich-Alexander-Universität ErlangenNürnberg Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) GasKlima GmbH Contact: Dr. Jens Busse Senior Project Manager – Sustainable Businesses - Upstream SolutionsCREAVIS – Science to Business Tel.: +49 2365 49-86509 Fax: +49 2365 49-8086509 E-Mail: [email protected] CO2 UTILIZATION 51 Dream Polymers – From Dream Production to Dream Polymers – Sustainable Pathways to New Polymers The goal of the Dream Polymers project is to make maximum use of carbon dioxide and renewables as feedstock for polyol. Polyol is an important plastics precursor. Bayer is playing the lead role in the consortium which brings together partners from industry and academia. The idea is to take carbon dioxide from a power plant and use it directly and indirectly to make polycarbonate polyols. The gas is reacted with a substance which in turn is made from CO2. This can be done either through direct chemical conversion of CO2 or by using renewable feedstock. Polyurethane, a highly versatile plastic, can be made from the new polyols. PU is used as foam in many everyday products such as cars, furniture, shoes and building insulation material. The polycarbonate polyols can also be used to make thermoplastics which potentially have new and highly attractive properties for electrical/electronic applications, production of machinery parts, etc. from 2010 – 2013. Thanks to Dream Polymers, it looks like it will be possible to use another polymer precursor, which is also made from CO2, in Dream Production. This would reduce the carbon footprint of the input materials compared to conventional polyols made from fossil-based resources. The properties of these polymers are currently being evaluated. The RWTH Aachen University CAT Catalytic Center (ITMC) and the Leibniz Institute for Catalysis at the University of Rostock (Likat) are working closely with the industry partners Bayer MaterialScience and Bayer Technology Services. The project covers the entire spectrum from basic research right through to largerscale production. RWE Power is another industrial partner which is associated with the project. The environmental impact of the processes developed by the project partners and the expected reduction in CO2 emissions are being evaluated by the Technical Thermodynamics Department at RWTH Aachen University. To a certain extent, the project is an extension of the publicly funded Dream Production project which ran Project partners: • • • • • Bayer Technology Services GmbH RWTH-Aachen – Fachgruppe Chemie – Institut für Technische und Makromolekulare Chemie (ITMC) Leibniz-Institut für Katalyse e.V. an der Universität Rostock Fraunhofer-Institut für Chemische Technologie (ICT) Bayer MaterialScience AG Assoziierter Partner: • RWE Power AG Contact: Dr. Martina Peters Bayer Technology Services GmbH Tel.: +49 (0)214 30 20063 E-Mail:[email protected] Dr. Christoph Gürtler Bayer Material Science AG Tel.: +49 (0)214 30 21771 E-Mail:[email protected] 52 CO2 UTILIZATION ACER – Sodium Acrylate from CO2 and Ethene (Acrylates ex Renewables) Challenges and Goals The goal of the project is to utilize CO2 as a feedstock through catalytic synthesis of sodium acrylate from CO2, ethylene and a base. Sodium acrylate is an important basic material for high-performance polymers. Superabsorbers used in diapers are the most obvious example. Millions of tonnes of superabsorber polymers are produced annually worldwide. Acrylic acid is currently made in a two-stage reaction from propylene which is produced from straight run gasoline (Fig. 1). The technology, which is fossil-based (oil), has been refined over a period of many years, and it is the benchmark against which the material and energy aspects of a potential new process will be measured. Fig. 1: Current state-of-the-art sodium acrylate synthesis process and the production process under investigation in the ACER project Project status Since January 2011, researchers at the Catalysis Research Laboratory (CaRLa) which is supported by BASF, hte AG (part of BASF), TUM in Munich and the University of Stuttgart have been working together on the ACER project (Acrylates ex Renewables) to find ways of using CO2 on an industrial scale for the production of sodium acrylate. The process must be viable from both the economic and environmental standpoint. Creating this “dream reaction” is no easy undertaking. From the engineering perspective, it is a “hard nut to crack”. 30 years of intensive academic and industrial research has failed to provide an answer. In the first year of the project, the team which included catalyst researchers, theoretical chemists and chemical engineers identified a nickel-based catalyst which Fig. 2: Catalyst screening system CO2 UTILIZATION 53 makes it possible for the first time to combine CO2 and ethylene feedstock under industrially relevant conditions. Various homogeneous and heterogeneous candidate catalysts and process conditions were evaluated and optimized during high-throughput screening. Different analytical techniques were employed to gain a deeper understanding of the critical reaction steps. Continuous improvements are being made to catalyst performance and life. Initial superabsorber samples were produced using representative reaction products, and their properties were evaluated. an established process for making ethylene from renewable bioethanol already exists, complete changeover of acrylate synthesis to a renewable feedstock base would be feasible. The bioethanol feedstock can contain two CO2 equivalents, so a maximum 7.3 million tonnes of CO2 could be utilized along this value-add pathway if total global demand for acrylic acid were satisfied using this technology. In addition, migrating synthesis from propylene to ethylene could substantially reduce material, energy and fossil-based feedstock consumption and drive down investment costs. Application, Exploitation of the Results, Economic and Environmental Benefits An expedient patent portfolio for the entire acrylate value-add chain, from the catalytic process to polymerization, is being put together to protect the knowledge gained during the project. The doctoral and post-doctoral candidates involved in the project regularly present their scientific results at national and international conferences. Significant findings are published in leading scientific journals. The German Ministry of Education and Research (BMBF) is providing 2.2 million euros in funding for the project. BASF and hte are contributing an additional 1.7 million euros over a period of three years. If the results of the ACER project can be transferred to industrial scale production and assuming a market volume of around 4 million tonnes, roughly 2.4 million tonnes of CO2 could be utilized as feedstock. Because Information on the project is regularly shared with international opinion-making bodies from government and industry. Project partners: Contact: • • • • BASF SE Universität Stuttgart Technische Universität München hte GmbH the high throughput experimentation company Dr. Michael Limbach BASF SE 67056 Ludwigshafen E-Mail: [email protected] 54 CO2 UTILIZATION Valery – Energy-Efficient Synthesis of Aliphatic Aldehydes from Alkanes and Carbon Dioxide: Valeraldehyde from Butane and CO2 Utilization of CO2 in the production of high value-add products cycles the greenhouse gas back into the value-add chain and creates access to an alternative non fossil fuel based C1 carbon source. Carbon dioxide is an attractive building block for chemical syntheses. It is available at low cost and supplies are virtually unlimited. However, CO2 is relatively inert, and conversion to high value-add products presents a big challenge. There are, however, some examples which demonstrate the feasibility of utilizing CO2 on an industrial scale. + H2 The vision of the Valery project is to develop new feedstock sources for the chemical industry. The researchers are looking in particular at CO2 and alkanes as alternative carbon sources for industrial-scale production of high value-add products. The specific objective is to find an alternative process to replace conversion of olefins and carbon monoxide (CO) into aldehydes by hydroformylation. Carbon dioxide (CO2) will be substituted for toxic carbon monoxide, and energy-efficient dehydrogenation of alkanes will provide the source of olefins. The researchers have chosen synthesis of valeraldehyde from n-butane as an example. CO2/H2 O Fig. 1: Energy-efficient syntheses of valeraldehyede from butane and CO2. During the course of the project, the researchers have been able to reproduce results described in the literature, and they have also been able to improve on those results through specific optimization. In the case of hydroformylation using CO2, introduction of a new ligand class has increased throughput and improved selectivity. In the case of energy-efficient dehydrogenation, selectivity performance was greatly improved. In addition, a suitable combination of two ionic fluids and a substrate material was used to stabilize the Fig. 2: CO2 footprint of the new process compared to established technology. CO2 UTILIZATION 55 hydroformylation catalyst system. Besides carrying out a detailed investigation of both reactions, the researchers were able to run energy-efficient dehydrogenation in a semi-continuous reactor setup. In the case of hydroformylation using CO2, the reaction could be run continuously with the immobilized catalyst system. In parallel with the chemical investigations, an economic and environmental evaluation was carried out on energy-efficient synthesis of valeraldehyde from butane and CO2. Economic analysis shows that the use of CO2 and butane as alternative feedstock for aldehyde production can reduce feedstock cost by up to 47%. Utilization of CO2 and butane increases feedstock flexibility and provides a secure source of aldehydes which are a key intermediate in plasticizer synthesis. Looking at the environmental impact, the CO2 footprint was estimated and compared with the established technology. Cradle-to-grave analysis of CO2 emissions shows that energy-efficient synthesis of olefins and subsequent hydroformylation using CO2 can reduce the carbon footprint of valeraldehyde by up to 61% compared to established technology. Project partners: • • • Evonik Industries AG Universität Bayreuth Leibniz-Institut für Katalyse e.V. an der Universität Rostock Contact: Dr. Daniela Kruse Evonik Degussa GmbH Creavis Technologies & Innovation Tel.: +49 (0)2365 49-9077 E-Mail:[email protected] 56 CO2 UTILIZATION PhotoKat – Entwicklung aktiver und selektiver heterogener Photokatalysatoren für die Reduktion von CO2 zu C1-Basischemikalien The goal of the research project is to find ways of reducing atmospheric CO2 by using sunlight in a photocatalytic reaction to recycle CO2, producing C1 building block products for the chemical industry, in particular methanol and methane. The researchers are working on development of catalyst systems which are based on semiconducting oxide composites and have high photon yields. The catalysts need to be durable, readily available and suitable for industrial-scale applications. The preferred starting materials are TiO2 and ZnO which are tested in catalyst systems that have varying structures and compositions. During the initial phase of the project, the team investigated in detail the physical and chemical properties of the known photocatalyst system consisting of isolated titanium species on SiO2 (TiOx/SiO2). Also, the system was modified using gold as the co-catalyst. In photo- catalytic test reactions, the importance of the Ti-O-Si linkages for photocatalytic activity was very apparent. Deposition of isolated zinc oxide species improved the potentially inadequate adsorption of CO2 on the titanium species. Using literature data as the basis, the team also developed and built a gas phase photo reactor with an improved design at the Chemical Engineering Department (Fig. 1). With this reactor, they were able to carry out investigations under ultra-pure conditions and collect reliable product formation data. Using gas chromatography, it is possible to quantify hydrocarbon concentrations down to a few ppm. Initial measurements on the known TiOx/SiO2 photocatalyst made it very obvious that meticulous photocatalytic cleaning of the samples is essential to prevent formation of contaminant products. Overall, the quality of the photocatalytic measurements performed in Bochum have seldom been equaled anywhere in the world. Fig. 1: Left: schematic diagram of the complete metal-sealed gas phase photo reactor with CF flanges (1), quartz window (2), VCR connections (3), cooling jacket (4), sample compartment (5) and cooling circuit connections (6); right: photo of the actual reactor with valves and 200 W HgXe lamp. The results of activity measurements on photocatalytic reduction of CO2 demonstrate that TiO2 and titanium dioxide based systems generally produce higher hydro carbon yields than ZnO and the zinc oxide based systems which have been tested so far. As a result, the scientists concentrated their efforts on trying to improve the activity of titanium oxide based systems. With a maximum yield of around 100 ppm after 7 hours reaction time, methane was invariably the main product. The yields are comparable with those reported in the literature by other working groups. Methane formation was normally accompanied by the formation of small amounts of other hydrocarbons. Methanol or other oxygenates were not found. In a second CO2 reduction experiment without intermediate purification, hydro carbon yields appeared to be higher (Fig.2a). The explanation for this appears to be that stable surface intermediates form on the TiOx/SiO2 during the first pass. CO2 UTILIZATION Formaldehyde was identified as one of the intermediates. Formation of CO could not be demonstrated using the existing gas analysis technique. A methanizer is being added to the GC application. Deposition of gold on 57 the TiOx/SiO2 system doubled the activity. Twice the amount of methane was formed in the same reaction time. More long-chain hydrocarbons (ethane, propane, butane) were also detected. Fig. 2: a) Time sequence for methane formation on TiOx/SBA-15 and Au/TiOx/SBA-15 in two successive CO2 reduction experiments, each with 7 hours exposure time, uncorrected values. The samples were not purified between successive experiments. No GC product gas analysis after 7 hours was performed for Au/TiOx/SBA-15 in the first experiment. b) Hydrocarbon concentrations in the product gas after 5 hr exposure time in two successive CO2 reduction experiments. The hydrocarbon yields were corrected to make provision for possible contaminants which could remain in the catalyst even after purification. Modifying the titanium system with zinc oxide also has an influence on activity, but an increase in activity is only observed if the ZnO is present in large aggregates and is not isolated. This would seem to indicate that the exact combination of zinc oxide and titanium species has a crucial effect on activity. Investigation is currently underway to clarify this aspect, and the researchers are also looking at modification of the TiOx/SiO2 system using gold and ZnO. With regard to reaction design, the team was able to demonstrate that for all TiOx/SiO2 systems a significant excess of CO2 has a positive effect on the hydrocarbon yield. Because the yields shown by commercial titanium dioxide are similar in magnitude to TiOx/SiO2, the researchers are looking at surface doping to improve charge carrier life and increase activity. Another objective is to stimulate activity in visible light. They were able to demonstrate that surface doping with Sn2+ pro- duces hole capture clusters on the surface which have a positive effect on pigment decomposition and facilitate absorption of visible light. TiO2 with Sn4+ and photodeposited Rh on the surface is a highly active catalyst which promotes the production of hydrogen from an aqueous methanol solution. Researchers are currently investigating the activity of these photo catalysts in the reduction of CO2. The results were presented in one completed doctoral dissertation and in two others which are currently being written. They were also published in international scientific journals and discussed at conferences. There is currently a need for basic research on photocatalytic CO2 reduction. Because the reaction could help reduce CO2 emissions, it is the subject of intensive international investigation, but the yields so far are not sufficient for industrial-scale applications. Contact: Dr. Jennifer Strunk Lehrstuhl für Technische Chemie Ruhr-Universität Bochum 44801 Bochum Tel.: +49 (0)234 32-23566 E-Mail: [email protected] www.techem.rub.de 58 CO2 UTILIZATION COOBAF – CO2-Based Acetone Fermentation Project goal Project status The goal is to develop a fermentation process for biotechnology production of acetone using acetogenic microorganisms along with carbon dioxide (CO2) as the sole carbon building block. To the extent possible, the CO2 should be supplied from industrial waste gas streams and used to produce acetone which is an important base product in the chemical industry. Industrial waste gas streams which contain carbon monoxide (CO) and hydrogen (H2) as well as CO2 are particularly well suited for cost-effective, sustainable production of acetone in a fermentation process. Microbiological production of acetone from CO2-laden waste gas streams could be an economically viable and environmentally friendly alternative to the petrochemical production pathway. The first step in the project was to select suitable strains of bacteria. The strains had to tolerate the gas mixtures including the toxic constituents and convert as much of the CO2 in the gas as possible into natural metabolites (e.g. acetic acid). The researchers tested 39 strains and identified suitable candidates in a two-stage process. The graph in Fig. 1 shows the results of biomass-specific and volumetric acetate productivity of autotropic cultivation for a) H2/CO2 and b) an industrial waste gas stream. The results were used among other things for strain selection. Fig. 1: Strain screening of acetogenic bacteria strains The next step was to insert the genes needed for acetone production into the selected strains, creating new recombinant strains capable of producing acetone from CO2. C13-marked CO2 was used to ensure that the acetone is actually produced from CO2 rather than from other media constituents. The next step in development of a production strain was strain optimization to enhance acetone productivity. This work is currently still in progress and will continue right through to the end of the project. Work proceeded in parallel on development and optimization of the fermentation process. The researchers succeeded in transferring the fermentation process from shake flasks to lab reactor scale and they also increased the amount of acetone produced by an order of magnitude (see Fig. 2). Cost-effective downstream processing which produces optimized yields is a critical factor in a biotechnologyprocess, so work on this particular aspect began at an early stage of the project. A methodology was developed for recovery of the acetone from the fermentation broth, and an initial process simulation was carried out. Modifications to the downstream process over the course of the project improved yields to the point where industrial feasibility could be envisioned. CO2 UTILIZATION 59 Fig. 2: Comparison between cultivation of a recombinant acetogenic strain (with CO2 as the only carbon source) in a shake flask and a lab fermenter The economic viability of acetone production using CO2 as the sole carbon building block and H2 as an energy source will depend heavily on the productivity of the overall process. The researchers have continuously improved acetone productivity during the project, but before the process can be used in industry, a further substantial productivity increase will be needed. The acetone productivity and selectivity of the CO2 based acetone production process will have to be further optimized to make industrial scale-up feasible. That will have to take place systematically on a pathway leading from lab bench and test systems to pilot and industrial production. Besides process enhancement, more work will be needed to improve the genetically modified strain. CO2 emissions could be reduced by more than 1000 kt. An initial lifecycle analysis (LCA) of the biotechnology process taking the factors mentioned above into account indicates an overall reduction of CO2 emissions. Compared to the existing petrochemical process, emissions would be cut by at least 0.3 kg CO2/kg acetone even in a conservative scenario. Once again, the size of the emissions reduction is directly related to acetone productivity. 8 Bachelor’s theses and 3 doctoral dissertations are expected to be completed during the course of the project. Economic, environmental and societal leverage effect Leaving aside yields, substitution of thermal energy and the cost of biotechnology production, the process has the potential to eliminate 1.7 kg CO2/kg acetone. If only 10% of current annual acetone production (6 million tonnes) were migrated to the CO2 process, Project partners: • • • Evonik Industries AG Universität Rostock Universität Ulm Contact: Dr. Jörg-Joachim Nitz Paul-Baumann-Str. 1 D-45764 Marl Tel.: +49 (0)2365 49 4882 E-Mail:[email protected] 60 CO2 UTILIZATION OrgKoKAT – New Organocatalysts for Utilization of CO2 as a Building Block for Chemical Synthesis The researchers carried out intensive investigations on different catalysts in four sub-projects: cyclic carbonic acid esters (SP1), polycarbonates (SP2), b-Keto and b-hydroxy carboxylic acid derivatives (SP3) and a-unsaturated carboxylic acids (SP4) - see Fig. 1. The objective of the OrgKoKat project is to find ways of using carbon dioxide as an alternative, sustainable C1 source for high value-add industrial products. The main emphasis is on development of highly active and selective catalyst systems for chemical fixation of CO2. O R O O oder O R R R TP1 CO2H O R R O O O R R TP4 n TP2 CO2 m O R R TP3 O R R O CO2H R Fig. 1. Utilization of CO2 through direct chemical fixation. See posters TP1: Hydroxy-Phosphoniumsalze – Aktive Organokatalysatoren zur Synthese zyklischer Carbonate, H. Büttner, T. Werner*, 08 April 2014, Königswinter; TP2: Entwicklung neuer Katalysatorsysteme zur Synthese von Polycarbonaten, A. Pommeres, W. Desens, T. Werner*, 08 April 2014, Königswinter; TP3: Carboxylierung CH- acider Verbindungen mittels zwitterionischen Imidazoliumcarboxylaten, W. Desens, T. Werner*, 08 April 2014, Königswinter. The results so far from sub-project 1 look very promising. The catalyst used for synthesis of cyclic carbonates has two different functionalities in the molecule. The bi-functional organocatalysts are particularly active and in contrast to their mono-functional equivalents they are able to promote synthesis of cyclic carbonate under very mild reaction conditions. Two classes of bi-functional organocatalysts have been identified. Lifecycle analysis using the most active catalyst was carried out to assess the possible environmental impact of glycerol carbonate methacrylate (GCMA) synthesis. This product is of interest to industry because it is an excellent polymer building block.[1] Lifecycle analysis is focused particularly on the Global Warming Potential (GWP) of the greenhouse gas emissions expressed in kg CO2e per kg of product. Stoichio metric analysis shows fixation of 148 g CO2 per kg GCMA in the target compound. Looking at the carbon footprint, utilization of CO2 equates to between 3% 6% of total emissions depending on the epoxide source. Besides a number of different terminal epoxides, the researchers also investigated the formation of cyclic carbonates from internal epoxides and CO2. Fatty acid carbonates are ideally suited as plasticizers in plastics as well as for biomedical applications and they are also regarded as potential fuel additives[2]. [1] a) D.-W. Park, J.-Y. Moon, H.-J. Jang, K.-H. Kim, React. Kinet. Catal. Lett. 2001, 72, 83–92; b) N. Kihara, T. Endo, Makromol. Chem. 1992, 193, 1481–1492. [2] a) K. M. Doll, S. Z. Erhan, J. Agri. Food Chem. 2005, 53, 9608–9614; b) G. Rokicki, Prog. Polym. Sci. 2000, 25, 259–342; c) J. Langanke, L. Greiner, W. Leitner, Green Chem. 2013, 15, 1173–1182; d) B. Schäffner (Evonik Industries AG) Presentation at 2nd International Scientific Forum on CO2 Chemistry and Biochemistry, Lyon, September 27–28, 2012. CO2 UTILIZATION 61 The researchers also developed a cooperative catalyst system which delivers high throughput and high selectivity for the desired target compounds. The system is relatively simple and commercially available. The researchers are currently investigating the immobilization of catalysts for insertion of CO2 into epoxides. It is easier to recycle the catalysts if they are deposited on suitable carriers, and catalytic activity remained nearly the same in ten successive reactions. The heterogeneous catalysts are particularly well suited for transfer from batch reactors to a micro reactor. Project partners: Contact: • • • Leibniz-Institut für Katalyse e. V. an der Universität Rostock Bayer Technology Services GmbH Creavis Technologies & Innovation During the course of the project, 2 degree theses and 1 Bachelor’s Thesis have been completed and work on 3 doctoral dissertations is in progress. There were also three postdoctoral internships. Dr. Thomas Werner Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock, E-Mail:[email protected] 62 CO2 UTILIZATION ECCO2 – Electrochemical CO2 Reduction Project – High-Throughput Search for new Electrocatalysts The team of scientists on the ECCO2 Project is exploring electrochemical pathways for conversion of CO2 into high-grade chemical products for energy storage and synthesis of building block chemicals. The project is funded by the German Ministry of Education and Research. Practical demonstrations have shown that production of methane and methanol using this technique is feasible in principle, but how reaction conditions and the materials used affect fundamental reaction mechanisms is not sufficiently understood. The research team is attempting to significantly improve catalyst performance beyond the current state of the art by using special high-throughput electrochemical screening which enables them to run a large number of experiments in a short space of time. This is essential due to the very large range of operating parameters, which is typical of electrochemistry in general and CO2 reduction in particular. Beyond enhancing the speed and reliability of online Produktanalytik (Selektivität der Reaktion) the investigations, the team is using additional complementary techniques, for example combining electrochemistry with online element analysis, to generate more detailed data. Based on this new approach, the researchers are trying to gain an in-depth understanding of electrochemical CO2 reduction and also oxygen evolution which is the other half-reaction. They intend to use the results to develop new active, stable, selective catalysts. Project Status During the first two years of the project, the team developed a new high-throughput catalyst screening and online analysis setup (Fig. 1). The core element is an electrochemical cell (Scanning Flow Cell) with flow system and fully automatic positioning. The SFC can be used to scan the surface of a sample and carry out local 2mm elektrochemische Untersuchung (Katalysatoraktivität) online-Elementanalytik (Katalysatorstabilität) Fig. 1: Schematic representation of the new experimental setup using an electrochemical flow cell (top right) for high-throughput screening (bottom right) with online electrolyte analysis (left). Mittwoch, 5. coupled März 2014 CO2 UTILIZATION electrochemical investigations. This makes it possible to quickly evaluate different operating conditions with minimum effort using a homogeneous sample and ensure that the starting conditions are the same by repositioning the cell. This is important if, for example, corrosion or poisoning alters the surface of the catalyst during the course of the reaction. With the cell, it is also possible to carry out combinatorial investigations on material libraries under comparable operating conditions, for example to quickly identify ideal catalyst compositions. The ability to evaluate the activity of catalyst materials along with their stability in electrolytes 63 and their selectivity for the desired reaction products is a particularly attractive feature of this technology. This is accomplished by directly linking the SFC to instrumentation which analyzes the product stream. Element analysis using inductively coupled plasma (ICP-MS) is a unique development. Fig. 2 shows a small excerpt from the very extensive set of results delivered by this approach. The effect of the applied voltage on reduction of CO2 to methane and methanol on a copper catalyst and the stability of copper in dilute acidic electrolytes can be seen in these ex- Fig. 2: Top: Product analysis of hydrogen, methane, ethylene and methanol evolution during cyclic voltammograms at a copper electrode. Bottom: Example of element analysis showing the dissolution behavior of a copper electrode 64 amples. The SFC is currently being used to test different material libraries under varying conditions to gain an understanding of the complex interrelationships. Based on the results, the researchers will evaluate the best catalysts which they have found by running individual tests in actual reactors. Future Potential Given the initial starting point, this project is by necessity focused on basic research. As a result, it is not yet possible to estimate the potential economic, environmental and societal effects of CO2 utilization based on this technology. The technical developments and results to date show the enormous benefits of this CO2 UTILIZATION approach for achieving a deeper understanding of important electrochemical processes. It also highlights the benefits which further investigation could have for important related areas of technology such as energy conversion (e.g. water electrolysis and fuel cells) and corrosion in general. A number of high-profile articles have been published in leading international journals such as Angewandte Chemie and Science. The project has given a number of young scientists the opportunity to work on their Master’s theses and doctoral dissertations. They will be able to pass on the knowledge they have gained to industry. In addition, by bringing new knowledge to the attention of the general public, the project promotes the development of various sustainable technologies. Contact: Dr. Karl J.J. Mayrhofer Abteilung für Grenzflächenchemie und Oberflächentechnik, Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Straße 1 40237 Düsseldorf Tel.: +49 (0)211 6792-160 Fax: +49 (0)211 6792-218 E-Mail: [email protected] CO2 UTILIZATION 65 FfPaG – Gas to Liquids and Solids The goal of the project is to develop a conceptual design for a pilot system which uses a new technique to produce liquid and solid products from gas (GTL and GTS). The technique involves pyrolytic breakdown of natural gas into hydrogen and carbon, catalytic conversion of the hydrogen together with CO2 to produce syngas (CO2 activation) and formulation of the carbon. In the chemical industry and in fuel production, the hydrogen can be used either directly or as syngas fol- lowing CO2 activation. The carbon is potentially a high value-add input material for a variety of coke and steel production applications. Utilization of the carbon reduces coal consumption in the coking and blast furnace process, mitigating the total carbon footprint and substantially enhancing the competitiveness of the new technique. Fig. 1: Block diagram of the GTL/GTS process Fig. 1 shows a block flow diagram of the new technique. The process stages are methane pyrolysis, carbon formulation and catalytic CO2 activation using the Reverse Water-Gas Shift Reaction (RWGS). and hydrogen in a mass ratio of 3:1. The quantity of carbon produced is sufficient for industrial utilization, for example as a blending agent for coke assuming it meets the quality requirements. Cross-industry collaboration ensures that a carbon product which meets the requirements of the coke and steel industry will be a suitable replacement for coal. If energy integration can be optimized to minimize CO2 emissions resulting from the supply of energy for the endothermic pyrolysis process, the CO2 mitigation factor will be in the region of 50% for hydrogen production. CO2 utilization in CO2 activation for the production of syngas has even greater mitigation potential. The technology protects and enhances the competitiveness of participating companies in the hydrogen and syngas market. Plant construction, catalyst pro duction and sales, engineering and scientific service activities provide job security. The technique creates the need for new types of systems and instrumentation. The list includes reactors, temperature measurement, infeed and discharge systems and carbon formulation equipment, much of which will be developed by mid-tier companies. Marketing on a broad scale can be expected to create new market opportunities. From the scientific perspective, utilization involves coke, iron and steel, chemical engineering and process engineering and enhances interaction between these disciplines. The research objective is to provide a source of hydrogen and syngas with a small CO2 footprint. The products are intended for the chemical industry and future mobility applications. The carbon produced will also be utilized. Coke is currently the most widely used form of carbon. Worldwide demand for coke is currently estimated at around 1 billion t/a. Global demand for hydrogen and syngas is 50 million t/a and 220 million t/a respectively. Methane pyrolysis produces carbon The three-year project got underway in July 2013 and is currently proceeding on schedule. The initial analysis and specification phase for the GTL/GTS process has been completed and forms the basis for subsequent 66 CO2 UTILIZATION project work. In parallel, preliminary trials on hightemperature pyrolysis and heating systems are being conducted to gain experience and provide a reliable set of data for the pilot systems which are currently at the planning stage or under construction. Initial pyrolysis trials to produce samples in significant quantities are planned for 2014. Development trials for CO2 activation catalysts are proceeding according to plan. Project partners: • • • • • • • BASF SE, Ludwigshafen hte AG, Heidelberg Linde AG, Pullach ThyssenKrupp Steel Europe AG, Duisburg ThyssenKrupp Uhde GmbH, Dortmund Technische Universität Dortmund, Lehrstuhl für Chemische Verfahrenstechnik, Dortmund VDEh-Betriebsforschungsinstitut, Düsseldorf Contact: Dr.-Ing. Andreas Bode BASF New Business GmbH 4. Gartenweg – Z025 67063 Ludwigshafen CO2 UTILIZATION 67 DMEEXCO2 – Integrated Dimethyl Ether Synthesis from Methane and CO2 Project goal The goal of the project is to develop a single-stage, heterogeneous catalyzed process for synthesis of dimethyl ether (DME) from carbon monoxide rich syngas which may contain CO2. The process design will include substance and energy integration into the upstream syngas Due to reduced energy demand resulting from the process thermodynamics, the new technology has a CO2 mitigation potential of around 30% (125 kg CO2 per tonne of DME) compared to the current state-ofthe-art process with an intermediate methanol stage. Taking into consideration the specific process energy and heat consumption and elimination of the need for an energy-intensive supply of pure oxygen, dry reforming and utilization of the CO2 increase the CO2 mitigation potential by an additional 125 kg CO2 per tonne of DME. The process can be expected to reduce total specific CO2 emissions by around 60% compared to the current state of the art. stage. “Dry” (CO2) reforming of methane is one of the assumptions made in the process simulation for this stage. The large amount of hydrogen needed to activate the CO2 is already present in the process in the methane feed component and does not have to be supplied from an external source. The diagram below shows the process concept in highly simplified form: Single-stage synthesis of DME from syngas is a markedly exothermic reaction. The research team is looking at running the reaction in a slurry bubble column reactor which creates the option of isothermal operation. A pilot system to explore that possibility as well was started up in Q4/2013. Initial results indicate that this process variant is feasible, but a final evaluation has not yet been completed. Basic mechanistic research is underway to determine the best way of fabricating the multi-function catalyst system. The options include a physical mixture of multiple catalysts and catalysts in which the various functions are atomically dispersed right next to each other. Project status Two catalyst formulations were identified during high-throughput screening, and catalyst molds have been fabricated. Since Q4/2013, the researchers have been running long-term tests on a new tube reactor test bed. Several hundred hours of testing have confirmed the screening results. In parallel with catalyst screening, complete material and heat integrated process simulations were run for the new process and for current 2-stage state-of-the-art DME synthesis. The catalyst design reflects the simulation results, particularly as they relate to the optimal temperature operating window. Economic, environmental and societal leverage effect The only way to significantly reduce anthropogenic CO2 emissions is to change our consumption of fossil fuels which contain carbon. Due to its physical properties profile, dimethyl ether appears to be a good candidate. It is already widely used in Asia as an LPG substitute. Due to its combustion characteristics, DME is a very good alternative to diesel and it has much lower soot particle emissions (www.aboutdme.org). Compared to the 2-stage process using the methanol pathway, CO2 emissions from a DME plant with a capacity 68 CO2 UTILIZATION of 1 million tonnes which uses the single-stage process could be reduced by up to 0.25 million tonnes. of CO2 in the dry reforming material stream would eliminate the need for costly separation of the CO2 from the biogas. The CO2 footprint of the process could be further reduced by obtaining the energy needed for the process from renewable sources. The process can be coupled to biomass-based syngas production. Production of a CO/ H2 mixture through gasification is conceivable as well as direct upgrading of biogas (CO2/CH4) in place of biomass gasification, utilizing both C sources. Utilization The project has provided a framework for three doctoral dissertations on process simulation, kinetics and catalyst development at partner academic institutions. One Master’s Thesis has already been completed. A number of students have supported or added to the project with their scientific contributions. Contact: Dr. Ekkehard Schwab Chemicals Research and Engineering BASF SE D-67056 Ludwigshafen/Rhein E-Mail:[email protected] Technische Universität München CO2 UTILIZATION 69 SCOT – Smart Carbon Dioxide Transformation Sustainability and Climate Protection – Chemical Processes and Use of CO2“ program, DECHEMA has played a key role at the interface between government, science and industry and in communicating with the outside world. Since March 1st, 2014 DECHEMA has been one of the contributors on the EU FP7 funded SCOT (Smart Carbon Dioxide Transformation) project. The coordination and networking action is the first European CO2 utilization initiative. Partners from Belgium, France, Holland, Germany and the UK are working together to increase the emphasis on CO2 utilization in European research funding programs, and one of the things they are doing to achieve that is to put together a European research agenda. For implementation of the research activities, one of the priorities is to single out regions where real potential exists to make meaningful progress. Through its involvement in the CO2Net project which provides scientific support for the “Technologies for Fig. 1: Funding program status conference Since 2010, DECHEMA has been the program’s public voice. It has tracked and supported the projects to identify possible synergies. It has also kept an eye on national and international developments which are relevant to the various aspects of the research program. The development of recommendations on the future roadmap is another important contribution made by the support project. 70 DECHEMA also organizes status seminars and crossfunctional workshops. This includes a series of workshops dedicated to development of a common methodology for assessing the carbon footprint of CO2 utilization and the associated products. With DECHEMA acting as moderator, scientists and the business community reached agreement on a common approach. The results of the meeting will soon be made available to all of the program projects. CO2NET already provides a good networking environment, creating linkages between most of the national entities which are involved in CO2 utilization, and the network is continually expanding. Involvement in the SCOT Initiative expands the networking horizon at the European level. A number of other European regions are involved in the Initiative, creating a triple helix which brings together the scientific, business and government communities and acts as a catalyst to promote the development and intensification of the SCOT agenda in Europe. The exchange of expertise at all levels creates opportunities for faster implementation of CO2 management technologies which appear to have high potential. SCOT – Smart Carbon Dioxide Transformation BMBF expressly supports knowledge transfer and DECHEMA’s membership in the SCOT consortium as well as European expansion of the CO2NET network. The SCOT consortium action plan: • Define a strategic European research roadmap • Attract additional clusters, regions and investors to take part in multi-disciplinary research programs and joint projects • Produce recommendations on a European funding policy for SCOT research. The overall objective is to bring about a paradigm change in mindsets and highlight the role of CO2 as a raw material. Networking within the professional community in Germany is already very well established. A further extension to link into international networks will benefit everyone involved. DECHEMA is ideally placed to foster networking within the research community in Europe or even worldwide. Contact: Dr. Alexis Bazzanella DECHEMA e.V. Theodor-Heuss-Allee 25 60486 Frankfurt am Main Tel.: +49 (0)69 7564-343 E-Mail: [email protected] Dennis Krämer DECHEMA e.V. Tel.: +49 (0)69 7564-618 E-Mail: [email protected] SCOT – Smart Carbon Dioxide Transformation 71 The European Horizon 2020 Research and Innovation Framework Program Climate Protection, Environment, Resource Efficiency and Raw Materials – a Societal Challenge Raw materials are an important aspect of the European Horizon 2020 Research and Innovation Framework Program. The focus area “Waste A Resource to Recycle, Reuse and Recover Raw Materials“ is dedicated to this specific issue. In providing the funding, the EU Commission is pursuing a number of goals. Besides reducing or avoiding waste, the Commission wants to support the search for innovative ways of using waste as raw material for new products. Raw material recycling is another key aspect. Moreover, alternatives are needed for critical raw materials (for which Europe has no secure source of supply). SC5 (Societal Challenge 5) sub call Growing a Low Carbon, Resource Efficient Economy with a Sustainable Supply of Raw Materials also addresses the raw materials issue. The Calls for Proposal are closely related to the European EIP Raw Materials research agenda. The intention is to promote the competitiveness of European companies and provide motivation for faster implementation of the results from research on innovation in the field of raw materials. The issue of CO2 utilization also appears in a number of other societal challenge calls (SC2 Bioeconomy, SC3 Energy, SC4 Transport). Relevant calls for 2014 (with deadlines later than April 2014) and 2015 are as follows: Call: Sustainable and competitive bio-based industries ISIB-06-2015 Converting CO2 into chemicals (Research and Innovation Action; Deadline 24.02.2015) Call: Enabling the decarbonisation of the use of fossil fuels during the transition to a low-carbon economy LCE-15-2015 Enabling decarbonisation of the fossil fuel-based power sector and energy intensive industry through CCS (Research and Innovation Action; Deadline 03.09.2014) The deadline for most of the 2014/2015 Work Program submissions was April 8th, 2014 so they are not included in the following list. The following items related to CO2capture, utilization or emissions avoidance are not yet included in the current Work Program or are still open (as of March 3rd, 2014): Call: Waste – A Resource to Recycle, Reuse and Recover Raw Materials WASTE-4d-2015 Raw materials partnerships (CSA; Deadline 10.03.2015) WASTE-6a-2015 Eco-innovative solutions (Innovation Action; Deadline 16.10.2014) WASTE-6b-2015 Eco-innovative strategies (Research and Innovation Action; Deadline 16.10.2014) 72 WASTE-7-2015 Ensuring sustainable use of agricultural waste, co-products and by-products (Research and Innovation Action; Deadline 16.10.2014) Call: Growing a Low Carbon, Resource Efficient Economy with a Sustainable Supply of Raw Materials NATIONAL CONTACT OFFICE NCO Further information on the calls can be accessed at (http://ec.europa.eu/ research/participants/portal/ desktop/en/home.html). You will find all of the associated documentation there. This is also the portal to use for online submissions. SC5-04-2015 Improving the air quality and reducing the carbon footprint of European cities (Research and Innovation Action; Deadline 16.10.2014) SC5-05b-2015 Coordinating and supporting research and innovation for climate action (CSA; Deadline 10.03.2015) SC5-11 -2015 New solutions for sustainable production of raw materials (Research and Innovation Action; Deadline 10.03.2015) SC5-11c-2015 Deep mining on continent and in sea-bed SC5-11d-2015 New sustainable exploration technologies and geomodels SC5-11e-2015 New metallurgical systems SC5-12b-2015 Innovative and sustainable solutions leading to substitution of raw Materials: Materials under extreme conditions (Research and Innovation Action; Deadline 10.03.2015) SC5-13 -2015 Coordinating and supporting raw materials research and innovation: (CSA; Deadline 10.03.2015) SC5-13c-2015 Innovation friendly minerals policy framework SC5-13d-2015 Raw materials research and innovation coordination SC5-13e-2015 Raw materials intelligence capacity SC5-13f-2015 Strategic international dialogues and cooperation with raw materials producing countries and industry SC5-20-2014/2015 Boosting the potential of small businesses for eco-innovation and a sustainable supply of raw materials (SME-instrument (70%); cut-off-dates) Advice on SC5 topics including environmental research, raw materials and waste is available from the National Contact Office for the Environment. An individual advisory service providing assistance from the initial outline right through to the completed application is also available free of charge. This is a good place to obtain suggestions for improvement prior to submission. Other services including the newsletter and partner search are available at www.nks-umwelt.de. Place to contact: Persons to contact: Nationale Kontaktstelle Umwelt Projektträger Jülich, Forschungszentrum Jülich GmbH Standorte: Bonn: Godesberger Allee 105-107, 53175 Bonn Tel.: 0228 60884 214 Berlin: Zimmerstr. 26-27, 10969 Berlin Tel.: 030 20199 3215 (Erstberatung) Dr. Andreas Volz Tel.: 0228 60884-214 E-Mail:[email protected] www.nks-umwelt.de NATIONAL CONTACT OFFICE NCO 73 M4CO2 – Energy efficient MOF-based Mixed Matrix Membranes for CO2 capture to Below € 15/Tonne The EU is providing €10 million in funding to a consortium of 16 partners who have taken on the task of developing energy-efficient technology to capture CO2 from power plant and industrial emissions. Delft University of Technology (TU Delft) is acting as coordinator on the M4CO2 (Energy efficient MOF-based Mixed Matrix Membranes for CO2 Capture) project. DECHEMA is providing management support. The M4CO2 research consortium is working on the development of continuous CO2 capture systems based on metal organic frameworks and high-performance membranes. Capture can be pre- or post-combustion. The four-year project got underway in January 2014, and the source of the funding is the European Union Seventh Framework Programme. Current forecasts indicate that global energy consumption will increase by 53% between 2008 and 2035. Annual carbon dioxide emissions from power generation are expected to increase from 30.2 billion tonnes to 43.2 billion tonnes during the same period. Strong economic growth and intensive use of fossil-based resources are the factors which are driving this trend. Mitigation of anthropogenic greenhouse gas emissions including carbon dioxide presents a major challenge in the battle against climate change. The use of CO2 capture technology to reduce carbon emissions from point sources such as power plants and other energy-intensive facil- ities could make a significant contribution to climate protection. The goal of the consortium, which brings together some of the world’s leading companies and research organizations, is to use innovative membrane technology for continuous capture of CO2. Absence of the gas-liquid phase avoids energy losses and reduces the CO2 footprint, bringing unprecedented levels of energy-efficiency within reach. Gas separation membrane units are safer and have a lower environmental impact than other technologies such as amine stripping. Using the highly selective membranes, CO2 capture is feasible at costs below € 15/tonne CO2 (approx. €10-15 /MWh), which is significantly below the targets defined in the European SET (Strategic Energy Technologies) plan, which demands to separate 90% of the CO2 at a price below 25 €/MWh. The M4CO2 consortium promotes scientific exchange beyond the borders of Europe. Close linkages with Australian initiatives are planned. Companies and research organizations which are leaders in membrane, polymer and reaction technology are members of the consortium. Total (France), Johnson Matthey (UK), Polymem (France), Technalia (Spain) and HyGear (Holland) are the major industry partners. Contact: Freek Kapteijn University of Technology Delft Catalysis Engineering Deutschland Tel.: +31 15 278 6725 E-Mail: [email protected] 74 EUROPEAN PROJECTS CyclicCO2R: Production of Cyclic Carbonates from CO2 using Renewable Feedstocks The aim of the CyclicCO2R consortium project (NMP.2012.2.1-2: Fine chemicals from CO2) is to find ways of utilizing CO2 in sustainable production of chemicals, particularly fine chemicals. The researchers are concentrating their efforts on syntheses of cyclic carbonates. Due to the broad application spectrum including Li-ion battery electrolytes, coatings, green solvents, additives in the cosmetics industry and intermediates in chemical synthesis, these products are attracting an increasing level of attention. The CyclicCO2R project is working on development of a continuous process for production of industrially relevant cyclic carbonates such as glycerol carbonate, with CO2 and glycerol as the main feedstocks. Large amounts of glycerol are currently available from biodiesel production. The economic and environmental performance of the new process should be comparable to an established industrial process. To achieve the projects goals, three routes are being investigated in parallel 1. Synthesis of glycerol carbonate directly from CO2 and glycerol 2. Synthesis of glycerol carbonate indirectly by addition of CO2 to an epoxide (glycidol) 3. Synthesis of glycerol carbonate and other intermediates directly from CO2 and water using CO2-neutral energy sources (e.g. photochemical and electrochemical) In order to achieve the project goals, there are two essential milestones which have to be reached: 1.) synthesis and optimization of a reusable high-performance catalyst which delivers the necessary separation performance and 2.) development of an efficient process which provides a net reduction in CO2 emis- Consortium partners and contacts: E. Kimball, C. Schuurbiers, J. Zevenbergen, TNO, Netherlands S.F. Håkonsen, R. Heyn, SINTEF, Norway W. Offermans, W. Leitner, M. Picard, T.E. Müller, RWTH Aachen University, Institute for Technical and Macromolecular Chemistry and CAT Catalytic Center, Germany G. Mul, University of Twente – MESA+ Institute for Nanotechnology, Netherlands M. North, Newcastle University, United Kingdom A. Metlen, A-F. Ngomsik, FeyeCon Carbon Dioxide Technology, Netherlands E. Sarron, Ó. Sigurbjörnsson, Carbon Recycling International, Iceland B. Schäffner, CREAVIS – Science to Business, Evonik Industries AG, Germany EUROPEAN PROJECTS 75 sions compared to the established benchmark. Catalyst development is a multi-stage process which leverages the diversity of expertise which the project partners are able to contribute (high-throughput screening, catalyst design & modelling). Intensive information sharing between the catalyst and process development teams promotes development of the new process. The initial process development task is to model and discuss various reactor types before building a suitable reactor. Following a test phase, development work will continue on a small-scale reactor. The design will accommo- date improved catalysts and other process steps. Over the life of the project, the researchers will explore other routes for utilization of CO2 and water and review current literature on all aspects of the project. They will also define and continually assess the general economic and environmental framework. 3 universities, 3 companies and two of Europe’s largest research organizations are taking part in the CyclicCO2R project. Partner: Projektkoordinator: 76 poster 77 Verbundprojekt „Alkalische P2G-Elektrolyse“ - Ziele, Status der Arbeiten, erste Ergebnisse Andreas Brinner, Verena Kindl, Ulli Lenz, Stefan Steiert, Michael Specht Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) Industriestraße 6, 70565 Stuttgart Telefon: ++49 (0)711-7870-338, Fax: -200, E-Mail: [email protected] • Investigate the systematically lower Projektstruktur & Ziele VOC of the ZnS/(Zn,Mg)O cells Arbeitsfelder des Elektrolyse-Projektes • Study the carrier collection properties, §Druckelektrolyseblock Elektrodenpackage space charge width and & charge density of the ZnS and CdS & Betrieb 300devices kWel Systemdemonstrator §Bau Conclusion §Gleichrichter, Hilfs-/ Sicherheitssysteme §Steuerungssystem & Automatisierung Solar Cell Parameters §System-Modularisierung & Simulation §Thermische Optimierung • ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers • I-V analysis under AM 1.5G and EQE without background illumination • Electron beam induced current measurements in junction configuration (J-EBIC) • Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking • The gain in jSC (350 - 550 nm) is accompanied by a reduced VOC for our ZnS cells. J-EBIC Geometry §Kostenanalyse zur industriellen Umsetzung • Investigate the systematically lower VOC ofSystemsimulation the ZnS/(Zn,Mg)O cells & Komponentenauslegung • Study the carrier collection properties, • ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers • I-V analysis under AM 1.5G and EQE without background illumination • Electron beam induced current measurements in junction configuration (J-EBIC) space charge width and charge density § Verwendung Simulationstool IPSEpro zur Lösung von Massen- und Energiebilanzen of the ZnS and CdS devices • Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking • Erweiterung der Modellbibliothek (z.B. alkalische Druckelektrolyse, Gasseparator) Conclusion • Entwicklung eines Modells zur Beschreibung des Naturumlaufs (350 - 550 nm) is accom• The gain in jSCmit § Solar Unterstützung Simulationsdaten CellBlockkonstruktion Parametersund Komponentenauslegung panied by a reduced VOC for our ZnS cells. § Validierung entwickelter Einzelmodelle mit Versuchsdaten J-EBIC Geometry Abbildung 1: Auslegung Systemumgebung mit IPSEpro • Investigate the systematically lower Elektrolyseblock-Konzept of the ZnS/(Zn,Mg)O cells VOC & Kurzblock-Realisierung • Study the carrier collection properties, space charge width and charge density Zellrahmenkonzept aus Zweistoffverbund of§ the ZnS and CdS devices Alkalische Elektrolyse • ZnS, AEL: CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers • I-V analysis under AM 1.5G and EQE without background illumination • Electron beam induced current measurements in junction configuration (J-EBIC) • Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking § Conclusion Keine zusätzlichen Einlegeteile (integrierte Dichtungen, Membran und Elektrodenpackages) §Solar Entwicklung Elektrodenpackages • The gain in jSC (350 - 550 nm) is accomCellinnovativer Parameters panied by a reduced VOC for our ZnS cells. § Aufbau und Qualifizierung des AEL-Druckelektrolyse-Kurzblocks mit 300 kWel in Systemumgebung Abbildung 2: Aufbau Modell • Investigate the systematically lower Prüfstand für Kurzblöcke VOC of the ZnS/(Zn,Mg)O cells & the Systemkomponenten • Study carrier collection properties, space charge widthdes andPrüfstandes charge density § Leistungsdaten of the ZnS and CdS devices • Druck-Bereich: 6 – 25 bara Conclusion J-EBIC Geometry Abbildung 3: Strömungsführung Stack (negativ) • ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers • I-V analysis under AM 1.5G and EQE without background illumination • Electron beam induced current measurements in junction configuration (J-EBIC) • Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking • DC-Versorgung: 0 – 50 VDC / 0 – 5000 ADC • Betriebstemperatur: 25 – 100 °C • The gain in jSC (350 - 550 nm) is accomSolar Cell Parameters • Elektrolyt: Naturumlauf / gepumpter Umlauf, 30 Gew.-% KOH panied by a reduced VOC for our ZnS cells. • Online-Messdatenerfassung der Stack-Performance & Gasqualitäten § Lastabhängige Detailuntersuchungen von AEL-Kurzblöcken (1 - 20 Zellen, 0,05 – 0,6 m² Elektrodenfläche) und Systemkomponenten möglich Ausblick J-EBIC Geometry Abbildung 4: AEL-Prüfsttand Industriepartner des Projekts § Fertigstellung 300 kWel AEL-Druckelektrolyse-Kurzblock bis 02 / 2015 § Start-Up 300 kWel AEL-Elektrolyse-Demonstrator bis 04 / 2015 ETG GmbH, Stuttgart DANKSAGUNG: Dieses Projekt wird finanziert mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) unter dem Förderkennzeichen 0325524A. ZSW June 14 § Installation und Inbetriebnahme AEL-Elektrolyse-Prüfstand bis 05 / 2014 78 poster “Power-to-Gas“ - P2G® Renewable Energy Storage “Power-to-Gas” Concept A New Route for the Production of Substitute Natural Gas (SNG) from Renewables for Bidirectional Coupling of Electricity and Gas Grid and Interconnection to Consumer Sector Mobility Together with the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) and the company ETOGAS, the Centre for Solar Energy and Hydrogen Research (ZSW) has developed a new method for electricity storage and to guarantee grid stability in electricity grids with a high percentage of renewable power generation. Electricity grid Gas distribution system Wind CCPP / B-CHP Solar In this concept, excess renewable electricity from fluctuation sources (e.g. from wind turbines) is used for hydrogen generation via water electrolysis. In a downstream process, hydrogen and CO2 (e.g. from biogas) are converted to methane which is fed into the gas grid as SNG. The renewable energy carrier methane can be efficiently stored in the natural gas infrastructure and distributed according to customers' needs. The mutual convertibility of electricity/gas enables a smoothing of the electrical supply by offering negative control power by feed-in SNG in the case of surplus energy and positive control power by electricity generation from SNG. Besides stationary power generation, SNG can be used as a renewable low-emission fuel in road transport. POWER GENERATION Biomass Gas underground storage ELECTRICITY STORAGE Electrolysis / H2 buffer Biogas plant with SNG production CO2 CO2 buffer H2 H2 CH4 Methanation CO2 Heat BEV Renewable Energy Storage Systems H2 Electricity Mobility Plug-In HEV SNG FCEV Plug-In HEV CNG-V CCPP: Combined Cycle Power Plant; B-CHP: Block-type Combined Heat and Power Station; BEV: Battery Electric Vehicle; FCEV: Fuel Cell Electric Vehicle; CNG-V: Compressed Natural Gas Vehicle; Plug-In HEV: Plug-In Hybrid Electric Vehicle Schematic Diagram of a “Power-to-Gas“ Plant CAES Compressed air energy storage PHS Pumped hydro storage SNG Substitute natural gas Feed gas stoichiometry adapted for optimized methanation operation conditions Addition of steam to avoid carbon depositions / catalyst deactivation Energy consumption and storage capacity in Germany (2012) Power Consumption [TWh/a] Natural gas Liquid fuels 595 909 711 80 Average Power [GW] 70 1002) Storage capacity [TWh] 0,043) 2174) 2505) 0,6 2000 3000 Operating range of storage [h] Methanation heat utilization at T > 200 °C possible Energy Flow of a “Power-to-Gas“ Plant Required storage capacity for electricity grid in Germany: 20 – 40 TWh Commercialisation Plan PILOT PLANT “Alpha“ Plant 25 kWel 2013 2012 Nov. 2009 DEMONSTRATION PLANT “Alpha-Plus“ Plant 250 kWel Contact ETOGAS: DI Gregor Waldstein E-Mail: [email protected] Contact IWES: M.Sc. Mareike Jentsch E-Mail: [email protected] Contact ZSW: Dr. Ulrich Zuberbühler E-Mail: [email protected] “Beta“ Plant 6 MWel 2015 COMMERCIAL PRODUCT “Gamma“ Plant Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Württemberg Industriestr. 6, 70565 Stuttgart www.zsw-bw.de poster 79 Ergebnisse des Untersuchungsprogramms an der CO2-Wäsche-Pilotanlage in Niederaußem Peter Moser1, Sandra Schmidt1, Torsten Stoffregen2, Frank Rösler2, Gerald Vorberg3, Gustavo Lozano3, 1RWE Power AG, 2Linde Engineering Dresden GmbH, 3BASF SE Das Entwicklungsprogramm Prozess der CO2-Wäsche-Pilotanlage Kooperation BASF - Linde - RWE Power > BASF Abtrenntechnologie OASE blue®, Waschmittelperformance (Wirkungsgrad, Waschmittelstabilität, Kosten) Kondensat Desorber Feinwäsche Absorber Rauchgas Rauchgas Kondensat Ziel: 90% CO2-Abscheidung mit hocheffizienter PCC-Technik, PCC-Design für ein 1.100 MW-Kraftwerk Versuchsphase MEA & Prozess Versuchsphase GUSTAV200 Versuchsphase LUDWIG540 Auswahl des besten Waschmittels Langzeitversuche, Optimierung Umbau von Anlagenkomponenten Zwischenversuche Langzeitversuch (REA) Langzeitversuch (REAplus) 2010 2011 2012 2013 Phase II 2014 2015 2016 Phase III Rauchgasteilstrom: 1.550 NaOHaq Nm3/h Waschmittel Kondensat Anlagenverfügbarkeit > 97 % CO2-Produkt: 7,2 tCO2/Tag; Abtrennrate 90% Erste Anlage in Deutschland, IBN 2009 Absorberhöhe entspricht Full-Scale-Anlage Budget RWE Power Phasen I/II: 15 Mio. € Instrumentierung: 275 Messstellen 40% Förderung durch das BMWi Optionen zur Variation der Prozesskonfiguration des Emissionsminderungssystems Optimierung, Langzeittest Gesamtoptimum Emissionsminderung Zwischenversuch (+ O2) Wasserwäsche Trockenes Bett Saure Wäsche Wasser, Säure Variation OASE® blue Optimum OASE ® blue Langzeitversuch (REA/REAplus) Maßnahme vor Absorber Wasser Ergebnisse Regeneration Energy [MJ/t CO2]CO2] Spezifischer Energiebedarf [MJ/t Kondensator Wasser > RWE Power Integration Abtrennungsanlage (Wirkungsgrad, Betrieb, Kosten) Phase I CO2 WasserWäsche Zusatzwäsche Kraftwerk > Linde Engineering Abtrennungsanlage, Komponenten (Wirkungsgrad, Scale-Up, Kosten) 2009 Wasser Engineering Chemie Optimierungsaufgaben Waschmittelversuche CO2-armes Rauchgas Wasser Additiv Wasser Absorber Absorber Absorber Absorber 4000 3800 Rauchgas Rauchgas Rauchgas Rauchgas 3600 3400 Optimum MEA 3200 3000 2800 2600 2400 Optimum OptimumGUSTAV200 OASE blue ® MEA GUSTAV200 OASE blue ® Variation der Prozesskonfigurationen: > REAplus/REA-Feinwäsche (mit NaOH-Zugabe) > Anzahl der Wasserwäschen (1 oder 2) > Wasserwäsche mit doppelter Höhe > Kombination Wasserwäsche und Trockenes Bett > Kombination Zusatzwäsche (saure Wäsche) und Trockenes Bett Parametervariationen: > Waschwassertemperatur (40°, 60°C) > Zwischenkühlertemperatur > pH-Wert Saure Wäsche Circulation rate Waschmittel-Umlaufrate lange Kolonne > 20% niedrigere spezifische Energiebedarf > geringer Waschmittelverbrauch trockenes Bett Absorber Absorber > hohe zyklische Beladung und reduzierter Waschmittelumlauf > Druckverlust und Durchmesser Absorber verringert kurze Kolonne & „Trockenes Bett" Make-up Wasser Aminkonzentration > Waschmittel OASE blue® über einen Zeitraum von mehr als 26.000 Betriebsstunden getestet Rauchgas Rauchgas 1 3 5 7 9 11 13 15 17 19 21 23 25 27 Zeit [Tage] Ausblick Phase III > Optimierung des Emissionsminderungssystems, insbesondere durch Beeinflussung der Rohgasqualität > Simulation eines Gasturbinen-Rohgases für den CO2Wäscheprozess > Test und Bewertung von zwei neuen OASE blue®-Varianten zur nochmaligen Verbesserung der Prozessperformance Förderkennzeichen: 0327793A-I Nutzung des CO2 aus Niederaußem in CCU-Projekten Rauchgas CO2-Wäsche CO2 CO2-Verflüssigungs-, Aufbereitungs- und Abfüllstation CO2 CO2 Direktanwendung CO2 Chemie CO2 chem. Energiespeicher Verflüssigung/Kompression Projekt Dream Production Projekt CO2RRECT 80 poster CO2 im AUFWIND stoffliche und energetische Wertschöpfung durch Algen D. Behrendt, A. Müller, C. M. Schreiber, L. Nedbal, U. Schurr Algen Algen bilden eine noch weitgehend ungenutzte Quelle für Treib- und Baustoffe oder Plattformchemikalien – meist werden sie für Nahrungszusätze, Pharmazie und Kosmetik eingesetzt. Sie haben weit höheres Potential zur Biomasseproduktion als Landpflanzen, können auch hohe CO2-Konzentrationen sehr gut nutzen – und ihr Anbau ist nicht auf Agrarflächen beschränkt. OptimAL: Erhöhung der Lipidproduktion von einzelligen Grünalgen. Methodischer Schwerpunkt ist die Stammentwicklung als Grundlage für neue Anwendungen, so werden Algen auf mögliche Einsatzgebiete gezüchtet, zum Beispiel bezüglich Ihres Energiegehaltes, der Lichtausnutzung, der CO2-Fixierung oder Temperaturtoleranz. AUFWIND: Analysiert werden Algenproduktion, DownstreamProcessing, die Kraftstoffproduktion und Konversion sowie weitere verwertbare Nebenprodukte (Kohlenhydrate, Proteine). Fokus liegt auf der ökonomische und ökologische Effizienz und ein Upscaling zum wirtschaftlichen Großanlagenkonzept. Die Forschungsergebnisse werden in eine LCA eingebettet. Projekt: OptimALl Projekt: AUFWIND Algenproduktion und Umwandlung in Flugzeugtreibstoffe: Wirtschaftlichkeit, Nachhaltigkeit und Demonstration Optimierte Algen für nachhaltige Luftfahrt Synergien mit AUFWIND, Algenproduzenten und Forschung – Entwicklung der optimalen Algen für unterschiedliche Anwendungsbereiche Hintergrund: Suche von nachhaltigen Treibstoff zur Verbesserung der CO2 Bilanz in der Luftfahrtindustrie 12 Partner aus Industrie und Forschung Modifikation des Photosystems Adaption an hohe CO2Konzentrationen Gerichtete Evolution Selektion Grundlagenforschung für innovative Produkte Algae Science Center Algae Science Center: Algenproduktionsanlage am Forschungszentrum Jülich Betrachtung der gesamten Wertschöpfungskette Vergleich und Upscaling von 3 PBRSystemen Neue und innovative Produkte aus Algen Sonnenlicht Mitglied der Helmholtz-Gemeinschaft Nährstoffe, CO2 Algen-Suspension in Schläuchen im Gewächshaus Kontakt Dr. Dominik Behrendt IBG-2: Pflanzenwissenschaften Institut für Bio- und Geowissenschaften Forschungszentrum Jülich GmbH 52425 Jülich Algen-Suspension tropft durch Netze in einer CO2angereicherten Atmosphäre Finanzierung Algen-Suspension in freihängenden Schläuchen Partner poster 81 B i o t e c h n o l o g i e 2 0 2 0 p l u s – B a s i s t e c h n o l o g i e n f ü r e i n e n ä c h s t e G e n e r a t i o n b i o t e c h n o l o g i s c h e r Ve r f a h r e n Analysis and Design of Bacterial Enzyme Cascades for Utilization of CO2 Melanie Straub1, Christiane Rudolf2, Oliver Hädicke2, Steffen Klamt2, Hartmut Grammel1 1 Biberach University of Applied Sciences, Biberach, Germany 2 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany Background The project is an interdisciplinary approach of wet lab experiments and computational modeling. The goal is to evaluate the capacity of bacterial enzymes for utilizing CO2 as a feedstock for organic chemicals or fuels. Work packages of the participating partners include: Biberach University of Applied Science • 13C metabolomics for identifying CO2-fixing pathways • Isolation and kinetic characterization of CO2-fixing enzymes • in vitro (electrochemical) operation of enzyme cascades Max Planck Institut for Dynamics of Complex Technical Systems, Magdeburg • Metabolic network analysis • Dynamical modeling • Simulation studies The starting point: Systems Biology development of the purple bacterium Rhodospirillum rubrum for biotechnological applications 1, 2, 5 % CO2 Production of: Porphyrins Photodynamic Tumor Therapy 0 % CO2 Poly-b-hydroxyalkanoates Biopolymers Biohydrogen Energy carrier b Carotenoids Food supplement Vitamins, Coenzymes Food industry B12, Q10 10 % CO2 0 % CO2 Membrane proteins Vaccines … …independent of light; at high cell densities ? 2 % CO2 1 % CO2 Fructose Succinate Figure 3. CO2 requirement for growth of R. rubrum with acetate (a) and fructose (b) as carbon sources (2). Fructose/Succinate Figure 1. Biotechnological potential of R. rubrum for high-level expression of photosynthetic products independent of light. Figure 2. Metabolic network of central carbon metabolism in purple nonsulfur bacteria, implemented in CellNetAnalyzer (1) . CO2 Fixation by the Reductive TCA Cycle CO2 fixation by plants reaches > 100 bill. tons/year global net primary production via enzyme 1 (ribulose-bisphosphate carboxylase) in Fig. 2. Yet, the catalytic efficiency of the enzyme is low. The reductive tricarboxylic acid (rTCA) cycle has been discovered in green sulfur bacteria in the 1960s as the first alternative pathway to the Calvin-cycle for autotrophic growth (3). One turn of the cycle converts 4 CO2 into organic intermediates (Fig. 5). With the increasing number of available microbial genomes, many anaerobic bacteria have now been recognized to carry all required genes/enzymes. We study enzymes of the rTCA cycle from different bacterial species for their capacity to convert CO2 into organic compounds in technical applications. A key enzyme enzyme of the pathway is pyruvate-ferredoxin oxidoreductase (PFOR) (EC 1.2.7.1) (E1 in Fig. 5) which catalyzes the reductive carboxylation of acetyl-CoA according to the following reaction: acetyl-CoA + CO2 + Fdred Estimated ΔrG'° 10.0 kJ / mol pyruvate +Fdox (K'eq = 0.018),… DE0 -520 mV Tab 1. Specific enzyme activity of pyruvate:ferredoxinoxidoreductase of anaerobically grown C. tepidum and R. rubrum Strain C. tepidum C. tepidum + 50 mM acetate R. rubrum U/mg 0.101 0.015 0.039 0.007 0.0014 0.00033 f ocus.de Figure 5: CO2 fixation by the reductive TCA cycle. E1: PFOR; E2: pyruvate formate-lyase; E3: a-ketoglutarate synthase; E4: isocitrate dehydrogenase; E5: pyruvate carboxylase Figure 4: Crystal structure of pyruvate-ferredoxin oxidoreductase from Desulfovibrio africanus (Protein databank entry 1B0P) showing ligands and pocket. Current Status and Outlook PFOR genes of R. rubrum, Chlorobaculum tepidum, Desulfovibrio africanus , Acetobacterium woodi have been cloned for expression in E. coli in vitro activity of crude extracts determined (Tab. 1) Purification of PFOR and ferredoxin of R. rubrum and C. tepidum HPLC/MS platform established for determination of metabolic fluxes of the 13CO2-fixing metabolic network (Fig. 2) Next steps: Coupling of purified enzymes to electrodes for electrochemical regeneration of cofactors (Fd) Ultimately, bacterial enzymes should be useful for conversion of CO2 and regenerative energy into storable and transportable chemical compounds and fuels References: 1) Hädicke, O., H. Grammel, and S. Klamt. 2011. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst. Biol. 5:150. 2) Rudolf, C., and H. Grammel. 2012. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: Effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids. Enzyme Microb. Technol. 50:238-246. 3) Evans, M.C.W., Buchanan, B.B. and D. I. Arnon. 1966. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55, 928-934. 82 poster Institute of Catalysis Research and Technology The coupling of epoxides and CO2 to carbonates: On the search for new N2O2 and N4-ligand systems. M. Fuchs, M. Adolph, T. Zevaco, C. Altesleben, O. Walter, E. Dinjus, S. Pitter, J. Sauer Karlsruher Institut für Technologie (KIT), Institut für Katalyseforschung und Technologie (IKFT) Postfach 3640, 76021 Karlsruhe, Germany [email protected], [email protected] An ever increasing interest… Copolymerisation Carbon dioxide can be seen as an “ideal” C1-building block because of its low toxicity and sheer endless availability, if one neglects its thermodynamic stability. For a long time the focus on the CO2-chemistry was limited to few reactions with rapid implementation in industrial processes like, e.g. the production of precipitated calcium carbonate for the paper industry, the syntheses of salicylic acid, urea, or indirectly that of methanol. However since the nineties a new trend rises continuously dealing with the production of organic carbonates: principally monomeric cyclic carbonates (CC) and aliphatic polycarbonates (aPC) obtained from the related reactive epoxides. CH CH O C O CH CH O R2 R1 R2 n R1 + CO2 (pure polycarbonate: m = 0) [ Catalyst ] P,T R2 O C O Cyclisation ryls ente Ac 2 äquval R1 O NH2 NH NH2 vat äurederi NH O O NH O NH2 NH2 R1 Results / Topic 2 : N2O2 ligands based on diethyl ethoxymethylenemalonate and their aluminium complexes in the formation of aliphatic polycarbonates. More details in European Journal of Inorganic Chemistry 2013, 26, 4541–4545 O O NH O NH O O NH2 NH2 NH2 NH2 NH2 NH2 NH2 (H2C)2 NH2 NH2 (H2C)4 NH2 (H2C)6 NH2 ♦ Easy synthesis via reaction of AlEt3 and AlEt2Cl with the ester-substituted N2O2 ligands. ♦ Very high activity and selectivity of the Al-chloro derivatives in the formation of Poly-CycloHexeneCarbonate. Promising PDI and Tg but unsatisfactory stereoselectivity (atactic polycarbonates). NH2 H2N NH2 NH2 NH2 NH2 O R2 The o-phenylene diamine-substituted ligand reacted easily with Fe(OAc)2 and a nitrogen base (pyridin or 1-methyl-imidazole). N N N NH O N Fe(OAc)2 DMF Pyridin Fe N O N O N N I2 Fe N Pyridin O 66% 95% O + CO2 O O Entrya) epoxide Cat. Catalyst (a) co-Cat. Cat. / mol% p/bar T/°C Yield - 1.0 50 80 - nBu4NBr 0.2 35 80 37% N Fe(II) O Fe N O O N O N 3 1.0 50 80 91% - 0.2 50 80 99% - 0.1 35 80 69% - 0.2 2 80 36% I O Fe N N N O O N N Fe(II) - 0.2 50 80 - TBAB 0.2 50 80 75% TBAB 1.0 50 80 94% O N N N O N Fe N N O O /bar Yield b) 50 96 50 100 35 98 50 99 35 95 50 100 50 - 50 - 50 - 50 - Ph O O Ph O Ph 5 O Ph O t-Bu O O O O Cl 7 9 O O O Bu 10 O O Ph O O Cl 6 8 O O 4 O O 0.2 0.2 0.1 0.2 0.2 1.0 T (°C) p (bar) 80 100 80 80 80 80 50 50 50 50 50 2 t (h) PCHC Carbonate Linkageb 20 20 20 10 20 48 100% 99% 100% 100% 100% 99% Yieldc TON Mnd (g mol-1) PDId Tge (°C) 77% 76% 66% 46% 32% 29% 384 379 660 230 158 29 11 100 7 000 15 000 7 600 4 200 3 100 1.53 1.65 1.28 1.233 1.49 1.37 103.9 93.0 106.3 101.1 93.0 93.8 a catalyst:cocatalyst=1:1; TBAB=Tetra-butylammonium bromide, DMAP=4-Dimethyl-aminopyridine; b Determined by 1H-NMR spectroscopy: 100*([email protected] / ([email protected] + [email protected] ppm)); c Determined on precipitated polymer: 100 % yield being equivalent to 14.05 g copolymer (/a complete conversion of 0.099 mol of CHO (10 ml) into pure alternating PCHC); d Determined by Gel Permeation Chromatography (GPC) calibrated with polystyrene standard in THF at 40 °C; e Measured with Differential Scanning Calorimetry (DSC); f Screening was done with dichloromethane as co-solvent (CHO:DCM=1:1). X ray structure: (Lester(Cl)2N2O2)Zn(DMSO) X ray structure: [(Lnitrile(Me)2N2O2)Zn(DMSO]∞ monomeric unit O TBAB N Fe(III) O Ph P O 2 O N N product O 1 (b) 2 + DMAP 2 + TBAB 2 + TBAB 2 + TBAB 2 + TBABf 2 + TBAB ♦ Easy synthesis via reaction of ZnEt2 with the ester- and nitrile- substituted N2O2 ligands. ♦ Interesting structural characteristics with neutral ligands e.g. dimethyl sulfoxide. ♦ Very high activity and selectivity in the formation of Cyclic Carbonates (e.g. PC) High activity in the formation of Cyclic Carbonates via the “Cat/Co-Cat in one” concept. O Catalysta Entry 10 11 12 13 14 15 c(cat.) (mol%) More details in Dalton Transactions, 2014, 43(6), 2344–2347 and Catalysis Science & Technology, 2014, accepted DOI: 10.1039/C4CY00125G X ray structure of the related (1-Me-Imidazole)-Iron derivative: [(Lnitrile(H)2N2O2)Fe(II)(1-Me-Im)2].DMF O N N N N O O O O C O Results / Topic 3 : N2O2 ligands based on cyano-acrylate and methylene-malonate and their zinc complexes in the formation of cyclic carbonates. I O O O O O Cat. n N R1 und R2 = CN oder COOEt NH + CO2 n NH2 NH2 NH2 NH2 NH2 O O O O NH2 NH2 O R2 R1 NH2 M. North, R. Pasquale, C. Young, Green Chem., 2010, 12, 1514 A wide range of diamine linkers investigated: O R1 O CCs find an industrial application as nontoxic, polar, high boiling-point solvents, as electrolytes in lithium ion batteries or as reactive intermediates. (1,3-dioxolan-2-one) R2 R1 The ligands are formed by condensation of a diamine and ethyl 2-cyano-3-ethoxy-acrylate or diethylethoxymethylenemalonate in yields of up to 99%. Synthesis adapted from E.G. Jäger et al., Z. anorg. Allg. Chem. 1985, 525, 67. M.R. Kember, A. Buchard, C.K. Williams, Chem. Commun., 2011, 47, 141 Cyclic Carbonate O good overview: P.P. Pescarmona, M. Taherimehr, Catal. Sci. Technol., 2012, 2, 2169 Results / Topic 1 : N2O2 ligands based on 2-cyano-3-ethoxyacrylate and their iron (II) / Iion(III) complexes in the formation of cyclic carbonates. More details in Dalton Transactions , 2013, 42(15) 5322-5329 R1 m aliphatic poly(ether-carbonate) O R1 aPCs are a useful complement to the aromatic bisphenol-A-based polycarbonates owing a.o. to a higher intrinsic biodegradability (e.g. polypropylene carbonate) and find an increasing utilisation in many technical applications as evaporative pattern castings or midsegments in new polyurethanes. O O O O O Bu O O O O t-Bu O O O O O O O O + CO2 O O Cat. coordination polymer : linkage via one of the nitrile groups O O O O O O a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h, reaction temperature 80°C. b) Conversion by 1H-NMR with internal standard. N a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h, b) Conversion by 1H-NMR with internal standard. Results / Topic 4 : N4-ligands with 2-pyridinecarboxamide/phenylene diamine moieties and their metal complexes in the formation of organic carbonates (CC & aPC). Easy synthesis of the substituted N,N-Bis(2-pyridine1.44 eq carboxamide)-1,2-benzene [NEt ](OAc) 4H O, O ligands and their cobalt, iron DMF and chromium complexes. + M(OAc) Yields ranging from 50 to 90%. . 4 2 Y1 Y2 N N 2 2 N N + OAc 5 Y1, Y2 = H , 78% 6 Y1, Y2 = Cl , 78% 7 Y1 = H, Y2 = NO2 , 63% 8 Y1, Y2 = Me , 51% Pyridine NH2 NH2 Y1 O NH N O Y2 Cl O Triphenylphosphite High Selectivity and catalytic activity of the Cobalt-N4-acetate system (“Cat/Co-Cat in one” concept): pure alternating (atactic) PCHC were isolated in high yields with CHO whereas cyclic carbonates were obtained with common terminal epoxides. N N Y2 OH 2 O Co Y1 Y1 O More details in Polyhedron, 2012, 48(1), 92-98 and Dalton Transactions, 2014, 43(8), 3285–3296 OAc O NH N + MCl2-3 O 2.21 eq [NEt4]Cl H2O, 2 eq TEA, O2 1 Y1, Y2 = H , 50% 2 Y1, Y2 = Cl , 62% 3 Y1 = H, Y2 = NO2 , 36% 4 Y1, Y2 = Me , 78% Catalyst a X ray structure determination of the cobalt complex 22: [[L(NO2)N4]Co(III)Br2][Et4N] N N Br N N 20 Y1, Y2 = H , 56% 21 Y1, Y2 = Cl , 65% 22 Y1 = H, Y2 = NO2 , 62% 23 Y1, Y2 = Me , 74% Cl R Product O Mn (g/mol)d Mw/Mn Co/L(H)/OAc 9600 1.15 Co/L(Cl)/OAc 50 80 70 100- 7600 1.28 104 Co/L(NO2)/OAc 50 80 35 100 10100 1.27 106 Co/L(Me)/OAc 50 80 83 100 8600 1.27 105 + CO2 O X ray structure determination of 6 [[L(Cl)2N4]Co(III)(OAc)2][Et4N] p (bar) 35 T (°C) 80 Yield 62 Co/L(Cl)/OAc 35 84 50 Co/L(NO2)/OAc 35 80 32 Co/L(Me)/OAc 35 80 70 P (bar) Cl Catalyst O N N Conversionb 50 76 35 78 O 50 60 O 50 60 50 96 50 93 50 99 50 0 O Tg (°C)e n d O O O 104 O O O O O O O O PC Standard reaction conditions: 10 ml of Epoxide, 20 h, 0.5 Mol% catalyst, 80 °C, 50 bar for CHO and 35 bar of CO2 for PO; (~ 7 g CO2) b yields = n(Monomer units in isolated product)/n(epoxide)*100 c Evaluated via 1H NMR d Evaluated via gel permeation chromatography e Determined by DSC a O C O O Cl Cl O O O Catalyst Co/L(H)/OAc N N Co N O Yield CO3 b %c 64 100- Cat. O Co Cat. O O O Br N PCHC T (°C) 80 O Y2 Y1 R Cl Cl O O Epoxide a O p (bar) 50 DMF O + CO2 O n N 9 M = Co, Y1, Y2 = H , 86% 10 M = Co, Y1, Y2 = Cl , 66% 11 M = Co, Y1 = H, Y2 = NO2 , 91% 12 M = Co, Y1, Y2 = Me , 88% 13 M = Fe, Y1, Y2 = H , 83% 14 M = Fe, Y1, Y2 = Cl , 84% 15 M = Fe, Y1 = H, Y2 = NO2 , 80% 16 M = Fe, Y1, Y2 = Me , 68% 17 M = Cr, Y1, Y2 = H , 88% 18 M = Cr, Y1, Y2 = Cl , 71% 19 M = Cr, Y1, Y2 = Me , 87% 2.21 eq [NEt4]Br H2O, 2 eq TEA, O2 Synthesis adapted from R. N. Mukherjee, M. Ray, Polyhedron, 1992, 11, 2929. Cl C O N M N O Cat. O N DMF Y2 + CoBr2 N + CO2 n Broader catalytic screening: The highest yields of cyclic carbonates were attained with terminal epoxides displaying an electron-withdrawing group. O O O O O O O O O O O O O O O a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h, temperature 80°C. b) Conversion by 1H-NMR with internal standard. Acknowledgement: This work was supported by the BMBF-Project “Dream Reactions” (Förderkennzeichen 01RC0901A) and the Helmholtz Research School „Energy-Related Catalysis“. KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association poster 83 84 poster iC4 - PhotoCOO Photokatalytische Nutzung von CO2 Prof. Dr. Bernhard Rieger (TUM) Die vierte, weiter in die Zukunft blickende Säule des iC4-Projektclusters - PhotoCOO - untersucht die direkte, photochemische Umsetzung von Kohlendioxid und Wasser zu Wertprodukten analog zur natürlichen Photosynthese. Unter besten ökologischen und auch vorteilhaften ökonomischen Bedingungen würde vorab emittiertes CO2 - via Adsorption oder membrangestützter Trennverfahren (siehe die komplementären iC4-Teilprojekte AdCOO und COOMem zum Stand der Optimierung der CO2-Abtrennung) - wieder dem Stoffkreislauf zugeführt werden. Dies schützt die Umwelt und dient zudem zwei Wirtschaftssektoren – Energie und Chemie - in perfekter Symbiose. AK Rieger Funktionalisierte Si-Oberflächen für die photoelektrochemische CO2-Reduktion Photokatalytische Reduktion von CO2 mit gekoppelten Ligandsystemen Photophysikalische Eigenschaften Kontrollierte Si-Funktionalisierung: Erhöhung der elektrochemischen Reaktivität 2000 ε*M*cm 1600 AG Krischer — Zweikerniger Katalysator 1200 --- Einkerniger Katalysator 800 400 0 450 470 490 510 530 550 λ/nm Triplett-MLCT- Absorption : λ(3MLCT) = 474 nm + 506 nm, dπ(Ir)-π*(tpy) Elektrochemische Eigenschaften C1 C2 -0.6 -0.8 -0.4 -0.6 C2 -2.0 C3 -2.5 -2.0 -1.5 A1 A2 0.0 -0.2 -1.0 -0.5 C1 -1.5 -1.0 EiR [V vs. Fc+/0] 0.0 0.5 +/0 iR-corrected Potential [ V vs. Fc 45 0.6 -0.4 -0.6 C2 C1 -0.8 -1.0 -1.4 0.2 A2 0.0 -0.6 -2.0 -1.5 -1.0 C1 C2 -2.0 -1.5 -1.0 EiR [V vs. Fc+/0] C3 -2.5 1.0 A1 0.4 -0.2 -0.4 -1.2 -0.5 relative irradiance/% 0.2 -0.4 Current [ mA/cm² ] 0.4 -0.2 -0.5 0.0 -0.5 0.5 40 35 30 25 20 15 10 5 0 1.0 iR-corrected Potential [ V vs. Fc+/0 ] ] On-line Produktanalyse: Optimierte DEMS-Zelle (Differentielle elektrochemische Massensprektrometrie) Bessere Verzahnung von Produktanalyse und (photo-)elektrochemischem Experiment 50 A1 0.0 450 500 Decrease of enthalpic barrier from 9 to 25 kcal·mol-1 with the aid of water 2 H2O 650 700 750 800 Poröse, gasdurchlässige PTFE-Membran 20 18 16 14 12 10 8 6 4 2 0 HPLC und Referenzelektrode y = 524,25x - 0,0825 0 0,01 0,02 c(TEOA)*l/mol 0,03 Stern Volmer Plot HCOO– formation 0 kcal·mol-1 : sum of reduced (neutral) reactants F0/F1 - 1 Homogeneous conversion of CO2 to HCOO– The effect of H2O in the CO2 insertion reaction at Ru(bpy)2(CO)H complex 1 H2O 600 λ/nm AG Rösch 0 H2O 550 Emission: λem = 562 nm 0,04 Beleuchtung 0.2 -0.2 i [mA/cm²] A1 A2 0.0 i [mA/cm²] Current [ mA/cm² ] 0.2 DEMS Probe ElektrolytFluss Transition state structure of CO2 insertion with 2 H2O Entwicklung eines effizienten eingebetteten Clusteransatzes (QM/MM): Heterogeneous conversion of CO2 on Ru(0001) into HCOO* or *COOH species 28 Potential hydrogenation pathways from various CO2/H configurations 21 PhotoCOO Electronic barriers of ~ 14–20 kcal·mol-1 14 12 9 7 η2–HCOO species most stable isomer 2 0 0 H2O -9 -9 AG Reuter Ab initio Methodik für ladungsgetriebene Redoxreaktionen O2 - Speed-up im Vergleich zu regulären Superzellansätzen >100fach - Ermöglicht: • detaillierte kinetische Rechnungen auf DFT Hybridniveau • explizite Berechnungen ladungsgetriebener Prozesse Proof-of-concept: Wasserspaltung an TiO2(110) GaN:ZnO → What is the effect of co-adsorbed H2O? CO2 AG Lercher CO2-Reduktion gekoppelt mit Treibstoffe Chemikalien Wasserspaltung Projektziel: Design eines künstlichen Photosynthesesystems - Nanostrukturierte Halbleitermaterialien zur photokatalytischen Wasserstoffdarstellung aus Wasser und gekoppelter CO2-Reduktion mit Sonnenlicht Charakterisierung Biomasse H2O H2 + O2/CO2 Wasserstoffdarstellung CO2 CH4/CO Katalyse CO2-Reduktion zu Treibstoffen Synthese ZnO Ga2O3 (Ga(1-x) Znx)(N(1-x)Ox) Optische und strukturelle Eigenschaften Co-Katalysator Modifikation Struktur-Aktivitäts-Beziehungen Photokatalytische Produktbildungsraten AG Heiz poster 85 iC4 iC4 - AdCOO Energieeffiziente Abtrennung von CO2 Dr. Andreas Geisbauer (Clariant) Die Bedeutung von AdCOO im iC4 Verbund: Die Verfügbarkeit einer effizienten Abtrenntechnologie stellt die notwendige Voraussetzung dar, um CO2 in ausreichender Reinheit der stofflichen Nutzung zuzuführen. Ziel ist sowohl die Entwicklung von neuartigen flüssigen, sowie modifizierten festen Sorbentien, welche im Vergleich zum Stand der Technik eine energieeffizientere Abtrennung von CO2 ermöglichen sollen. Auf Basis der bisherigen Ergebnislage und grundlegender thermodynamischer Betrachtungen erscheint eine Reduzierung des Energieaufwandes für den Regenerationsschritt auf 2 GJ/t CO2 bei Verwendung fester Sorbentien erreichbar, allerdings steigen auch die Ansprüche an die Prozesstechnik. In der Projektlaufzeit sollen die wesentlichen Grundlagen zur Auslegung eines Prozesskonzeptes für eine anschließende Pilotierungsphase erarbeitet werden. Langzeitziel: Die Minimierung des Wirkungsgradverlustes für Kraftwerksprozesse mit CO2 Abscheidung bei gleichzeitiger Kostenreduktion. AP1: Charakterisierung geeigenter CO2 Fängermoleküle Ermittlung thermodynamischer und kinetischer Daten Basis für rationale Entwicklung optimierter CO2 Fänger AP2: Herstellung geeigneter Trägerpartikel durch unterschiedliche Methoden der Formgebung aus kostengünstigen Rohstoffen AP3: Coating von Trägerpartikeln mit Fängermolekülen zur Herstellung funktionalisierter, fester CO2 Sorbentien AP4: Computational Screening zur Identifikation geeigneter Fängermoleküle, systematisches Screening auf Basis von Kraftfeld‐ und Dichtefunktionaltheorie AP5: Analytik: Charakterisierung der relevanten thermodynamischen und kinetischen Materialparameter, Performance über Vielfachzyklen Post combustion: C + O2 / N2 CO2 / N2 , Partialdruck CO2 ~ 100 – 150mbar Pre combustion: WG‐Shift C + O2 / H2O Synthesegas CO / H2 CO2 / H2 , Druck ~ 20 – 40bar Entwicklung fester Sorbentien Analytik AK Lercher Hochdruck CO2 Adsorptionsanlage zur Simulation von statischen Adsorptionsvorgängen bis 40 bar und max 350° C. Clariant Standorte Heufeld, Moosburg: Entwicklung und Untersuchung geeigneter Verfahren zur Formgebung wie z.B. Sprühtrocknung, Aufbaugranulation aus kostengünstigen Rohstoffen mit hoher Verfügbarkeit. Gezielte Abtrennung von CO2 über N2 mittels sphäroidaler Partikel (Cage Concept) Direktes Einbringen von Zr in die SiO2 Struktur erhöht die CO2 Aufnahmekapazität durch Bildung von monodentatem Carbonat (CO32-) und monodentatem Bicarbonat (HCO3-). Coating: Modifikation geeigneter Trägerpartikel mit CO2 Fängermolekülen, Qualifikation von Fängermolekülen mit niedrigen Dampfdrücken. Vermeidung von Emissionen TUM AK Lercher: Gezielte Synthese hierarchisch geordneter, sphäroidaler Partikel zum Erreichen hoher Aufnahmekapazität sowie hoher Ad- und Desorptionskinetik. Neuartige flüssige Sorbentien Erhöhte Zr Gehalte in den sphäroidalen Partikeln verbessern die Abriebsfestigkeit der Adsorbentien. AdCOO Die Abtrennung von CO2 mit aliphatischen Aminen wird als Benchmark herangezogen, um in Kooperation mit Computational Screening geeignete Fängermoleküle zu bestimmen. In einem Reaktor können Ab- und Desorption flüssiger Systeme untersucht, sowie deren pH - Änderung verfolgt werden. Zusätzlich werden Polymersysteme entwickelt, die Nachteile der aliphatischen Amine lösen sollen. Computational Screening Zielsetzung: Verständnis der grundlegenden Mechanismen und energetischen Beiträge bei der Reaktion von CO2 und Fängermolekülen. Berechnung von Reaktionskinetiken z.B. für die Bildung der Carbamat- / Hydrogencarbonat Spezies. Beispiel: Monoethanolamin ~2.3Å AK Rieger CO2 @ CN3H5: -0.28 eV Computational Screening: Voraussage und Design energetisch optimierter Fängermoleküle über Kraftfeld / DFT – Rechnungen Beispiel: Guanidin Carbamat Bicarbonat AK Reuter Prozesskonzept Eine zentrale Fragestellung des Projektes mit Auswirkungen auf die Entwicklung geeigneter Adsorbentien bezieht sich auf die Suche nach einem entsprechenden Prozesskonzept, mit dem CO2 aus den Rauchgasen von Kraftwerken effizient und nachhaltig abgetrennt werden kann. Aufbauend auf den Erfahrungen von Siemens bei der Entwicklung eines entsprechenden Abtrennverfahrens auf Basis Flüssig-Absorption (PostCap™-Verfahren) konnten vielversprechende Konzepte identifiziert werden. Mit einem Apparate- und Prozessdesign für mögliche Full-Scale-Anlagen und basierend auf ersten Messdaten ausgewählter Adsorbentien wurden Wirtschaftlichkeitsbetrachtungen für Festbett- sowie gestufte Wirbelschichtverfahren als beste Konzepte durchgeführt. Es zeigt sich, dass die Verfahren deutlich verringerte Betriebskosten gegenüber den etablierten Aminwäschen erreichen können – insbesondere jedoch hinsichtlich der Kapitalkosten noch verbessert werden müssen. Die im Kraftwerk zu realisierende Größenordnung der CO2-Abtrennung stellt eine besondere Herausforderung dar. Als besonders relevant für die Wirtschaftlichkeit – und somit bei der zukünftigen Entwicklung fester Sorbentien besonders zu beachten – erweist sich die Abfuhr großer Mengen an Adsorptionswärme oder der Preis des Adsorbens. 86 poster iC4 iC4 - COOMem CO2-Abtrennung mittels Membranen Dr. Christian Anger (Wacker Chemie AG) Das Ziel des Verbundprojekts ist es, neuartige Kompositmembranen zur CO2-Abtrennung zu entwickeln. Kompositmembranen bestehen aus einer Trägermembran mit aufgebrachter Trennschicht und sollten in ihren Eigenschaften bevorzugt durch die Trennschicht dominiert werden. Für dieses interdisziplinäre Vorhaben werden die Kompetenzen der Projektpartner auf ihren jeweiligen Feldern zusammengeführt. Trennschicht (TUM) Bewertung & Pilotanlage (Linde) Trägermembran (WACKER) Membranherstellung & Beschichtung (FhG IGB) Grenzfläche (WACKER & TUM) Modulbau (FhG IGB) Der Fokus des iC4-Projekts COOMem liegt auf: • neuen Materialansätzen zur Gastrennung • Verbesserung bestehender Verfahren • Verbesserung von Effizienz und Kosten bei der CO2Abtrennung Durch Materialentwicklung soll eine • Verbesserung der Selektivität • Erhöhung der Permeabilität erreicht werden. Siliconelastomere Aufbau asymmetrisch poröser Trägermembranen Darstellung CO2-selektiver Trennschichten Ausgehend von schwach Brønsted-sauren Polymeren und verschiedenen Tetraalkylphosphonium-Hydroxiden wurden Anion-funktionalisierte Polymere synthetisiert und hinsichtlich ihrer Filmbildungseigenschaften sowie ihrer CO2-Aufnahmekapazität untersucht. Substanz x y n 1 1 0 0 2 ZH 9 1 2 3 2.2 2 2 4 38.7 1 9 5a 5b - 1 0 0 OCH3 / H 5c OCH3 / OCH3 H/H 6b 6c 1 1 2 N2 2900 260 PVOH Membran asymmetrisch (best value) 2800 2700 TPSE 100 Membran asymmetrisch 7100 700 Darstellung von Siliconelastomeren mittels Polyaddition H/H 6a CO2 Silikonvollfilm Die Gaspermeabilität im Vergleich zu Siliconvollfilmen steigt bei asymmetrischen TPSE Membranen um den Faktor 2,5, Es wurden hochdurchlässige asymmetrisch poröse Trägermembranen auf Siliconbasis entwickelt. Der Vorteil gegenüber konventionellen Membranen ist die intrinsisch hohe Durchlässigkeit von Siliconen. Nur mit thermoplastischen Siliconelastomeren können im Phaseninversionsprozess asymmetrisch poröse Strukturen hergestellt werden. S / S’ Permeabilität [Barrer] OCH3 / H OCH3 / OCH3 Im Fall der Poly(vinylphenol)-basierten Substanzen konnte mittels 13C-FestkörperKernspinresonanzspektroskopie und Infrarotspektroskopie die Bildung eines Carbonat-komplexes als wesentlicher CO2-Absorptions-mechanismus identifiziert werden. Komposit-Flachmembrane aus Polysiloxan-Vollfilmen und 4-8 µm starken Polyelektrolytbeschichtungen zeigen hohe ideale Permeabilitäts-Selektivitäten für CO2. Material Gasflussdichte [L d-1 m2 bar-1] 15 °C 25 °C Selektivität αCO2/N2 15 °C 25 °C CO2 N2 CO2 N2 [P66614][5a] 742 35.0 770 57.0 21.20 13.51 [P66614][5b] 430 28.5 463 35.0 15.09 13.23 [P66614][5c] 385 17.3 487 25.7 22.23 18.95 [P66614][6a] 282 6.50 303 12.2 43.38 24.85 [P66614][6b] 207 4.80 160 5.34 43.13 29.96 [P66614][6c] 199 2.94 347 11.3 67.69 30.71 Aktuellwird wirdweiter weiteran ander der Aktuell mechanischenund undchemischen chemischen mechanischen Stabilitätder derMaterialien Materialiengearbeitet. gearbeitet. Stabilität AmFraunhofer FraunhoferIGB IGBwird wirddas dasMaterial Material Am zurEntwicklung Entwicklungvon vonKompositKompositzur Hohlfasermembranenverwendet. verwendet. Hohlfasermembranen Herstellung von porösen Hohlfaser-Trägermembranen mittels kontinuierlichem Naßspinnen SHPNM zeigt im Vergleich zu TPSE 100 bessere mechanische Eigenschaften und eine verbesserte Temperaturstabilität. Es konnte gezeigt werden, dass mit diesem Material ebenfalls asymmetrisch microporöse Hohlfasern dargestellt werden. Um die chemische Beständigkeit zu verbessern wurde eine Vernetzung mittels Aldehyden etabliert. Eigenschaften TPSE 100 NEU : SHPNM Degradation 180 Schmelzpunkt 133 Schmilzt nicht ! Polymerisation Reaktivextrusion Polymerisation in Lösung 200 Membranperformance Polyelektrolyt (TUM) beschichteter Silikonvollfilm Asymmetrische TPSE Membran L.M. Robeson, J. Membr. Sci. 320 (2008) 390–400 COOMem COOMem TPSE100 in iPrOH/NMP Mw = 120000 g/mol Erprobung von Membranmodulen im Pilotmaßstab Abb.2 Druckgehäuse mit Membranmodul aus TPSETrägermaterial Abb.1 Membranteststand mit Druckgehäuse für die Aufnahme von Membranmodulen im Pilotmaßstab Charakterisierung des TPSE-Moduls Dip-Coating Anlage zur kontinuierlichen Beschichtung von HF-Membranen und Modulbau Prozessbedingungen Feed/Permeat Druck [bara] 1.3 - 7 Temperatur [°C] 25 Feedmenge [Nm3/h] 1-4 Feedgas REM - Aufnahme einer beschichteten HF-Membran N2 • • Abb.3 Schematische Darstellung des Teststandes Exp Fit Abb.4 Herleitung von Druckverlustbeziehungen Abb.5 Bestimmung des mittleren Porendurchmessers des TPSETrägers Ausblick Vermessung von Membranmodulen mit CO2 -selektiver Trennschicht Bestimmung von Mischgaspermeanzen unter prozessrelevanten Bedingungen Membranmodul mit porösen HF-Membranen REM-Aufnahmen einer TPSE-Hohlfasermembran Erste Untersuchung zur Langzeitstabilität der Membran poster 87 iC4 iC4 - COOMeth CO2-Methanisierung: Neue Katalysatoren zur Hydrierung von CO2 zu Methan zur Energiespeicherung Dr. Alexander Zipp (Wacker Chemie AG), Dr. Andreas Geisbauer (Clariant) Abstract: Teilprojekt mit dem Ziel der Entwicklung von Katalysatoren zur effizienten und unstetigen Methanisierung von Kohlendioxid zur Speicherung elektrischer Überschussenergie. Auf Materialbasis der Clariant und Wacker Chemie AG wurden durch die TU München erste Katalysatoren präpariert, untersucht und mit Nickel-basierten Benchmarks verglichen. Auf Basis von Literaturkinetiken wurden von der TUM bereits kinetische Modelle implementiert, die eine Simulation der Reaktionsführung ermöglichen. Bei MAN erfolgten erste Pilotversuche zur Bestimmung der Aktivität der Benchmarks. Von Linde und E.ON wurden die Rahmenbedingungen beleuchtet und verfahrenstechnische Simulationen zum Verfahrenskonzept durchgeführt. Katalysatorentwicklung zur Methanisierung von Kohlendioxid mit dem Ziel zur Speicherung elektrischer Überschussenergie mit bestehender Infrastruktur: Sabatier-Reaktion CO2 + 4 H2 CH4 + 2 H2O RH0 = -253,15 kJ mol-1 Anforderungsprofil für die Entwicklung: Verwertung realer Kraftwerksabgase Verunreinigungen in realen Verbrennungsabgasen vergiftungsresistente Katalysatoren unsteter Anfall von Überschussenergie erfordern kurzfristige Anpassung der Beladung an Verfügbarkeit der Energie lastwechselstabile Katalysatoren gekühlte Rohrbündelreaktoren hohe Exothermie der Methanisierung aus Wärmetönung der Umsetzung resultierende Beanspruchung sowie Gleichgewichtslimitierung gekühlte Rohrbündelreaktoren Darstellung einspeisefertiger Gasqualitäten ohne Abtrennung von Edukten, Nachverdichtung, … Umsetzung stöchiometrischer Mischungen Katalysatorentwicklung Kinetikmessung und Modellierung 100% 80% Entwicklung und Bereitstellung angepasster Trägermaterialien für Katalysatoren ausgehend von hochreiner pyrogener Kieselsäure (WACKER HDK®). 60% 40% 20% Abgeschlossene Arbeiten 0% Optimierung der Trägermaterialien hinsichtlich hydrothermaler Stabilität aufgrund des bei notwendigen Umsätzen hohen Wasserpartialdrucks (s. rechts). vorher nach 7 d vorher nach 7 d vorher nach 7 d unmodifiziert Clariant kommerz. Al2O3 unmodifiziert modifiziert Wacker WACKER HDK® (SiO2) prozentuale Abnahme der spezifischen Oberfläche (BET) nach 7 Tagen bei 100% Wasserdampf, 200 °C (autobar) Clariant stellt für die Methanisierung von Synthesegas etablierte, Ni-basierte Katalysatoren als industriellen Benchmark zur Verfügung. Die Katalysatorpräparation an der TUM wird durch geeignete Trägermaterialien und Beratung unterstützt. Daraus resultierende, erfolgversprechende neue Systeme werden von Clariant aufskaliert zur weiteren Testung im Pilotreaktor von MAN. Verfahren für die Parallelsynthese einer großen Zahl von Katalysatoren für das HighThroughput-Screening (HTS) wurden entwickelt. In enger Kooperation mit WACKER wird aktuell die von WACKER entwickelte und zur Verfügung gestellte HTS-Testanlage optimiert und für Paralleltests eingesetzt. Mit Methoden der Statistischen Versuchsplanung (SVP, DoE) werden signifikante Präparationsparameter erkannt und evaluiert. Die Erkenntnisse bilden das Fundament für eine zielstrebige Optimierung und die Präparation der Katalysatoren. Aktuell konzentrieren sich die Messungen auf Nickel-TrägerKatalysatoren (auf Trägern der Industriepartner). • Erfolgreiche mikrokinetische Vermessung des Benchmark-Katalysatorsystems • Modellierungsansatz mittels LHHW Kinetik wurde erfolgreich angewendet. • Leistungsprofil des Benchmark Katalysators konnte erfolgreich reproduzierbar modelliert werden. Kommende Arbeiten • Vermessung weiterer, im Projektrahmen hergestellter Katalysatoren mit anschließender mikrokinetischer Modellierung. • Detaillierte Charakterisierung der Katalysatorsysteme im Hinblick auf Struktur-Eigenschaftsbeziehungen COOMeth MAN Diesel & Turbo betreibt am Standort Deggendorf eine PilotAnlage zur Methanisierung von Kohlendioxid und Wasserstoff . Verfahrenssimulation: • Gesamtkonzept • Energie- und Massenbilanz • Kostenabschätzung und Dimensionierung Blau: Methangehalt > 92% Variation der GHSV Langzeittest 1500 hrs + mehrere Start / Stops Das System zeichnet sich durch gute Beherrschung der Hotspot Entwicklung aus. Entsprechend der Zielanwendung, der Speicherung von intermittierend verfügbarer Überschußelektrizität, wurde die GHSV zur Simulation von Lastwechseln auf unterschiedlichen Zeitskalen variiiert sowie mehrere Start / Stop Zyklen mit unterschiedlichen Stillstandszeiten durchgeführt. Die unter diesen Bedingungen erhaltene Produktgaszusammensetzung entspricht den Einspeisebedingungen der DVGW für L- Gas-Netze. Das Diagramm zeigt die Ergebnisse unter Verwendung eines Benchmark-Katalysators von Clariant. Pilotversuche Muster des von der TUM neu entwickelten Katalysators werden von Clariant und WACKER LINDE LE zur Verfügung gestellt. In einer designierten Testanlage werden diese auf ihr Verhalten gegenüber Katalysatorgiften untersucht. In Zusammenarbeit mit MAN Turbo und E.on erstellt LINDE LE ein Verfahrenskonzept, Energie und Massenbilanzen. Anhand der von der TUM erstellten Kinetik erfolgt die Dimensionierung der Reaktoren und anschließend die Kostenabschätzung des gesamten Methanisierungsprozesses. E.ON identifiziert Randparameter zur Auslegung der Methanisierung wie: • Die erforderlichen Gasbeschaffenheiten und -reinheiten zur Produkteeinspeisung ins Erdgasnetz. • Identifikation, Bewertung und Spezifikation von CO2-Quellen: Sowohl CO2-Mengen als auch deren Reinheiten werden in erheblichem Umfang die Auslegung und damit die Kosten der CO2-Methanisierung beeinflussen, berücksichtigt werden soll CO2 aus Kraftwerksabgasen und aus Biogasanlagen. Des Weiteren wird E.ON eine techno-ökonomische Bewertung der Gesamtketten durchführen. Je nach Konzept wird die Methanisierung und Nutzung des Methans zu unterschiedlichen Kosten und Erlösen führen. Im Rahmen des Projektes sollen daher entsprechende Anwendungsfälle identifiziert und bewertet werden. Verfahrenskonzept 88 poster DVGW-Forschungsstelle Engler-Bunte-Institut (KIT) Engler-Bunte-Ring 1 76131 Karlsruhe http://www.dvgw-ebi.de/ Speicherung elektrischer Energie aus regenerativen Quellen im Erdgasnetz - H2O-Elektrolyse und Synthese von Gaskomponenten CH4 + 2 H2Og 4 H2 + CO2 Konzept Erneuerbare Energien RH0 = -165 kJ/mol 7 H2 + 2 CO2 C2H6 + 4 H2Og Elektrolyse dynamisch el. Energie (fluktuierend) RH0 = -265 kJ/mol Erdgasnetz H2-Speicher Chemische • In Deutschland sehr gut Energieträger H2 ausgebaut • Große Speicherfähigkeit in Poren- und Kavernenspeichern H2O O2 H2O H2 + ½ O2 Vergasung Entschwefelung Biogas CO/CO2-Quellen Klein: Biogasanlage, BHKW Synthese: CH4 + KW CO2 (CO) Nutzung O2 Speicherbedarf / Wirkungsgrad Quellen: www.bbfm.de, http://www.repotec.at, Badische Zeitung Groß: Industrie, Mittel: Vergasung, Kraftwerke BHKW, Heizwerke Prognostizierter Speicherbedarf schwankt von 0,1 bis 15 TWh für 2020 In Poren- und Kavernenspeichern können ca. 230 TWh gespeichert werden (vgl. Pumpspeicherkraftwerke: 0,04 TWh) Wirkungsgrad der Prozesskette Strom Methan derzeit 55 - 65 % Durch Kopplung mit anderen Prozessen und Abwärmenutzung können Wirkungsgrade erhöht werden 1) 2) 3) 1) Fraunhofer IWES, Windgas Gutachten für Greenpeace Energy, 2011 2) Sauer, Buck, 2009 3) DVGW-Forschungsvorhaben „Energiespeicherkonzepte“, 2011 Arbeitspakete AP1 Elektrolyse Entwicklung eines PEMDruckelektrolyseurs System- und Betriebsoptimierung für eine dynamische Betriebsweise Teststand Fluktuation Windkraft Leistungsgeführt: 5 - 100 % AP2 2-Phasen-Methanisierung Frischgas: a. 10 000 m³/h (NTP) CO2 b. 40 000 m³/h (NTP) H2 Prozessparameter: a. P = 20 bar b. Tein (R1, R2) = 220 °C c. Taus (R1) = 550 °C d. Taus (R2) = 240 °C Produktspezifikation: 98 % a. CH4 b. CO2 <2% <1% c. H2 d. H2O < 100 ppm Betrieb der Anlage: autark Kühlwasser: 7,5 MW (T < 80 °C) Nutzwärme: a. 12 MW (T > 220 °C) b. 9,2 MW (80 °bis 180 °C) R2 = Reaktor 2 S2 = Molekularsieb S1 = Wasserabscheider 1 S3 = Wasserabscheider 2 Fluktuation Photovoltaik CO2-Umsatz bis 70 % in einer Stufe möglich mehrstufige Power-to-Gas Anlage ausgelegt AP3 Ionische Fluide (IL) Langzeitstabilität des Stacks Kein/kaum messbarer Dampfdruck Fluorierte Anionen, wie z. B. BTA, ermöglichen die Synthese von relativ temperaturstabilen ILs Temperatureffekt Bereits bei kleiner Katalysatormassenbeladung cS sind hohe Umsätze von CO2 möglich AP4 Brennwertanpassung Erzeugung von C2-C4 aus regenerativen Quellen HS Beispiel(kWh/m³) Mischung (%) H2 3,5 5 CH4 11,1 85,7 C2H6 19,5 9,3 C3H8 28,1 Randbedingungen Festbettreaktor T= 250-330C p= 1 -2 MPa H2/CO2, ein= 3-8 mod= 100-6000 kg s/m3 MischErdgas H Stack current in A AP5 Systemanalyse Simulation einer „Power to Gas“-Anlage im markt- und erzeugergeführten Betrieb marktgeführt, zentral Methanisierung im 3-Phasen-System Gute Temperaturkontrolle, optimale Wärmeabfuhr, vereinfachter Aufbau erzeugergeführt, dezentral Randbedingungen 800 m³ H2-Speicher als Puffer Elektrolyseur (10 MW) folgt eingespeistem Strom 1:1 Methanisierung (6 MW) folgt langsamer: 10 % Lastwechsel pro 10 min 40..100 % Last 11,5 AP6 Wirtschaftlichkeit Abschätzung des Einflusses fluktuierender Energiebereitstellung auf das „Energiesystem Strom“ Ermittlung der Residuallast auf Basis der ErneuerbarenAusbauszenarien des Netzentwicklungsplans 2013 mit Hilfe historischer Stromnachfrage- und Wetterdaten Residuallast in GW Stack voltage in V Kennlinien für 25 bar bei Tsoll = 60 °C 3-Phasen-Methanisierung Erarbeitung eines Konzeptes zur Methanisierung in der Gasphase (Hordenreaktor) R1 = Reaktor 1 3) Negative Residuallast als Obergrenze für Betriebsdauer A 2023 Onshore 45,7 GW Offshore 10,3 GW PV 55,3 GW › › › B 2023 Onshore 49,3 GW Offshore 14,1 GW PV 61,3 GW › › › B 2033 Onshore 66,3 GW Offshore 25,3 GW PV 65,3 GW › › › C 2023 Onshore 86,0 GW Offshore 17,8 GW PV 55,6 GW › › › poster 89 4. BMBF-Statuskonferenz 08.04.2014 Neue Katalysatoren und Technologien für die solarchemische Wasserstofferzeugung - HyCats Uwe Rodemerck Martin Fait Werner Zinsser Detlef Bahnemann Irina Ivanova Sven Albrecht Dieter Ostermann Durchgeführte Arbeiten: Entwicklung einer Toolbox bestehend aus Katalysatoren, Entwicklungswerkzeugen und Reaktoren Benchmark: Effizienzsteigerung um den Faktor 2 gegenüber dem Stand der Technik Toolbox: Quantenchemische Simulationsmethoden zur Berechnung von Bandlücken, Dotiereffekten, Oberflächenenergien, Phasenstabilitäten Mechanismusauflärung mittels spektroskopischer Methoden, Untersuchungen mit deuteriertem Wasser, Laser-Blitz-Photolyse Hochdurchsatzsynthesen und -aktivitätsmessungen mit einem in einen Syntheseroboter integrierten Schnellscreeningsystem Test von Verfahren zur Produktion von Photokatalysatoren Aktivitätstests von Photokatalysatoren in unterschiedlichen Reaktortypen an Photokatalysator-Suspensionen und – Elektroden solarer Konzentratorteststand SoCRatus (Solar Concentrator with a Rectangular Flat Focus) DOS-Berechnungen TEM an NaTaO3 Experimental shape analysis for pure NaTaO3 nanoparticles: a) TEM bright-field micrograph, b) electron diffraction pattern of circa 100 nm circular area in a indexed according to [010] zone axis, c) STEM annular dark-field micrograph with normal distances of polyhedron facets to center of crystal, d) reconstructed polyhedron shape, e) relative abundance of crystal facets (same color index applies for as in c). e) Secondary electron closeup Entwicklung von Verfahren zur Berechnung von Photokatalysator-Eigenschaften: Phasenstabilitäten, Oberflächenenergien, Bandlücken, Bandlagen, Einfluss von Dotierelementen auf Photokatalysatoren IR-Spektroskopie, Messung von Bandlücken und Flachbandpotentialen, direkte/indirekte Übergänge, Mechanismusuntersuchungen mit deuterierten Reagenzien, Messung der Lebensdauer angeregter Zustände mit Laser-Blitz-Photolyse Entwicklung und Durchführung von robotergestützten, systematischen Photokatalysatorsynthesen, Hochdurchsatzmessungen zur H2-Entwicklung; Synthese von insgesamt 930 Proben, Durchführung von ca. 1300 photokatalytischen Messungen Entwicklung und Test von Verfahren zur Photokatalysator-Produktion Optimierung von Photokatalysatoren durch Variation der Syntheserouten und Cokatalysatoren Verfahren zur Herstellung von Photokatalysator-Elektroden, Effizienzbestimmungen, Systemanalysen Aufbau des Konzentratorteststands „SoCRatus“, solare Versuche an Suspensionen und Elektroden, Berechnung von Einsparungspotentialen Korrelation zwischen Relaxationszeiten aus LaserBlitz-Photolyse und photokatalytischer H2-Aktivität 110 30 100 25 90 80 20 70 15 60 10 50 40 5 Aufsteigende Wasserstoffbläschen aus NaTaO3-Suspension Zusammenfassung: Toolbox wurde entwickelt und wird für weitere Entwicklung genutzt werden Quanteneffizienzen verbessert, aber Ziel nicht erreicht; Stand der Wissenschaft aus der Literatur z.T. noch nicht nachvollziehbar Solarer Konzentratorteststand am DLR liefert Wasserstoff, weitere Tests in Zusammenarbeit mit ODB und H.C. Starck werden derzeit durchgeführt Bare 0,57 % La 0,83 % La 1,11 % La 30 H 2 (µ mol/h) Projektziele: Entwicklung von Photokatalysatoren und Reaktortechnologien für die solare Wasserspaltung [email protected] www.hcstarck.com Christian Jung Michael Wullenkord t1/2 (µ s) Thomas Bredow 90 poster CO2RRECT – Verwertung von CO2 unter Verwendung überwiegend regenerativer Energie Motivation Entwicklung neuer, nachhaltiger Prozesse durch die Vernetzung von chemischer Produktion mit Energiemanagement und Energiespeicherung Evaluierung von Synergien zwischen der Energieerzeugung und chemischen Industrie Reduzierung des CO2-footprint Sicherung der CO Versorgung Ziele von CO2RRECT Dynamische H2O-Elektrolyse für • H2 als chem. Energiespeicher • Lastregulierung H2-Speicherkonzepte Nutzung von Stromspitzen für chemische Prozesse Reaktorentwicklung Katalysatorentwicklung Bewertung des Gesamtprozesses (ökonomisch, ökologisch) Integration in bestehende Wertschöpfungskette Szenarien zur Verfügbarkeit von regenerativen Energien CO2 50 Austretender Molenbruch / % Entwicklung flexibler Prozesskonzepte • RWGS • CO2-Reforming • Ameisensäuresynthese Produktionskonzepte der Zukunft CH4 CO H2 TOfen Stabiler Ni/MgAlOx-Katalysator 40 30 600 20 400 10 0 800 50 mol% Ni 0 20 40 5 mol% Ni 60 80 Temperatur / °C Nutzung regenerativer Energien CO2 als chemischer Rohstoff Katalysatorentwicklung Für die Umsetzung von CO2 in der Trockenreformierung und der RWGS bei Temperaturen über 800 °C wurden unterschiedliche Wege der Katalysatoroptimierung verfolgt An der TU Dresden wurde das Problem der lokalen Unterkühlung, dem Auftreten sogenannter Coldspots, durch Entwicklung eines Siliziumcarbidbasierten Nickel-Katalysators begegnet. Das Fritz-Haber-Institut Berlin hat zusammen mit dem Lehrstuhl für Technische Chemie an der Ruhr-Universität Bochum bzgl. Temperaturstabilität auf Magnesium-Aluminium-Mischoxide gesetzt. Auch hier wurde Nickel als aktive Katalysatorkomponente eingesetzt. BMS und BTS hat einen Katalysator auf Perowskit-Basis entwickelt sowie eine Katalysatorbeschichtungstechnologie für die Heizwendeln. In situ XRD-Untersuchungen zur Stabilität erfolgten am LIKAT Rostock 200 100 Zeit / h Nutzung regenerativer Energie Reaktorentwicklung Vom Heizkonzept bis zum Demonstrator unter Nutzung von Überschussstrom für hohe Temperaturen über 800°C ICVT und Uni Stuttgart: Funktionsprinzip des Reaktors dargestellt am Einzelrohr. Notwendige Wärme durch diskrete O2-Einspeisung gewährleistet. Erwärmung direkt im Reaktionsraum und nicht über Wand. KIT: Entwicklung einer Mikrowellenbeheizung, die eine direkte Beheizung des Katalysators ermöglicht. BTS: Elektrische direkte Beheizung des Reaktionsraums über Heizwendeln. INVITE: Auslegung und Betrieb einer Demonstrationsanlage zum Nachweis der Machbarkeit der direkten elektrischen Beheizung gemäss des Bayer-Konzepts. Inbetriebnahme im Juni 2014: Betrieb von RWGS- und CO2-ReformingKampagnen POX beheizter keramischer Gegenstromreaktor Mikrowellenbeheizung Produktionskonzepte der Zukunft Elektrisch beheizter Monolithreaktor Heizwendel Monolith Die Proton Exchange Membrane (PEM)Elektrolyse von Siemens ist in der Lage, auch starke Lastschwankungen zu folgen, was im Labormaßstab bereits in mehreren Tausend Betriebsstunden gezeigt wurde. Am RWEStandort Niederaußem bei Köln wurde ein Elektrolysecontainer mit 100kW (300kW peak) installiert und im März 2013 in Betrieb genommen. Dauer- und Überlastbetrieb, Dynamik des Lastwechsels und der Wirkungsgrad der Anlage wurden untersucht und bewertet. Mehr als 4 t H2 wurden erzeugt. 6 Heating Elements Ceramic Insulation Gas Sampling Electrical Connections Die Umsetzung der berücksichtigten Konzepte ist sehr kapitalintensiv. Eine Amortisierung kann nur mittel-bis langfristig unter bestimmten Voraussetzungen erreicht werden Wichtiger Beitrag zur wirtschaftlichen Nachhaltigkeit der Konzepte CO2RRECT sind CCU muss in den Emissionshandel berücksichtigt werden. Die Verwendung von Überschussenergie muss von Regulierungskosten entlastet werden Kleine Anwendungen sind bereits mittelfristig an Standorten mit H2 Überangebot interessant . Die betrachteten Konzepte sind sehr flexibel, so dass eine maßgeschneiderte HyCO Versorgung möglich ist. poster 91 Environmental assessment of energy storage systems André Sternberg, André Bardow Chair of Technical Thermodynamics, RWTH Aachen University, JARA|ENERGY Motivation How to compare storage systems with non-equal products? By environmental impact reductions Comparative assessment of storage systems based on life cycle assessment (LCA) Storage systems Direct storage product Pumped hydro storage1 (PHS) Power Gas turbine (η = 35%) Compressed air energy storage1 (CAES) Power Gas turbine (η = 35%) Power Gas turbine (η = 35%) 1 Vanadium redox flow battery (VRB) 2 Products from conversion of fuels Conventional process Battery electric vehicle (BEV) Mobility Gasoline and diesel engines Heat pump & Hot water storage3 Heat Natural gas boiler (η = 100%) 1 MWh Surplus electricity Hydrogen H2 Power H2 Methane H2 Methanol production6 Methanol Chemical Power H2 Syngas production7 Syngas Chemical Power Electrolysis4 Environmental impact of product from storage system Chemical Methane production5 Heat supply8 CO2 supply8 Mobility Steam-Methane-Reforming Fossil natural gas Grid power supply8 Mobility Natural gas based production Steam-Methane-Reforming Environmental impact of product from conventional process8 Combustion of fuel Global warming impact reduction Environmental impact reduction for storage systems Fossil depletion impact reduction Conclusions Environmental assessment: Order of environmental impact reductions: Among Power-to-Fuel: • allows sound and consistent comparison of storage systems 1. Power-to-Heat • Highest environmental impact reductions for direct utilization of hydrogen 2. Power-to-Mobility • accounts for the actual use of the product Further Information André Sternberg RWTH Aachen University Institute of Technical Thermodynamics Schinkelstr. 8, 52062 Aachen, Germany E-Mail: [email protected] Phone: + 49 241 80 95 391 vCard For CO2-using storage systems: 3. Power-to-Power • indicates most promising storage system: Power-to-Heat • Highest environmental impact reductions for utilization of product as chemical feedstock 4. Power-to-Fuel Acknowledgements This work has been carried out within the project “CO2RRECT”. The project (ref. no. 33RC1006B) is funded by the German Federal Ministry of Education and Research (BMBF) within the funding priority “Technologies for Sustainability and Climate Protection – Chemicals Processes and CO2 Utilization”. References 1 P. Denholm and G. L. Kulcinski, Energy Conversion and Management, 2004, 45, 2153 – 2172. 2 M. Metz and C. Doetsch, Energy, 2012, 48, 369 – 374. 3 FIZ Karlsruhe GmBH, Electrical driven heat pumps, Technical report, 2013. 4 F. Schüth, Chemie Ingenieur Technik, 2011, 83, 1984–1993. 5 B. Müller, K. Müller, D. Teichmann and W. Arlt, Chemie Ingenieur Technik, 2011, 83, 2002–2013. 6 L. K. Rihko-Struckmann et. al., Industrial & Engineering Chemistry Research, 2010, 49, 11073–11078. 7 Project report “CO2RRECT” (ref. no. 33RC1006B) 8 PE INTERNATIONAL AG, GaBi 6, Software-System and Database for Life Cycle Engineering., 2013. 92 poster FRAUNHOFER-INSTITUT FüR CHEmISCHE TECHNOlOgIE ICT oxidation Von interkonnektor-beschichtungen in reinem sauerstoff und in wasserdampf bei 30 bar C. geipel, D. Schimanke sunfire GmbH, Gasanstaltstr. 2, 01237 Dresden m. Juez lorenzo, V. Kolarik, V. Kuchenreuther Fraunhofer-Institut für Chemische Technologie ICT, E-Mail: [email protected] e i n l e i t u n g u n d m o t i Vat i o n Versuchsaufbau und experimentelle Vorgehensweise Das BMBF-geförderte Projekt »Sunfire« befasst sich mit Forschung zur Entwicklung einer Versuchsbedingungen 100 % H2O-Dampf und reiner O2, p = 30 bar, T = 850 °C Technologie, um Kohlendioxid (CO2) und Wasser (H2O) mittels erneuerbarer Energie zu Untersuchte Proben RC – µLSM: Roll Coating – La065Sr0,3MnO3 RC – MCF: Roll Coating – MnCo1,9Fe0,1O4 flüssigen Kraftstoffen umzuwandeln. Um eine hohe Effizienz bei der Umwandlung zu gewährleisten, wird zur Aufspaltung des Wasserdampfs in H2 und O2 die HochtemperaturDampfelektrolyse (SOEC) bei Drücken bis zu 30 bar eingesetzt. Dabei werden die Materialien mit Betriebsparametern von 850°C und max. 30 bar extremen Bedingungen Atmosphäre Wasserdampf ausgesetzt, im äußersten Fall Atmosphären aus reinem Sauerstoff (O2) oder aus reinem Wasserdampf (H2O). Grundmaterial ITM Beschichtung RC – µLSM RC – MCF RC – µLSM RC – MCF RC – µLSM RC – MCF RC – µLSM RC – MCF Crofer 22 APU Sauerstoff ZielsetZung ITM Crofer 22 APU Untersuchung des Korrosionsverhaltens ausgewählter InterkonnektorBeschichtungen in O2 und in H2O bei 850 °C und 30 bar Schweißnaht Untersuchte Proben und durchgeführte Versuche. 300 h x x x x 1.000 h x Proben x x x x x Miniatur-Testautoklaven aus Nicrofer 6025 HT zugeschweißt Zusammensetzung der Interkonnektor-materialien. Beitrag zum Verständnis der Degradationsmechanismen und des Einflusses von Druck Beurteilung der Korrosionsbeständigkeit bei den gegebenen systemspezifischen Betriebsbedingungen Material Crofer 22 APU ITM Fe Bal. Bal. Cr 22,0 26,0 Mn 0,42 – Ti 0,08 – Al 0,12 <0,03 Si 0,11 <0,03 Andere La (0,08) (Mo)x, (Ti)y, (Y)xy Versuchsaufbau: Testautoklav im geschlossenen Ofen mit Druck- und Temperaturüberwachung und Wasser-Nachdosierung e r g e b n i s s e – Q u e r s c h l i f f e d e r s c h i c h t e n n a c h a u s l a g e r u n g i n r e i n e m o 2 u n d r e i n e m h 2o b e i 8 5 0 ° c u n d 3 0 b a r RC-mCF + Crofer 22 APU O2 – 1000 h RC-mCF + Crofer 22 APU H2O – 1000 h RC-µlSm + Crofer 22 APU O2 – 1000 h RC-µlSm + Crofer 22 APU H2O – 300 h RC-µlSm + Crofer 22 APU H2O – 1000 h x2000 RC-mCF + ITm O2 – 1000 h RC-mCF + ITm H2O – 1000 h RC-µlSm + ITm O2 – 1000 h RC-µlSm + ITm H2O – 300 h Oberfläche RC-µlSm + ITm H2O – 1000 h Oberfläche x1000 e l e m e n ta n a ly s e – m a p p i n g Phasenidentifizierung mittels Röntgenbeugung an der Oberfläche der Schicht. RC-mCF + Crofer 22 APU in Sauerstoff 1000 h RC-mCF + Crofer 22 APU in Wasserdampf 300 h Schicht Sauerstoff 1000 h RC-MCF CoCr2O4/CoO∙Cr2O3 RC-µLSM SrCrO4, La0,65Sr0,35MnO3 RC-MCF Co, (FeO)0,099(MnO)0,901 RC-µLSM Sr0,1MnLa0,9O3 Wasserdampf 300 h o o cr Formel Atmosphäre cr Z u s a m m e n fa s s u n g Die RC-MCF Schicht ist in reinem Sauerstoff in ihrer Zusammensetzung beständig. Chrom ist in gleichmäßig verteilter Konzentration in der Schicht zu finden. In Wasserdampf tritt eine Reduktion der Schicht zu metallischem Kobalt auf und mn mn fe RC-µlSm + Crofer 22 APU in Sauerstoff 1000 h co das Gefüge wird grobkörnig. Dagegen ist in Wasserdampf kein Chrom in der fe RC-µlSm + Crofer 22 APU in Wasserdampf 1000 h Schicht zu sehen. In beiden Fällen wächst auf dem Interkonnektor-Material unterhalb der Beschichtung eine Cr2O3-Schicht auf, in Sauerstoff unterwachsen von MnCr2O4. RC-µLSM: in Sauerstoff bildet sich auf der Oberfläche eine nicht zusammenhängende Anhäufung von SrCrO4. Das bedeutet, RC-µLSM kann die Abdampfung von Cr in Sauerstoff weniger unterbinden als RC-MCF. o cr x2000 o cr In Wasserdampf ist Cr in der gesamten Schicht zu finden. La konzentriert sich an der Oberfläche und direkt über der Chromoxidschicht und bildet dort eine zusammenhängende Schicht. An Stellen mit hoher Mn-Konzentration ist kein La zu erkennen. In beiden Fällen wächst auf dem Interkonnektor-Material unterhalb der mn la sr mn la sr Beschichtung eine Cr2O3-Schicht, auf Crofer 22 APU überwachsen mit MnCr2O4 in beiden Atmosphären. poster 93 Material flow network (Umberto) Flow sheet (CHEMCAD) T1 Interaction via transition script 94 poster Innovative Apparate- und Anlagenkonzepte zur Steigerung der Effizienz von Produktionsprozessen – InnovA2 Stephan Scholl Technische Universität Braunschweig | Institut für Chemische und Thermische Verfahrenstechnik www.innova2.de | [email protected] | Langer Kamp 7, D-38106 Braunschweig | Telefon +49 (0) 531 391 - 2780 Stofflicher Transfer Motivation Reale Stoffsysteme Innovative Apparate- und Anlagenkonzepte ermöglichen die Erschließung von Energieeffizienzpotenzialen Fehlende Referenzen als Innovationshemmnis: „Ohne Referenz keine Anwendung, ohne Anwendung keine Referenz.“ Laboranlagen Großanlagen Laborapparate Modellsysteme Großapparate Reale Stoffsysteme Ökologische Bewertung von Maßnahmen zur Steigerung der Energieeffizienz Geometrischer Transfer ⇒ Innovationspipeline für neue Wärmeübertragerbauformen Technikumsapparate A2 Thermoblech-Naturumlaufverdampfer Wasser-Glycerin Gemisch xH2O = 0,71 molH2O/molges pBA = 200 mbar TU München Uni Paderborn Uni Kassel HSU Hamburg Eintrittsgeschwindigkeit [m/s] 0,07 Laboranlagen an Universitäten 0,05 0,04 0,03 536 447 358 268 0,02 179 0,01 0 89 20 40 60 80 100 120 140 A3 Kondensation an mikrostrukturierten Rohren A5 Multistream-Kondensatoren 35 4 3 2 iso-Propanol Werkstoff: VA-Stahl p = 1,013 bar 1 16000 18000 20000 Reihe 1 Reihe 2 Reihe 3 22000 Stofflicher und geometrischer Transfer Ergebnisse Technikumsversuche, Linde AG 24000 26000 30 Reibungsdruckverlust ∆pR,Kor Steigerungsfaktor εNußelt 5 Wärmestromdichte q in W/m [deg-engineering.de] 0 Scheinbarer Flüssigkeitsstand [%] TU Braunschweig Verbindende Elemente 20 15 10 5 0 0 2 Stoffsysteme - Reinstoffe - Gemische hs* = 117 % hs* = 77 % hs* = 33 % 0,2 14205 hs* = 100 % hs* = 50 % 0,15 8523 0,1 5682 0,05 2841 0 0 0 5 10 15 Treibende Temperaturdifferenz [K] 20 25 10 15 20 25 Reibungsdruckverlust ∆p R,exp [kPa] 30 35 Identifizierung und Quantifizierung von Verbesserungspotentialen Berücksichtigung von ökonom. und ökolog. Aspekten Stand heute Laboranlagen weiterhin produktiv Technikumsversuche erfolgreich abgeschlossen Ansätze zur Potentialabschätzung etabliert Einbindung der Ergebnisse in Engineering Workflow geklärt Kostenneutrale Verlängerung um 6 bzw. 9 Mon. 11364 Chlorbenzol H/dH = 85,7 AWÜ/ASt = 343 ReEin [-] 0,25 Platteneintrittsgeschwindigkeit [m/s] Charakteristische geometrische Parameter: dhydr, Aeff Technikumsanlagen bei Industrie-Partnern 5 Potentialabschätzung [wieland.de] Datenverdichtung Kombination hom. Modell und het. Wang & Sunden Het. Modell nach Tribbe & Müller-Steinhagen Het. Modell nach Wang & Sunden Homogenes Modell 25 Linde AG Versuchsdurchführung und Auswertung A1 Verdampfung an mikrostrukturierten Rohren 626 ∆T = 7 K ∆T = 8 K ∆T = 10 K ∆T = 12.5 K ∆T = 15 K ∆T = 17.5 K ∆T = 20 K 0,06 A4 ThermoblechKondensatoren 715 Reein [-] 0,08 Strömungsrichtung Ausgewählte Ergebnisse BTS GmbH Projektpartner auf Beschluss des Deutschen Bundestages poster 95 HY-SILP: • Development of a novel, economical and considerate technology for hydroformylation • Prevent formation of high boilers due to the specific solubility of the reactants / products in ionic liquid • Energy and CO2 saving compared with state of the art technology Development of a novel, economical and considerate technology for HYdroformylation with Supported Ionic Liquid Phase (SILP) catalyst Prof. Dr. P. Claus (TU Darmstadt), Dr. K. Dyballa (Evonik Industries AG), Prof. Dr. R. Franke (Evonik Industries AG), M. Friedrich (TU Darmstadt), Dr. H. Hahn (Evonik Industries AG), Dr. M. Haumann (FAU Erlangen), S. Kokolakis (TU Darmstadt), M. Lucas (TU Darmstadt), A. Schönweiz (FAU Erlangen) , S. Walter (FAU Erlangen), Prof. Dr. P. Wasserscheid (FAU Erlangen) Ligands Ionic liquids Hydroformylation • Design of new ligands for SILP technology • Solvent for immobilisation of homogenous ligands on a heterogeneous support • Most important homogenous catalyzed reaction apart from oxidations • Support by computational chemistry (e.g. COSMO-RS)[1] • Long term stability ligands supported on Silica in hydroformylation of technical C4 feed • Consumption of 10 mio. tons oxo products in 2008 worldwide[4] • Special solvation characteristics of ionic liquids shall result in a more selective conversion of complex feeds Graphic is adopted by [2] Concept Supported Ionic Liquid Phase (SILP) catalyst SILP catalyst powder • SILP – building a bridge between heterogeneous & homogenous catalysis • Defined catalyst structures • High activities and selectivities • Modification by ligand design • Easy catalyst retention Graphic is adopted by [3] SILP particle Pore structure Technical equipment Results I • Test equipment for long term stability tests with online analytics • Longterm stability of SILP catalyst system w/o ionic liquid[5,6] • Equipment for catalyst screening of 8 catalysts in the same run • Slightly lower n/iso-selectivity compared to liquid phase • Numbering up of preparation equipment for oxidation sensitive SILP catalysts IL film Results II • High boiling side product fills pores of the support material • Model for pore filling[5,6] in accordance with start-up behavior of conversion tests Conversion over time in ethylene hydroformylation using Rh-SX and Rh-BzP complexes on macroporous SiO2 support; parameter: mcat=2.3g, mRh=0.2wt-%, L/Rh=5, T=80°C, p=20bar, pethylene=1.0bar, pH2=pCO=9.5bar, residence time=30s. Conversion (related to all butenes) over time in continuous gas phase hydroformylation of industrial C4 feedstock using Rh-BzP/SiO2 catalyst material. Parameter: mcat=12.0g, mRh=0.2wt-%, L/Rh=10, T=100-120°C, p=10bar, pbutenes=1.6bar (1.3bar), pbutanes=0.6bar (0.5bar),pH2=pCO=3.9bar (4.1bar) before (and after) variation of syngas/butene ratio from 6 to 8 after 170 h on stream, residence time=48s (43s). [1] Franke et al., Fluid Phase Equilibria 2013, 340, 11-14. [2] CRT Erlangen [3] Winterton et al., Cryst. Eng. Comm. 2006, 8, 742-745. [4] Recent review: R. Franke, D. Selent, A. Börner, Chem. Rev. 2012, 121, 5675-5732 [5] DE 102013207104 [6] A. Schönweiz et al., ChemCatChem 2013, 5, 2955-2963. Homogenous solved catalyst complex 96 poster „Multi-Phase“ Arbeitspakete 1. Entwicklung geeigneter Messtechnik für den Einsatz unter industriellen Bedingungen 2. Aufbau von Versuchsanlagen zur Bestimmung kritischer Messdaten 3. Validierung und Ableitung von Modellen zur Auslegung anhand der Messdaten Erhöhung der Energieeffizienz und Reduzierung von Treibhausgas-Emissionen durch Multiskalenmodellierung von Mehrphasenreaktoren Dr. M. Becker, P. Rollbusch, M. Ludwig, Dr. G. Skillas, Prof. Dr. R. Franke (Evonik Industries AG), Prof. Dr. D. Bothe, Dr. H. Marschall, D. Deising (CSI Darmstadt), Dr. M. Dues, F. Michaux (ILA GmbH), Prof. Dr. U. Hampel, Dr. A. Bieberle, Dr. M. Schubert (HZDR), Prof. Dr. M. Grünewald, N. Abel, L. Schlusemann (Ruhr-Universität Bochum), Dr. P. Jäger, M. Finck (EuroTechnica GmbH), Dr. G. Liebsch (PreSens GmbH), Dr. S. Lüttjohann (Bruker Optik GmbH), Prof. Dr. A. Liese, Dr. D. Selin (ITB, TU Hamburg-Harburg), Prof. Dr. M. Schlüter, M. Bothe, Dr. M. Hoffmann (IMS, TU Hamburg-Harburg), Prof. Dr. M. Wörner, S. Erogan (KIT) 1. Entwicklung Messtechnik 2. Versuchsanlagen 3. Modellbildung Simulation von Einzelblasen und Blasenschwärmen mit Hilfe von Direkter Numerischer Simulation (DNS) Vom HZDR entwickelter Gittersensor Euler-Euler-Simulation einer Technikumsblasensäule DN160, Geschwindigkeitsprofil der Flüssigphase Vom HZDR entwickelter Gittersensor zur Messung radialer Gasgehaltsprofile mean axial liquid velocirty Blasensäule aus Plexiglas®, 3,5m hoch, H/D=12.5 VE-Wassser/N2 Begaser: Lochplatte radial distance Messungen zum Gasgehalt mit Gittersensor an Literaturdaten validiert radial distance DNS & CFD-Simulationen EPIV Messgerät zur Erfassung der Blasengrößenverteilung installiert am DN330 Pilotreaktor im Technikum der Evonik Industries AG Verteilung des Gasgehalts über Querschnitt und Höhe zeigt Einfluss der Begasung Einfluss von Gasgehalt auf Umsatz und Selektivität (Cumol-Oxidation) Blasengrößenverteilungen mit Laserendoskop in Wasser und Cumol vermessen DN160 Blasensäule im Technikum der Evonik Industires AG DN300 Blasensäule im Technikum der Evonik Industires AG Schema des vom HZDR entwickelten Gamma-CT g-Tomograph erfolgreich an Druckreaktor zur Messung von Gasgehalten eingesetzt Montag, 30. Juni Kompartment-Modellierung Blasensäulen auf unterschiedlichen Skalen; Druck beeinflusst Gasgehalt maßgeblich Ausblick • Auswertung der Messdaten der verschiedenen Versuchsreaktoren • Ableitung von verbesserten Modellgleichungen für die Nutzung in 1D/2D- sowie CFD-Modellen • Übertragung auf technischen Prozess und Ableitung von Optimierungspotenzialen • LCA und Bewertung des CO2Einsparpotenzials poster 97 Unsere Technik. Ihr Erfolg. Pumpen Armaturen Service n n Entwicklung eines miniaturisierten, ölfreien CO2-Kompressors mit integriertem, CO2-gekühltem Elektromotorantrieb für CO2-Großwärmepumpen BMBF geförderte Projekte Projektinformationen Budget: BMBF Förderung: ca. 4,8 Mio. € ca. 2,8 Mio. € Projektdauer: Projektstart: 3,5 Jahre 01. Mai 2011 Funktionsweise Wärmepumpe Bei ausschließlicher Förderung durch das BMBF ist auf allen visuellen Formen von Publizitäts- und Informationsmaßnahmen das unten stehende BMBF-Logo zu verwenden. Zusätzlich sollte das Logo des Projektträgers und Förderschwerpunkts mit angegeben sein. Wo vorhanden, kann außerdem das eigene Projektlogo verwendet werden: Eine Wärmepumpe ist eine Maschine, die unter Aufwendung von technischerProjektlogo Arbeit (Wzu) thermische Energie von einer Quel- Logo des Förderschwerpunkts le aufnimmt (Qzu) und diese auf einem höheren Temperaturniveau einem Verbraucher zur Verfügung stellt (Qab). Qab 3 Projektpartner Forschung: Startup-Projekte Traugott Ulrich Gerd Janson 2 Wärmetauscher_1 Drossel Verdichter Wzu Wärmetauscher_2 Institut für angewandte Thermound Fluiddynamik Werner Grundmann Gerd Thiel ITSM Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium Jürgen F. Mayer Fabian Dietmann SAM SAM Lehrstuhl für Strömungsmechanik und Strömungsmaschinen Martin Böhle Sebastian Schulz 4 1 Qzu Funktionsprinzip einer Wärmepumpe Zur Entwicklung einer effizienten Wärmepumpe wird dabei ein wirkungsgradoptimierter Verdichter benötigt. Herausforderungen Die miniaturisierte Bauweise der Maschine bringt neue aerodynamische, fertigungstechnische und konzeptionelle Schwierigkeiten mit sich. Hohe Drehzahl-Drehmoment-Niveaus verlangen die Auslegung eines neuartigen Elektroantriebs. Bedingt durch die ölfreie Funktionsweise müssen bestehende Lagerkonzepte weiterentwickelt werden. Projektplan Das hohe Druckniveau (> 90 bar) und die Miniaturisierung vergrößern den Einfluss von Leckageströmen. Kleine Volumenströme, große Druckverhältnisse und die Verwendung von CO2 als Betriebsmedium in einem transkritischen Prozess erschweren die aerodynamische Konzipierung. Miniaturisiertes Laufradkonzept im Größenvergleich 98 poster Mixed-Matrix-Membranen für die Gasseparation Chemische Prozesse und stoffliche Nutzung von CO2 Motivation Mixed-Matrix-Membranen (MMM) Entwicklung eines neuartigen Membranmaterials zur effizienteren Abtrennung höherer Kohlenwasserstoffe aus Permanentgasen • Einsparung von Energie & Kosten durch Einsatz selektiverer MixedMatrix-Membranen (MMM) • Mögliche Anwendungsbereiche: - Erdgaskonditionierung - Lösungsmittelrückgewinnung - Prozessgasaufbereitung (z.B. Fischer-Tropsch-Synthese) • Trennschicht als Polymermatrix mit integrierten anorganischen Partikeln Poly(octylmethylsiloxan) Poly(dimethylsiloxan) Limitierte Selektivität Gute Verarbeitbarkeit • • • Aktivkohle (Blücher GmbH) Sehr hohe Selektivität Schlechte Verarbeitbarkeit Betrachtetes Beispielsystem: Trennung von n-Butan und Methan Polymer / AKSuspension Fertige MMM nach Vernetzung Produktion von MixedMatrix-Kompositmembranen am HZG: • Größte bisher dokumentierte Fläche einer MMM (120 m²) Beschichtungsrichtung Automatisiertes Filmziehgerät Aufbau zur Herstellung der Membranen im Labormaßstab an der TU Berlin: Stützschicht Polymer/ Aktivkohlesuspension Selektivität n‐C5H12/N2 [‐] Beschichtungsanlage Experimentelle Ergebnisse Selektivität n‐C4H10/CH4 [‐] Herstellung im Labor- & Pilotmaßstab MMM mit POMS 35 pF = 10‐40 bar = 20 °C yF,n‐C4H10 = 0,03‐0,05 pP = 1 bar 30 25 POMS Milestone MMM MMM Batch 1 MMM Batch 2 20 15 0.20 100 pF = 30 bar = 20 °C yF,n‐C5H12 = 0,015 pP = 1 bar 50 0 10 MMM POMS 20 Zeit [d] 1.6 1.4 1.2 = 20 °C 1 0.0 0.1 0.2 0.3 • • • POMS Experiment 15 40 AM . Q . P 10 0.4 Retentat yF,n-C4H10 = 0,01 Kondensat = 20 °C yF,n‐C4H10 = 0,03‐0,05 pP = 1 bar 0 20 40 60 Feeddruck [bar] MMM Einzelgas n-C4H10 MMM Gasgemisch n-C4H10/CH4 POMS Gasgemisch n-C4H10/CH4 1% 6,4 % 3,7% • Gute Übereinstimmung zwischen Modell und Experiment Erfolgreiche Herstellung von Mixed-Matrix-Membranen im Labor- & Pilotmaßstab Identifikation von Einflussfaktoren auf das Trennverhalten Reduzierung der benötigten Energie um 37% durch höhere Selektivität im Vergleich zu reinen Polymermembranen Herstellung eines Membranmoduls PROJEKTKOORDINATION: 0.25 0.30 0.35 0.40 mittlere Fugazität n‐C4H10 [bar] POMS Free Volume Modell Zusammenfassung • 15 POMS Modell 20 mittlere Fugazität n‐C4H10 [bar] Mittl. rel. Abweichung MMM Modell 25 30 Feed VF = 1000 Nm³/h pF = 30 bar F = 20 °C yF,n-C4H10 = 0,05 MMM Experiment Emergieverbrauch [kW] Selektivität n‐C4H10/CH4 [‐] Permeanz n‐C4H10 [Nm³/(m² h bar)] 1.8 PDMS PDMS/AK PDMS/Zeolith 17 Einsparpotential . 30 19 • Selektivität der MMM besser für Polymermatrix aus POMS statt mit PDMS • Entwicklung einer Mixed-MatrixMembran mit höherer Selektivität und ähnlicher Permeanz für n-C4H10 • Nachweis der Langzeitstabilität im Gemisch n-C5H12/N2 150 Permeation Gasgemisch 2 21 0.20 200 0 35 2.2 pF = 10‐30 bar = 20 °C yF,n‐C4H10 = 0,02‐0,04 pP = 1 bar 23 0.40 0.60 0.80 1.00 mittlere Fugazität n‐C4H10 [bar] Mechanistische Modellierung Permeation Einzelgas MMM mit PDMS 25 Langzeitstabilität 250 Filmapplikator 2.4 Idealisierte MMM Struktur (links), REM Aufnahme einer MMM (rechts) Selektivität n‐C4H10/CH4 [‐] • Torsten Brinkmann • E-Mail: [email protected] Helmholtz-Zentrum Geesthacht • Max-Planck-Straße 1 • 21502 Geesthacht Phone +49 (0)4152 87- 2400 • Fax +49 (0)4152 87-4-2400 • www.hzg.de 150 100 50 0 • PDMS POMS MMM POMS / AK • Prozesssimulation mit Aspen Custom Modeler ® für PDMS, POMS und POMS / 20 wt% AK Einsatz einer Mixed-MatrixMembran reduziert die benötigte Energie um 37% bezogen auf PDMS Ausblick • Pilotierung und Tests im industriellen Bypass • Optimierung des Stofftransportmodells und Einbindung in Modulsimulationstools am HZG • Prozessdesign und Wirtschaftlichkeitsprüfung Gefördert durch: GEFÖRDERT GEFÖRDERT VOM: VOM: poster 99 Mit voller Transparenz ans Limit Energieeffizienz-Management und -Benchmarking für die Prozessindustrie Dr. Christian Drumm Bayer Technology Services GmbH, BTS-TD-PDO-PA, [email protected] Ziele Die Steigerung der Energieeffizienz ist ein wichtiger Wettbewerbsfaktor in der chemischen Industrie. Zeitgleich steht die Senkung von Treibhausgasemissionen zunehmend im Fokus nachhaltiger Klimaschutzpolitik. Neben der Identifikation von Maßnahmen zur Effizienzsteigerung ist heute eine der entscheidenden Herausforderungen, den Energieverbrauch sowie die Treibhausgasemissionen in möglichst kurzer Zeit und nachhaltig zu minimieren. Methode STRUCTese unterstützt nachhaltig bei der Steigerung der Energieeffizienz und bei der Reduktion von CO2 Emissionen Das Energiemanagement-System STRUCTese®, das bei Bayer zur kontinuierlichen und nachhaltigen Maximierung von Energieeffizienz in der chemischen Großindustrie entwickelt wurde, bildet die Grundlage im Projekt. STRUCTese® stellt Methoden und Werkzeuge zur Verfügung, die Maßnahmen zur Steigerung der Energieeffizienz identifizieren, steuern und nachverfolgen sowie die kontinuierliche Senkung des Energieverbrauchs ermöglichen. Die Methode ist nach DIN ISO 50001 zertifiziert und geht weit über die Anforderungen hinaus, die an ein Energiemanagementsystem gestellt werden. Projekt Im Rahmen des Projektes wird die Methode zu einem standardisierten, unternehmens- und prozessübergreifenden Managementund Benchmarking-System für Energieeffizienz weiterentwickelt, das die effizientesten Technologien berücksichtigt, die Wissenschaft und Industrie heute kennen. Dabei wird die Methode an Prozessen der industriellen Partnern aus der chemischen Industrie und den Life Sciences validiert. Ergebnisse Im Projekt wird die Methode für Life Science und Batch Prozesse weiterentwickelt Utility Systems Heat integration Benzene Insulation / Illumination 730 kW comp. time ~40s Chloroform 1. Jahr 2. Jahr 3. Jahr Die Methode ermöglicht die transparente Darstellung und Verfolgung der Energieeffizienz über Betriebe, Standorte und ganze Unternehmen. Der kontinuierliche Fokus auf Energieeffizienz macht Energieeinsparungen von über 20% möglich. Partner Dem Betriebspersonal werden moderne Monitoring Werkzeuge zur Visualisierung der Energieeffizienz zur Verfügung gestellt Toluene Oper. Improvem. / Automation 475 kW Acetone 1 bar Benzene 5.1 bar 1.8 bar Feed Number of Measures* 1 bar Chloroform Toluene comp. time ~40s 2.8 bar Acetone 10 bar Feed 200 180 160 140 120 100 80 60 40 20 0 Equipment / Unit Operation Die Methode eignet sich hervorragend für große kontinuierliche Prozesse Der momentane Energieverbrauch wird mehreren theoretischen Energieoptima der untersuchten Anlage gegenübergestellt. Die Abweichung zum Optimum wird mit Hilfe von statistischer Datenanalyse realer Verbrauchsdaten in Verlustkategorien aufgeschlüsselt. Spez. Energieverbrauch kWhPE/ t Produkt STRUCTese fördert neue Technologien wie die Sauerstoffverzehrkathode in der Chloralkali-Elektrolyse 100 poster IL-WIND FK: 01RC1009B www.crt.cbi.uni-erlangen.de Entwicklung IL-basierter Schmierstoffe für Windkraftanlagen Projektleitung: Prof. Dr. P. Wasserscheid Projektkoordinatorin: A. Westerholt, M.Sc. Entwicklungsziel Herstellung eines Schmiermittels basierend auf einer Ionischen Flüssigkeit (IL), welche folgende Eigenschaften aufweist: • IL IL IL Hoher Viskositätsindex (VI) • IL IL IL Gute Schmierleistung • IL • IL IL • Nicht korrosiv und umweltfreundlich • IL Niedriger Dampfdruck und hohe thermische Stabilität Mischbarkeit mit bestehenden Standardölen IL IL Reduktion von Reibung und Verschleiß durch Schutzschichtbildung Nicht brennbar oder flüchtig IL IL Geringe Temperaturabhängigkeit der Viskosität durch CO2-Zugabe Hohe chemische Stabilität Löslich in Basisöl (PAO, PAG,…) Halogenidfreie Struktur und Synthese Kompatibel mit Standardadditiven (ZnDTP) IL IL IL CO2-Reduktion IL IL IL Ammonium IL → Kein vorzeitiger Anlagenausfall Sulfat IL Phosphat IL zur der → Weniger Verschleiß durch konst. Schmierfilmdicke Ergebnisse Gute Schmierleistung Vermeidet verfrühten Lagerausfall IL IL Steuerung PAO-basierter IL-Wind Schmierstoff IL IL Produktion im Großmaßstab möglich IL Halogenfrei IL IL IL IL CO2 T [°C] • IL IL IL von IL IL Phosphinat IL Verwendung Temperaturabhängigkeit der Viskosität. CO2 IL IL IL VI → VI >>∞100 IL IL Sulfonat VI <100 VI < 100 IL IL Phosphonat M. H. Evans, Materials Science and Technology 2012, 28, 22-23. IL R = Rest IL Reduktion eines typischen Lagerschadens. IL IL Imidazolium llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll IL IL Phosphonium Erhöhung der Lebenszeit der Lager durch IL IL ν [mm2/s] Mögliche Anionen und Kationen IL IL IL IL • CO2-Steuerung der Temperaturabhängigkeit der Viskosität ist schon bei moderaten CO2-Drücken anwendbar Life Cycle Assessment Referenz: Lagerwechsel (Schäden) an den Referenzanlagen 40 % alle 2 Jahre 1. Fall: Wartungszyklus von 3 d/4a → 32% Projektpartner: Durchgeführt von Frau Dr. Kralisch (Friedrich-Schiller-Universität Jena) 2. Fall: Wartungsfrei → 90 % poster 101 Ein neues Verfahren zur Gewinnung von Lignin, Cellulose und Hemicellulose aus biogenem Material mit Hilfe neuartiger ionischer Flüssigkeiten R. Janzon1, B. Saake1, K. Becker2 , H.G. Brendle3, S. Saur4 und W. Kantlehner4 1 Universität Hamburg, Leuschnerstraße 91b, D‐21031 Hamburg 2 Bayer Technology Services GmbH, BTS‐TD‐DP‐DPS, Gebäude B310, D‐51368 Leverkusen & Söhne GmbH & Co. KG, Holzmühle 1, D‐73494 Rosenberg Hochschule Aalen, Institut für Angewandte Forschung, Beethovenstr. 1, D‐73430 Aalen Kontakt: willi.kantlehner@htw‐aalen.de 3 J. Rettenmaier Fazit Einleitung Ein neues energie‐ und rohstoffeffizientes Aufschlussverfahren ist in der Entwicklung, welches es ermöglicht Faserstoffe (FS), Lignin und Hemicellulosen zu gewinnen. Die Aufschlusslösung besteht aus einer ionischen Flüssigkeit (IL; Alkoxymethylen‐ Iminiumsalz) und einem organischen Lösungsmittel. Für den Labormaßstab liegt nach eingehenden Untersuchungen ein erprobtes Verfahrenskonzept vor. Darauf basierend wurden die Aufschlussparameter Temperatur (100‐160°C), Zeit (45‐240 min) sowie die Konzentration der IL (1‐15% bzgl. Aufschlusslösung) für den Aufschluss von industriellen Fichten‐Hackschnitzeln (HS) bei einem Flottenverhältnis von 1:5,5 (HS:Aufschlusslösung) optimiert. Die mittels des IL‐Aufschlusses aus dem Rohstoff gewonnenen Faserstoff‐, Lignin‐ und Hemicellulosenproben zeigt Abb. 1. • Mittels des IL‐Aufschlusses ist eine gute Fraktionierung der Cellulose‐ und Ligninanteile des Holzes möglich. Dies zeigen die FS‐Ausbeute von 55% sowie die Lignin‐Ausbeute von 26% in Kombination mit den hohen Reinheitsgraden von 90% Glucose bzw. 86% Lignin der jeweiligen Fraktion (Abb. 2). • Bei einer Polydispersität von 4,1 weisen die IL‐Lignine mit Werten unter 6.000 g/mol eine relativ geringe molare Masse auf (Abb. 3). • Nach 21 Tagen sind bei der Vergärung der Hemicellulosen‐Fraktion 277 mL Methan/goTS entstanden und der oTS‐Gehalt wurde von 5% auf unter 1% abgesenkt (Abb. 4). • Verwertungspotentiale: Aufgrund der engen Faserlängenverteilung zeigen die FS gute Filtrationseigenschaften. Für die Lignine ist angesichts der hohen Reinheit und der niedrigen MW‐Werte der Einsatz bei PF‐Harzen und Polyurethanen denkbar. Auf Grundlage der Biogastests ist die anaerobe Vergärung der Hemicellulosen‐Fraktion bzw. der Fällabwässer möglich. Ergebnisse Lignin [%] Hemicellulosen [%] Glucose [%] FS-Ausbeute [%] Lignin-Ausbeute [%] Rohstoff: Fichten‐HS 50 60 Hemicellulosen Lignin (gelöst in Prozessabwässern) Abb. 1: Rohstoff (Fichte‐HS) sowie mittels des IL‐Aufschlusses gewonnene Faserstoff‐, Lignin‐ und Hemicellulosen‐Fraktion MW -Verteilung der Lignine 0,8 40 40 30 20 0 Faserstoff 60 80 Ausbeute [%] Zusammensetzung [%] 100 FaserstoffFraktion LigninFraktion 20 Abb.2: Zusammensetzung (rechte Y‐Achse) und Ausbeute (linke Y‐Achse) der mittels des IL‐Aufschlusses gewonnenen Faserstoff‐ und Ligninfraktion MW = 5.700 g/mol MW /MN = 4,1 0,6 W(log M) 4 0,4 0,2 0,0 10x100 100x100 1x103 10x103 100x103 1x106 molare Masse [g/mol) Abb. 3: Molekulargewichtsverteilung der IL‐Lignine Abb. 4: Methanpotential der beim IL‐Aufschluss anfallenden Hemicellulosenfraktion Das BMBF‐Verbundprojekt „Ein neues Verfahren zur Gewinnung von Lignin, Cellulose und Hemicellulose aus biogenem Material mit Hilfe neuartiger ionischer Flüssigkeiten“ wurde durch den Projektträger DLR gefördert. Das vorliegende Poster wurde auf der 4. Statuskonferenz der BMBF‐Fördermaßnahme "Technologien für Nachhaltigkeit und Klimaschutz ‐ Chemische Prozesse und stoffliche Nutzung von CO2„ am 08.04.2014 in Königswinter vorgestellt. 102 poster Institut für Technische Thermodynamik und Kältetechnik Engler-Bunte-Ring 21 76131 Karlsruhe Absorptionswärmetransformation mit dem Arbeitsstoffpaar Wasser – Ionische Flüssigkeit N. Merkel 1, K. Schaber 1, B. Rumpf 2, J. Rüther 2, T.J.S. Schubert 3, S. Sauer 3, V. Wagner 4 EINLEITUNG Motivation Große, bisher ungenutzte Abwärmeströme im Bereich 80-120 °C Transformation auf ein nutzbares Temperaturniveau Integration in ein Dampfnetz möglich Einsparung von Primärenergie und Absenkung der CO2-Emission Vorteile des neuen Arbeiststoffpaares Wasser – ionische Flüssigkeit (IL) Vollständige Mischbarkeit und niedrige Schmelztemperatur Geringe Korrosivität gegenüber Edelstählen Vernachlässigbarer Dampfdruck der IL – keine Rektifikation notwendig STOFFDATEN VLE-Messungen über FTIR-Spektroskopie Einfluss von Anion/Kation Temperaturstabilität Relevanz der Viskosität t = 80°C Temperatur der IL im AWT TH: Wasserthermostat GZ: Gleichgewichtszelle CP: Kreislaufpumpe D: Demister FTIR: Fourier Transform-Infrarot Spektrometer Nach [1] → Anion entscheidend für Dampfdruckabsenkung TGA bei t = 160°C NETZSCH TG 209; Tiegel: AL2O3; N2-überspült EMIM OAc, DEMA OMs: [1] DEMA OTf: [2] → Unkritisch im AWT EMIM OAc, DEMA OMs: [1] DEMA OTf: [2] SIMULATION Annahmen für die Simulation Stationärer Prozess Vergleich möglicher Lösungsmittel Vernachlässigung von Wärme- und Druckverlusten Dampfdruck des Absorbents vernachlässigbar Isenthalpe Drosselung tHeiz = 90°C tKühl = 25°C Leistungseintrag der Pumpen vernachlässigbar Kondensator und Verdampfer nicht unterkühlt/überhitzt Absorber bzw. Desorber im Gleichgewichtszustand EXPERIMENTE Apparatekonzepte der 4kW-Technikumsanlage Desorption im gefluteten Shell & Plate Apparat Vergleich Simulation – Experimente EMIM OMs tHeiz = 95°C tKühl = 25°C ������ Neukonzipierung eines Platten-Absorbers ����� �� � � � ���� ����� �� � ���� ������ ��� � � ������ �� � � �� � �ξ���� ξ����� � �ξ���� Kapillarnetze zur Verbesserung der Benetzung Spacer aus Lochblech: Strömungsführung und Dampfdurchlässigkeit Zum Patent angemeldetes Flüssigkeitsaufgabesystem FAZIT UND AUSBLICK Ausblick Dimensionierung der Apparatekonzepte für Anlagen > 10 MW Wirtschaftliche und ökologische Gesamtbewertung Fazit Wasser – ionische Flüssigkeit ist ein mögliches Arbeitsstoffpaar für Absorptionskreisläufe PROJEKTPARTNER UND FINANZIERUNG Kontakt: Dipl.-Ing. N. Merkel [email protected] 1) 2) 3) KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft 4) [1]: Römich et al., J. Chem. Eng. Data, 2012,7 (8), pp 2258–2264 [2]: Merkel et al., J.Chem. Eng. Data, 2014, 59 (3), pp 560–570 poster 103 SIT: Nutzung niederkalorischer industrieller Abwärme mit Sorptionswärmepumpensystemen mittels ionischer Flüssigkeiten und thermochemischer Speicher Schneider[a], Blug[a], Wasserscheid[b], König[b], Linder[c], Wörner[c] [a] Evonik Industries AG [b] Universität Erlangen Nürnberg [c] Deutsches Zentrum für Luft- und Raumfahrt e.V. Motivation • Mehr als 56 % der in Deutschland verbrauchten Primärenergie werden für thermische Anwendungen eingesetzt • In der chemischen Industrie ist ein großes ungenutztes Abwärmepotential bei Temperaturen unterhalb von 150 °C verfügbar • Durch die Nutzung von Abwärmeströme kann der Einsatz von Primärenergieträgern substituiert werden Für die effiziente Nutzung niederkalorischer Abwärmeströme werden neue Technologien benötigt Information/ Kommunikation Beleuchtung 2% 3% 31% Mechanische Energie 37% Raumwärme 4% 2% 21% Klima/Prozesskälte Warmwasser Prozesswärme Primärenergieverbrauch nach Anwendungsgebieten in Deutschland (Quelle: BMWi, 2010) Projektziel ” Entwicklung eines neuartigen Verfahrenskonzeptes zur Verwertung niederkalorischer Abwärme für die energetische Nutzung in verschiedenen Anwendungen” • Entwicklung neuer Arbeitspaare basierend auf ionischen Flüssigkeiten (IL) mit deutlichen Vorteilen gegenüber dem Stand der Technik in Bezug auf Korrosion und Kristallisation • Entwicklung thermochemischer Speicher mit hoher Speicherdichte und hoher Leistung • Durchführung von Ökobilanzen zur Bewertung des neuen Verfahrenskonzeptes Prozesschema zur Nutzung industrieller Abwärme mit Hilfe des neuen Verfahrenskonzepts Projektergebnisse Gesamtsystem Absorptionswärmepumpe Wärmespeicher Auslass P-7 TIR I-1 V-5 Wasserdampf Messung V-2 P-6 Taus P-3 Paus Reaktor T W-01 T P-5 P-2 Thermostatbad T P-4 V-1 T Tein TIR 112 TIRCS 113 MFC FIR 114 Pein F Druckhalter Luft 312 111 FIR I-5 Schema des umgebauten Broad-Messstandes im Technikum der Evonik Industries AG in Hanau 2,5 2,2 2,0 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 2,0 1,5 1,0 0,5 0,0 LiBr * IL 1 Prozessschema der bei der seriellen Verschaltungsvariante von Absorptionswärmepumpe und Wärmespeicher 2.700 Wärmeleistung [kW] COP [-] IL 2 Vergleich der Nutzwärmeleistung und des COP von LiBr/Wasser und neuartiger IL/Wasser-Medien in der Broad-Wärmepumpe Thermostatbad Prozessfließbild des chemischen Wärmespeichers in offener Betriebsweise 150 2.900 120 1.700 56 50 805 24 Gas Steinkohle Braunkohle SIT CO2e-Emissionen bei der Bereitstellung von 900 kW Leistung (8000 h/a) unterschiedlicher Energieträger im Vergleich in t/a Sensible Latent Sorption Chemisch SIT 1st generation Wärmespeicherdichten unterschiedlicher Speichersysteme in kWh per m³ Durch das Zusammenspiel von Wärmepumpe und Wärmespeicher kann bei der Bereitstellung von thermischer Energie ein erhebliches CO2e-Reduktionspotential realisiert werden Kontakt: Dr. Matthias Blug [email protected] +492365499640 Projektpartner: Das Projekt SIT FKZ: 01RC1002A wurde gefördert durch das BMBF 104 poster Acrylate Formation from CO2 and Ethylene Mediated by NickelComplexes – Mechanistic Studies Philipp N. Plessow,a,b Andrey Y. Khalimon,b S. Chantal E. Stieber,b Núria Huguet,b Ivana Jevtovikj,b Miriam Bru,b Ronald Lindner,b Michael Lejkowski,b Ansgar Schäfer,a Michael Limbach,b,c* Peter Hofmannb,d* aBASF SE, GVM/M, Ludwigshafen, Germany; bCaRLa, Heidelberg, Germany; SE, GCS/C, Ludwigshafen, Germany; dRuprecht-Karls-Universität Heidelberg, Organisch-Chemisches Institut, Heidelberg, Germany cBASF Introduction Sodium Acrylate Catalytic cycle In an effort to utilize CO2 as a carbon feedstock, considerable work has gone towards realizing the synthesis of acrylates from the coupling of CO2 with ethylene. Promising work by Hoberg and coworkers in 1987 demonstrated the formation of nickelalactones from CO2 and ethylene,1 but only in 2010 was this reaction rendered catalytic by our group.2 Currently, there is considerable interest in determining the mechanism of the cycle and further optimizing the catalysis. High Pressure C2H4 tBu P P tBu P outer sphere t Bu 2 H2 P Ni P O t Bu 2 P Ni H1 H2 P t Bu 2 H1 O O t Bu 2 G‡ = 82 O Ni tBu P Ni P t Bu 2 CO2 G‡ = 110 H1 H2 CO2 2 tBu O ONa P TON = 10.2 tBu t BuOH P ONa Low Pressure CO2 t Bu 2 H1 P Ni P O t Bu 2 CO2 G‡ = 124 G: = 0 NHCP Ligands: H2 1. Computationally determined to have lower barrier for lactone formation 2. May allow for higher TON O G = 15 L CO2 L Ox idati ve Coupli ng L Ni L = L ∆ G: Pt Bu2 P P Ni O O t Bu 2 P P Ni t Bu 2 G=1 t Bu 2 G‡ = 73 O O P +MeI P G‡ = 131 Ni t Bu 2 O OMe ∆G‡ = 73 t Bu 2 t Bu 2 Ni Ni CO2Na Pt Bu2 15 kJ/mol 5 (-7) kJ/mol ∆G‡ (inner sphere): 124 kJ/mol 110 (118) kJ/mol P Ni P t Bu 2 - ∆G = 22 CO2H ∆G = -4 + - CO2Na t Bu 2 - CO2Me ∆G = 21 P P P P OMe Ni ∆G# ~ 104 ∆G = 21 OMe t Bu 2 t Bu 2 Ni-lactone cleavage and exchange with C2H 4 Ni ClSiMe2t Bu NR3 The ligand exchange reaction of either methyl or silyl acrylate with ethylene is endergonic (∆G = 21 kJ/mol) and cannot be observed experimentally. t Bu 2 P P O t Bu 2 O O t Bu 2 P P Ni O P Ni P t Bu 2 O OSiMe2t Bu OSiMe2t Bu t Bu 2 Conclusion and Outlook CO2Me + O t Bu 2 1. MeOTf 2. NR3 1. Pathways to acrylate formation have been established computationally. 2. Possible intermediates and deactivated metal species have been isolated. 3. Experimental and computational investigations of silyl acrylates and esters revealed endergonic ligand exchange with ethylene. 4. The cycle for formation of sodium acrylate has been closed. 5. Demonstrates feasibility of catalysis. G = -95 G = -4 N t Bu OMe O t Bu 2 P t Bu 2 CO2H + Ni G = -22 P P P t Bu 2 P P t Bu 2 +base -Hbase+ -I- +NaOMe -HOMe Isolated intermediates and catalyst deactivation: Acrylic Esters: Alkyl and Silyl Esters I t Bu 2 G = -19 G: = 0 G‡ = 138 G‡ = 75 O kin. (therm.) isomer Three routes to acrylates[4]: 1. Direct formation of acrylic acid • Unfavorable thermodynamically and kinetically[3] • No catalysis 2. Reaction with sodium alkoxides • Strong base, weak Lewis acid • Catalytic reaction; still technical issues[2] 3. Reaction with methyl iodide and subsequently with amine bases • Weak base, strong Lewis acid • Still stoichiometric; several problems[5,6,7] t Bu 2 Ni O N Pt Bu2 Theory: Formation of Acrylates G‡ = 109 O NaOtBu OtBu 2 Ni P O tBu 2 L t Bu 2 2 Ni P O tBu 2 ONa 2 inner sphere t Bu 2 G = 66 G = 15 P O 2 High Pressure CO2 Ni tBu Theory: Coupling of CO2 and Ethylene Two possible mechanisms[4]: 1. Inner sphere: C-C bond formation at Ni • Known in the literature[2,3] 2. Outer sphere: Formation of zwitterionic intermediate •Solvent- and ligand-dependent • Prediction of barriers requires clarification of the mechanism •Different isomers expected for substituted olefins •Problem is studied experimentally 2 Isolated potential intermediates: Ni t Bu 2 Computational Details All geometries were optimized at the BP86/def2-SV(P) level of theory. Gas-phase free energies were obtained based on single-point energies at the RPA@PBE/def2QZVPP level of theory. Free energies in solution (THF) were obtained by adding solvation free energies calculated with COSMO-RS, and the parameterization for BP86/def-TZVP (reference state: T = 298.15 K; χ = 0.1). All calculations were carried out with TURBOMOLE. References [1] Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y. H. Angew. Chem. Int. Ed. Engl. 1987, 26, 771. [2] Lejkowski, M. L.; Lindner, R.; Kageyama, T.; Bódizs, G. É.; Plessow, P. N.; Müller, I. B.; Schäfer, A.; Rominger, F.; Hofmann, P.; Futter, F.; Schunk, S. A.; Limbach, M. Chem. Eur. J. 2012, 18, 14017. [3] Graham, D. C.; Mitchell, C.; Bruce, M. I.; Metha, G. F.; Bowie, J. H.; Buntine, M. A. Organometallics 2007, 26, 6784. [4] Plessow, P. N.; Schäfer, A.; Limbach, M.; Hofmann, P. Submitted. [5] Bruckmeier, C.; Lehenmeier, M. W.; Reichardt, R.; Vagin, S.; Rieger, B.; Organometallics 2010, 29, 2199. [6] Lee, S. Y. T.; Cokoja, M.; Drees, M.; Li, Y.; Mink, J.; Herrmann, W. A.; Kuehn, F. K. ChemSusChem 2011, 4, 1275. [7] Plessow, P. N.; Weigel, L.; Lindner, R.; Schäfer, A.; Rominger, F.; Limbach, M.; Hofmann, P. Organometallics 2013, 32, 3327. Acknowledgements The presenting authors work at CaRLa of Heidelberg University, which is co-financed by the University of Heidelberg, the State of Baden-Württemberg and BASF SE. Support from these institutions and financial support from the BMBF (Chemische Prozesse und stoffliche Nutzung von CO2 : Technologien für Nachhaltigkeit und Klimaschutz, grant 01RC1015A) is gratefully acknowledged. poster 105 Catalytic Formation of Sodium Acrylate from Carbon Dioxide and Ethylene Núria Huguet,1 Ivana Jevtovikj,1 Chantal Stieber,1 Andrey Khalimon,1 Alvaro Gordillo,1 Miriam Bru,1 Ronald Lindner,1 Piyal Ariyananda,1 Takeharu Kageyama, 1 Philipp N. Plessow,2 Michael Limbach1,2* 2BASF 1CaRLa (Catalysis Research Laboratory), Im Neuenheimer Feld 584, 69120 Heidelberg, SE, Synthesis & Homogeneous Catalysis, GCS/C – M313, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany Introduction Sodium acrylate is an important basic chemical that serves as a monomer for the synthesis of polyacrylates. Those are frequently utilized as superabsorber polymers in many consumer products. The current process utilized for the synthesis of acrylic acid is based on the two-step oxidation of propylene. The direct synthesis of acrylates from CO2 and alkenes is considered to be a dream reaction. In spite of huge effort [1,2], this dream has not come true until recently. [3] Synthesis of Nickelalactones Transformation of Nickelalactones into Sodium Acrylate Almost 40 years ago Hoberg observed that carbon dioxide and ethylene could undergo oxidative coupling reaction to give nickelactones. [1] L L + + Ni(COD)2 CO2 + 15 bar C2H4 30 bar − 78 oC to 40 oC L 90h, THF L: DBU, Py ? Ni O O OH O We have systematically studied the influence of bidentate ligands on the Ni-catalyzed oxidative coupling of ethylene with CO2. C2H4 2 bar Ni(COD)2 R2P + n R2 P Ni P O nR 2 CO2 6 bar PR2 THF 1a - 6a Entry ligand R n Yield 1a-6a (%) 1b-6b (%) 1c-6c (%) 0 1 dppm Ph 0 0 0 2 dppe Ph 1 0 0 65 3 dppp Ph 2 0 0 24 4 dt bpm tBu 0 60 40 0 5 dt bpe tBu 1 35 62 0 6 dt bpp tBu 2 0 97 0 Ph P Ph tBu P tBu P Ph Ph dppp P tBu tBu dtbpp + O n R2 P Ni P R2 + n 1b - 6b R2 R2 P P Ni P P R2 R2 1c - 6c Bulky residues on the phosphorous (e.g. tBu) promote the oxidative coupling and prevent coordinative saturation of the metal as non reactive tetrakis phosphino complexes (1c-6c). Decomposition Nickelalactone pressure. of dtbpm without CO2 Ph P Ph tBu P tBu Ph P Ph tBu P tBu P Ph Ph P tBu tBu P Ph Ph P tBu tBu dppe dtbpe dppm dtbpm ? The transformation of a nickelalactone into the corresponding sodium acrylate complex has been considered as the most challanging step in the catalytic cycle. It has never been reported so far. base (4 equiv.), temperature, PhCl t Bu 2 P Ni P O t Bu 2 O Yield P P C2H4 (30 bar) O t Bu 2 45 oC, PhCl ONa Ni Yield t Bu 2 5a O t Bu 2 ONa P + P Ni t Bu 2 5d Entry Base Time Additives Temperature Yield (%) 1 NaOtBu 0.25 − r.t 90 2 NaHMDS 0.25 − r.t. 87 3 NaOMe 24 − r.t. 50(70) 4 NaOH 24 − 70 oC 0 (70) 5 Na2CO3 72 − 70 oC 0 6 NBu4OMe 72 − 50 oC 0 7 NBu4OMe 72 NaBARF 50 oC 50 8 DBU 72 − 70 oC 0 9 DBU 72 NaBARF 70 oC 0 10 P1 72 − 50 oC 0 11 P1 72 NaBARF 50 oC 50 Strong Brönstedt bases mediate the required reaction in a quick and almost quantitative fashion. The efficiency of the reaction decreases together with the basicity of the base applied. Additional experiments have demonstrated importance of the Lewis acidic cation for the reaction. The sodium acrylate formed can be easily liberated from the corresponding nickel complex by ethylene. The nickel ethylene complex re-starts the catalytic cycle. Catalytic Process Strong bases irreversibly form half-esters with carbon dioxide. [4] ROM CO2 RO O . In order to avoid this side reaction, the one-pot process was divided into OM two stages, varying the pressure of carbon dioxide. Using this procedure a TON of 10.2 ! was obtained, proving the catalytic character of the reaction. [3] Dtbpe Nickel Based complexes The dtbpe ligand is the best candidate to proceed with the rational study of the coupling of ethylene and CO2 due to Nickelactone stability. Indeed, we have been able to characterize some reaction intermediates by X-Ray diffraction. Ni(dtbpe)(ethylene) Ni(dtbpe)(nickelalactone) References [1] Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y.H. Angew. Chem. Int. Ed. 1987, 26, 771-773. [2] Fischer, R.; Langer, J.; Malassa, A.; Walther, D.; Görls, H.; Vaughan, G. Chem. Commun. 2006, 23, 2510-2512. [3] Lejkowski M.; Lindner, R.; Kageyama, T.; Bódizs, G.E.; Plessow, P.N.; Schäfer, A.; Müller, I.B.; Rominger, F.; Hofmann, P.; Futter, C.; Schunk, S.A.; Limbach, M. Chem. Eur. J., 2012, 18, 14017-14025. [4] Behrend, W.; Gattow, G.; Dräger, M. Z. Anorg. Allg. Chem. 1973, 397, 237-246. Acknowledgement NH, IJ, CS, AK, MB, AG, PA, TK, and RL work at CaRLa of Heidelberg University, being co-financed by University of Heidelberg, the state of Baden-Württemberg and BASF SE. Support from these institutions and financial support from the BMBF (Chemische Prozesse und stoffliche Nutzung von CO2 : Technologien für Nachhaltigkeit und Klimaschutz, grant 01RC1015A) is gratefully acknowledged. 106 poster Valeraldehyde from Butane and CO2 – VALERY J. Julisa, D. Krusea, H. Hahna, R. Frankea, A. Duttab, I. Fleischerb, R. Jackstellb, M. Bellerb, S. Fritschic, W. Korthc, A. Jessc [a] Evonik Industries AG; [b] Leibniz-Institut for Catalysis Rostock; [c] University of Bayreuth Motivation CO2-Emissions1) Raw Materials: Price/Availability2) Drastic increase of CO2-Emissions in the last decade CO2 as an abundant C1 building block 3,000 High price fluctuation of petrochemicals 2,500 2,000 Except for butane, increasing prices of C4 Utilization of CO2 Energy efficient processes (e.g. photocatalytic reactions) to avoid CO2Emissions € /mt 34 Gt/a CO2-Emissions in 2011 worldwide Alternative and less expensive feedstock Butadiene Isobutene 1,500 1,000 Butane 500 Year 0 1/1/06 1/1/08 1/1/10 1/1/12 1/1/14 1) Energy data - National and international development, Federal ministry of Economics and Technology, May 2013 2) IHS Chemical / CMAI Valery 1 Valeraldehyde: Important Intermediate for the Synthesis of Plasticizers Based on less expensive raw materials butane and CO2 Energy efficient photocatalytic dehydrogenation of butane to butene Based on butane and syngas (CO/H2) as raw materials High energy input for the dehydrogenation to butene 2 3 Photocatalytic Dehydrogenation Hydroformylation with CO2/H2 Catalytic active system: Ru3(CO)12/LiCl/Ligand L6 Catalytic active system3: 200 Yield [%] 50 40 150 40.0 30 20 16.5 19.7 -21% 165 130 100 14.6 10 0 C12H26 Life Cycle Assessment5) Based on process simulation with ASPEN Plus6) of new process and benchmark: The new process has a reduced impact on all environmental criteria 5) According to ISO 14040 6) Based on sunlight driven synthesis of butene from butane Jennifer Julis, Evonik Industries AG, Marl +49 2365 49-9763 [email protected] Source: CREAVIS – Science to Business (April 2014) Partners: 80 60 82 87 Literature4) New system 0 T [°C] 3) Reaction conditions: 85 °C, 350-500 nm, 7 h, 30 mmol substrate, 0.004 mmol catalyst 4 98 20 0 C8H18 90 40 50 9.4 100 total yield [%] Oxo yield 4) Tominaga et al. Chem. Lett. 1994 [%] Detailed analysis of CO2.saving: with sunlight ecological feasible poster 107 - TECHNISCHE CHEMIE PhotoKat „Entwicklung aktiver und selektiver heterogener Photokatalysatoren für die Reduktion von CO2 zu C1Basischemikalien“ Jennifer Strunk Ruhr-Universität Bochum, 44801 Bochum Ziele des Projekts von den Oxidmaterialien TiO2 und ZnO entwickelt werden. Strukturelle und elektronische Eigenschaften des Katalysators und seiner Oberfläche sollen identifiziert werden, die hohen CO2-Umsatz und hohe Selektivität zu Methanol oder Methan bewirken. Dies wird ermöglichen, gezielt aktive Katalysatoren zu entwickeln und die Reaktionspfade zu diesen Produkten selektiv zu steuern. H O SiO2 H O Ti O or… O TiO2 O Si SiO2 60 Sn(1.0)/TiO2 Sn(1.5)/TiO2 Ti/SBA-15 Au/Ti/SBA-15 self-trapped excitons CH4-Ausbeute [ppm] surface states 20 10 5h 1h 0h 7h 5h 1h XPS 5 5 Relative Intensität x 10 Rel. intensity x 10 Tendenz zur TiOx-Schalenbildung Ti1.0 > Ti2.0 > Ti0.3 > Ti2.7 3000 2000 1000 Ti0.3/SBA Ti1.0/SBA Ti2.0/SBA Ti2.7/SBA 30 60 90 150 120 CO2 c) 1.5 a) Yield CH4 [nmol/h] CH [nmol/h] 4-Ausbeute CO 2 [%] 3.0 b) -2-2 1.0 1.5 4+ Sn 5p Anti-bonding (Sn 5s – O 2p)* + Sn 5p 1.0 0.5 Wenig Ti-O-Si Au/Ti/Zn/SBA-15 0 180 20 40 60 80 100 16 CO2-Reduktion 14 12 10 nur Ti 8 6 O O Zn 4 O 2+ O 2 0.0 200 250 300 350 400 450 500 550 600 650 700 750 800 0 Znacac/T03 T03 ZnCub/T03 Temperatur temperature[K] [K] Titanat/SBA-15 adsorbiert kein CO2[1]. Adsorption von CO2 wird begünstigt [1] durch Zusatz von ZnO . Nur größere ZnO-Cluster erhöhen die [4] Methanausbeute auf Titanat/SBA-15 . Die Anwesenheit isolierter ZnO[4] Spezies senkt die Ausbeute . ZnO-Spezies SiO2 Schematische Darstellung des Graftings von ZnO: Isolierte Spezies oder sehr kleine Cluster werden aus Zn(acac)2 erhalten, größere Agglomerate werden über ein Zinkkuban eingebracht. O 2pz Bonding (Sn 5s – O 2p) 10 8 6 4 2 0 -2 Orbitalwechselwirkungen in SnO; vermutlich ähnliche 2+ Situation in Sn auf TiO2. Führt zur Bildung von Energieniveaus oberhalb des Valenzbandmaximums von TiO2. Bindungsenergie / eV 18 d) 0.5 0.5 Isolierte Sn -Spezies erhöhen Aktivität in der H2-Entwicklung, aber agglomerierte Spezies sind ungünstig. Synergetischer Effect zwischen 4+ [5] isoliertem Sn und Rh . Methylenblauzersetzung 2+ Time[min] [min] Zeit TPD 3.5 1.0 Auf allen Proben wurden 0.01wt% Rh photoabgeschieden. Sn 5s 12 Au/Ti/SBA-15 Viel Ti-O-Si 1.5 Titanat ist mobil in der Photoabscheidung und bildet [3] eine titanreiche Schale um die Goldnanopartikel . In der Wasserstoffentwicklung aus Methanol:Wasser [3] ermöglicht die Titanatschale den Elektronentransfer . Für den Transfer der Löcher werden Ti-O-Si-Bindungen [3] benötigt (Terephthalsäurehydroxylierung) . 4.5 2.0 0.5 0.0 Sn(1.5)/TiO2 unbehandelt Untreated reduziert@250 Reduced@250 reduziert@350 Reduced@350 Au/Zn/Ti/SBA-15 2.0 0.0 5.5 x 10-3 e) 5.0 2.5 H2-Entwicklung (H2O:CH3OH) Sn nm Sn / nm 2.5 Einfluss von ZnO auf CO2-Adsorption und Reaktion 4.0 Si Si 1.0 Relative CPS Photoabscheidung von Gold erhöht [2] die Methanausbeute . Anwesenheit von Gold vermindert Ablagerungen stabiler Kohlenstoff[2] spezies (Formaldehyd) . Zeit [min] SiO2 Si Sn über wohldefinierte Reduktion: Lochfangzentren 7h Zeit 0 Au HOMO 2+ 0h 0 TiO2 O O 1.5 550 4+ 30 2.0 0.0 400 450 500 Wellenlänge nm Wavelength // nm Grafting von Sn verbessert die Ladungstrennung und vermindert Rekombination (PL), beeinflusst aber nicht die Lichtabsorption von [5] TiO2 (UV-Vis DRS, nicht gezeigt) . 4000 H2-Konzentration [ppm] 350 evacuation Evakuierung Verwendung des metallgedichteten Photoreaktors und Reinigungsprozedur in H2O/He (nicht gezeigt) erlauben eindeutige Zuordnung der aus CO2 gebildeten Produkte[2]. Metallisches Gold negativ Sn(0.5)/TiO2 50 Titanreiche Schale Ti O e- D/D+ positiv PL Sn(0.3)/TiO2 Photokatalytische CO2-Reduktion: Einfluss von Gold Metallgedichteter Gasphasenphotoreaktor; (1) CF Flansche, (2) Vakuumfenster, (3) VCR-Anschlüsse, (4) doppelwandiger Mantel, (5) Gitter als Unterlage für Probengefäß, (6) Anschlüsse für Kühlkreislauf. h+ h+ Sn(0.1)/TiO2 Si Si i [1] Schematische Darstellung der Synthese des isolierten Titanats über Grafting von Ti(O Pr)4 auf SiO2 . Schematische Darstellung der isolierten Titanatspezies 40 e- A/A- eVB Sn4+ in der H2-Entwicklung aus H2O:CH3OH O O Ti O LUMO e- e- eh+ Sn induziert besetzte Zustände oberhalb des Valenzbandmaximums von TiO2, die als Lochfangzentren [6] fungieren . Anwesenheit dieser Energieniveaus erhöht deutlich die Aktivität in der [6] Methylenblauzersetzung (UV+Vis) . Proben sind stabil unter Umgebungsbedingungen (bzw. in Luft und [6] Wasser . 1,0 11day Tagafter nachreduction Reduktion 0,8 two weeks nach after reduction 2 Wochen Reduktion 0,6 (C0-C)/C0 H H O O H O or OiPr LB Sn/TiO2 O Intensity // a.u. Intensität a.u. OiPr OH iPrO OiPr Ti Ti Ti Kalzinierung: O O O O OiPr O Ti(OiPr)4 300 °C; N2 Toluol, Ar 500 °C; O2/N2 SiO2 SiO2 PrO ehυ hυ -1 Titanat/SBA-15 hυ E hυ -1 H22-Entwicklung H evolution rate // mmol mmol hh Das Forschungsprojekt hat das Ziel, CO2 photokatalytisch zu C1-Basisprodukten der chemischen Industrie zu rezyklieren. Es sollen gut verfügbare und möglichst robuste Katalysatorsysteme auf der Basis von halbleitenden Oxidkompositen identifiziert werden, die für die Anwendung im großtechnischen Maßstab geeignet sind. Zu diesem Zweck sollen Struktur-Wirkungsbeziehungen ausgehend i Molekulare Photokatalysatoren (am Beispiel von Titanat auf SiO 2) Halbleitermaterialien 0,4 Anatas AnataseTiO TiO 2 2 0,2 Sn(1.5)/TiO Sn(1.5)/TiO22 Anatas Anatse TiO TiO22 red@250 red@250 TiO2 red@250 Sn(1.5)/ Sn(1.5)TiO 2 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Bestrahlungszeit Irradiation time / /hh Schlussfolgerungen Isolierte Titanatspezies auf SBA-15 sind aktiv in der photokatalytischen Reduktion von CO2 zu Methan, obwohl keine Adsorption von CO2 am Titanat gefunden wurde (ohne Bestrahlung). Photoabscheidung von Goldnanopartikeln erhöht die Ausbeute an photokatalytisch gebildetem Methan. Während der Photoabscheidung von Gold sind die Titanatspezies mobil, und sie bilden eine Schale um die Goldnanopartikel. Grafting von ZnO ermöglicht CO2-Adsorption, aber nur agglomerierte ZnO-Spezies erhöhen die Methanausbeute. 4+ Das Grafting von Sn verbessert die Trennung der durch Anregung erzeugten Ladungsträger, beeinflusst aber nicht die Lichtabsorption. 4+ Isolierte Sn -Spezies beschleunigen H2-Entwicklung aus CH3OH:H2O; synergetischer Effekt mit photoabgeschiedenem Rh wird beobachtet. Sn2+ Lochfangzentren auf der TiO2-Oberfläche erhöhen die Aktivität des TiO2 in der Methylenblauzersetzung. Literatur [1] B. Mei, A. Becerikli, A. Pougin, D. Heeskens, I. Sinev, W. Grünert, M. Muhler, J. Strunk, J. Phys. Chem. C 2012, 116, 14318 (und Ref. darin). [2] B. Mei, A. Pougin, J. Strunk, J. Catal. 2013, 306, 184. [3] B. Mei, Ch. Wiktor, S. Turner, A. Pougin, G. van Tendeloo, R.A. Fischer, M. Muhler, J. Strunk, ACS Catal. 2013, 3, 3041. [4] A. Pougin, B. Mei, M. Dilla, I. Sinev, J. Strunk, wird eingereicht bei J. Catal. 2014. [5] S. Chu, A.E. Becerikli, B. Bartlewski, F.E. Oropeza, J. Strunk, wird eingereicht bei Int. J. Hydrdogen Energy 2014. [6] F. E. Oropeza, B. Mei, I. Sinev, A.E. Becerikli, M. Muhler, J. Strunk, Applied Catalysis B: Environmental 2013, 140-141, 51 (und Ref. darin). Finanzierung Gefördert vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Fördermaßnahme: “Technologien für Nachhaltigkeit und Klimaschutz Chemische Prozesse und Stoffliche Nutzung von CO2” (033RC1007A, Nachwuchsgruppe „PhotoKat“) 108 poster Carbon Dioxide Based Acetone Fermentation -COOBAFDr. Marzena Gerdom (Evonik Industries AG, Marl), Dr. Jörg-Joachim Nitz (Evonik Industries AG, Marl), Dr. Stephan Kohlstruk (Evonik Industries AG, Marl), Dr. Wilfried Blümke (Evonik Industries AG, Hanau), Katja Zimmermann (Universität Rostock), Ronny Uhlig (Universität Rostock), Dr. Antje May (Universität Rostock), Dr. Ralf-Jörg Fischer (Universität Rostock), Prof. Hubert Bahl (Universität Rostock), Sabrina Hoffmeister (Universität Ulm), Dr. Frank Bengelsdorf (Universität Ulm), Prof. Peter Dürre (Universität Ulm) Introduction Results I: Vector optimization Acetone is an important raw material in the chemical industry as a solvent and for the syntheses of various products, e.g. poly(methyl methacrylate) (PMMA), also known as acrylic glass. Today, acetone still is mainly produced from fossil resources. However, future challenges require alternative strategies enabling the generation of chemicals and biofuels from renewable resources, such as the usage of a greenhouse gas, carbon dioxide (CO2), as a substrate. Working with many different homoacetogenic microorganisms makes it necessary to create a vector system that can be adapted to a broad range of them. Therefore, we developed a novel modular vector system for homoacetogenic and/or thermophilic microorganisms. This offers the opportunity of easy and fast analysis of the best combinations of origins of replication (GP), promoters upstream of the acetone operon (P) and the acetone operons (AO) themselves. Therefore, we used unique restriction sites in front of each module type, to allow a free exchange with other modules of this type. 1. 2. 3. 4. 5. 3 CO2 + 8 H2 Resistance gene Ori (Gram-positive) Promotor (Resistance gene) Ori Promotor (Gram-negative) (acetone-operon) Acetone + 5 H2O H2 CO2 1. 2. 3. 4. Plasmid CO2 is a less expensive feedstock, available in great quantities, and does not interfere with food production, as glucose and other sugars do. Thus, the aim of the project “CO2-based fermentation of acetone” (funded by the German Federal Ministry of Education and Research (BMBF)) is the development of a fermentation process in which acetogenic bacteria produce acetone by using CO2 as starting material. CO2 fixation and acetone formation with genetically modified acetogenic bacteria strains GPA GPB GPC GPD GPE 1. 2. 3. 4. PA PB PC PD Acetoneoperon AOA AOB AOC AOD Fig. 2: Modular vector system for homoacetogenic and/or thermophilic microorganisms. Each arrow represents one exchangeable module type. The Gram-positive origin of replication is indicated in red, the promoter for the acetone operon is indicated in dark blue and the acetone operon is indicated in light blue. Results II: Formation of acetone with recombinant acetogens Constructed plasmids were transformed either into thermophilic or mesophilic acetogenic strains and subsequently cultivated under autotrophic conditions with H2 and CO2 as substrate. Acetone production was determined in strains harboring a plasmid encoding either the gram positive origin GPA, GPB or GDD, the acetone operons AOA or AOC which were respectively, under the control of promoter PB or PD. Experiments were carried out in flasks (culture/gas vol. 1 : 20) and also in 2 L stirred tank reactors with continuous gas flow (Fig. 3). The mesophilic strains A produced significant more acetone compared to the thermophilic strain (Fig. 3a). Acetone productivity was much higher in 2 L tank reactors in comparison to flasks due to higher mass transfer and continuous supply of feed gas, but also differences between mesophilic and thermophilic (results not shown) were observed. Use of existing waste streams containing CO2 (CO and H2) Acetogens and the Wood-Ljungdahl pathway Acetogenic bacteria (acetogens) are anaerobes that use the Wood–Ljungdahl pathway to (I) synthesize acetyl-CoA by the reduction of CO2 or CO + H2 (II) conserve energy and (III) assimilate CO2 for the synthesis of cell carbon [1]. The Wood-Ljungdahl pathway (Fig. 1) is found in a broad range of phylogenetic classes. Until now, 22 genera are known for harboring acetogens. [2, 3]. Thus, acetogens bear a great potential for the autotrophic production of bulk chemicals and the industrial interest has risen dramatically. Although more than 100 acetogenic bacterial species are isolated and described so far, there is little knowledge about their applicability as production strains. Therefore, we screened different acetogenic strains, enabling the application of a synthetic industrial waste gas stream simulating a potential future biotechnological application. (a) Flask experiments (b) Reactor experiments 2,0 2,5 7 1,20 6 1,00 2,0 1,6 Acetone concentration 3 0,8 0,80 Growth (OD 600) 4 Acetone concentration Growth (OD 600) 5 1,2 1,5 0,60 1,0 0,40 2 0,4 0,5 0,20 1 0,0 0 100 200 300 400 500 600 700 800 Fermentation time (h) growth thermophilic strain acetone thermophilic strain Fig. 1: Wood-Ljungdahl pathway V. Müller, 2003, Appl. Environ. Microbiol.69:6345-6353 0 0,0 0 50 growth mesophilic strain acetone strainstrain acetonemesophilic thermophilic 100 150 200 250 300 0,00 Fermentation time (h) OD acetone acetonemesophilic strain Fig. 3: Growth and acetone production of recombinant thermophilic and mesophilic autotrophic recombinant acetogens with H2 + CO2 as substrate. (a) cultivated in flask (b) cultivated in 2 L stirred tank reactors [1] S. W. Ragsdale, E. Pierce | 2008 | Biochim Biophys Acta. 1784:1873–1898 [2] H. L. Drake, A. S. Gössner, S. L. Daniel | 2008 | Ann N Y Acad Sci. 1125:100-28 [3] B. Schiel-Bengelsdorf, P. Dürre | 2012 | FEBS Lett. 586:2191-2198 Evonik Industries AG, P.-Baumann-Str. 1 | 45772 Marl, Germany Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11| 89081 Ulm, Germany Institute of Biological Sciences, Division of Microbiology, University of Rostock, Albert-Einstein-Str. 3| 18055 Rostock, Germany poster 109 Novel Method towards Green Polycarbonates M. Reckers,1 J. Diebler,1 I. Peckermann,2 C. Gürtler,2 T. Werner1* 1Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock 2Bayer Technology Services GmbH, Bayer Material Science AG, Chempark, 51368 Leverkusen Leibniz-Institut für Katalyse e.V. Introduction Subject The impact of CO2 emission on global warming and the various CO2 management strategies are topic of current social, political as well as scientific discussions.[1] With carbon capture and utilization (CCU) there is a reconsideration of the frequently discussed carbon capture and storage (CCS) strategy, considering CO2 rather as an economical and abundant raw material than as waste.[2] Consequently, the conversion of the CO2 into value added products is widely studied in current research.[3] One promising approach for the utilization of CO2 as a chemical building block is the incorporation into novel polymeric materials. In recent years significant progress has been made in the field of epoxide based polymers.[4] In contrast the use of alternative comonomers such as formaldehyde was more or less neglected and only a very few examples are known.[5] The development of novel CO2 based materials remain a challenging and up-to-date research objective. We focus on the organocatalyzed copolymerization of CO2 and formaldehyde employing paraformaldehyde as the premonomer. Results weight loss CO2 C=O vibration CH2O OAc Aim • IR-signal around 1700 cm‒1 • TGA-MS shows incorporation of CO2 and CH2O carbonyl region Heating to 130 °C (20 K·min–1): • Number average weight loss <5% • Relative mass loss <15% • Oligomeric material confirmed by GPC • Oligomeric material confirmed by MALDI-TOF • Number average weight around 500 g·mol–1 The great advantages of this novel material are on the one hand the theoretically possible high CO2 incorporation of up to 60 wt%. On the other hand, formaldehyde can be obtained from renewable resources. As a result the new polymer is 100% based on renewable ressources and the carbon footprint is expected to be extraordinary low. Initial experiments led to novel oligomeric materials. Furthermore, the effects of the reaction parameters including reaction time, pressure and temperature as well as the nature of the catalyst on the composition and molecular weight distribution were studied. So far the obtained copolymers were characterized by GPC, TGA/MS and IR methods. The properties of the new materials are not fully explored yet, but are subject of current investigations. References [1] a) Positionspapier, Verwertung und Speicherung von CO2, Verband der Chemischen Industrie e.V. (VCI), Gesellschaft für Chemische Technik und Biotechnologie e.V. (DECHEMA), 2009. b) G. A. Olah, G. K. S. Prakash, A. Goeppert, J. Am. Chem. Soc. 2011, 133, 12881–12898. [2] a) M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T. E. Müller, ChemSusChem 2011, 4, 1216–1240. b) A. J. Hunt, E. H. K. Sin, R. Marriott, J. H. Clark, ChemSusChem 2010, 3, 306–322. [3] M. Aresta, A. Dibenedetto, Dalton Trans. 2007, 2975–2992. [4] D. Darensbourg, S. J. Wilson, Green Chem. 2012, 14, 2665–2671. [5] R. K. Sharma, E. S. Olson, Abstr. Pap. Am. Chem. Soc. 2000, 45, 676–680 Leibniz-Institut für Katalyse e.V. Leibniz-Institut für Katalyse e.V. (LIKAT (LIKAT Rostock) Rostock) Albert-Einstein-Str. 2929 A a Albert-Einstein-Str. 18059 Rostock 18059 Rostock www.catalysis.de [email protected] 110 poster Carboxylation of CH-acidic Molecules by Zwitterionic Imidazolium-2-carboxylates Willi Desens, Thomas Werner* Introduction In response to the increasing demand for strategies for reduction of the emission of carbon dioxide and its capture and utilization, recent years have witnessed an increase in organic chemistry research focussing on the use of CO2 as a synthetic building block.[1] The challenge of the direct conversion of carbon dioxide is its thermodynamic stability. Thus, high energy starting materials or activation by catalysts are necessary. One approach to activate CO2 is through nucleophilic attack by lewis bases. Some examples in literature show the formation of carbon dioxide adducts with phosphines,[2] amines[3] and N-heterocyclic carbenes.[4] We are interested in developing a catalytic method for the carboxylation of CH-acidic substrates based on carbenes. Herein, we report our efforts in achieving this goal. Leibniz-Institut für Katalyse e.V. Synthesis of the Carboxylates In general, imidazolium carbenes are easily generated by deprotonating the acidic hydrogen of the imidazolium salts. We followed a known procedure in which potassium hexamethyldisilazane in toluene is used. Further filtration of the resulting mixture and passing through CO2 leads to the resulting carboxylate in high yields (equation 1).[5] Another approach allows to generate the dimethylimidazolium-2-carboxylate under solvent-free conditions in moderate yields (equation 2).[6] Thereby, in a pressure tube dimethylcarbonate reacts with methylimidazole and serves as a methylating and carboxylating agent as well as a base. These carboxylates are mostly stable under elevated temperatures but very sensitive to water.[7] Carboxylation of Acetophenone Imidazolium-2-carboxylates can be utilized as precursors for ligands in metalorganic chemistry, whereas the captured carbon dioxide is released. According to Tommasi et al. the sodium salt of 3-phenylpropionic acid was generated by dimethylimidazolium-2carboxylate starting from acetophenone.[8] As mentioned above we are interested in setting up a catalytic cycle to apply imidazolium Entry R NaX Solvent 1 Bu NaBF4 THF - 2 Bu NaBPh4 THF - carboxylates as catalysts for carboxylation of CH-acidic compounds. Therefore, we carried out the reaction using dimethylimidazolium-2-carboxylate with acetophenone in tetrahydrofuran according to the literature procedure. Unfortunately the desired product was not observed, thus we examined different imidazoliumcarboxylates. Nevertheless, the conversion was still unsuccessful, so we deployed various sodium salts and solvents. Yield [%] 3 Bu NaI THF - 4 Bu NaBF4 CH3CN - 5 Bu NaI CH3CN - 6 Me NaBF4 THF - 7 Me NaBPh4 THF - 8 Me NaBF4 CH3CN - 9 Me NaBPh4 CH3CN - Derivatization of the Corresponding Acid In case of completing a catalytic cycle the relative unstable product must be derivatized to form a more stable compound. To gain access to the desired product and develop an efficient route of derivatization, acetophenone is converted according to Jessop et al. by DBU and carbon dioxide to the corresponding 3-phenylpropionic acid.[9] The -keto acid reacts with NaHCO3 to the more stable sodium salt, which was used as a reference for the analytical data and further derivatization. Attempts to convert the sodium salt to the methyl ester by employing iodomethane as a methylating agent were unsuccessful. Therefore, Meerwein salt was chosen as a stronger methylating reagent and the ester was obtained in moderate yield. Summary Imidazolium-2-carboxylates were readily synthesized either by deprotonating the imidazolium salt and subsequent conversion with carbon dioxide or by direct conversion with dimethylcarbonate. Unfortunately, the synthesis of the 3-phenylpropionate starting from acetophenone was not yet accomplished by stoichiometric amounts of the imidazolium-2-carboxylates. The conversion of acetophenone to the desired product was performed by a two-step synthesis in moderate yields. The conversion of the sodium salt to the corresponding methylester could be achieved in moderate yields by applying Meerwein salt. References and Acknowlegment [1] T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 23652387. [2] Y. Kayaki, M. Yamamoto, T. Ikariya, J. Org. Chem. 2007, 72, 647649. [3] (a) R. Srivastava, D. Srinivas, P. Ratnasamy, Microporous Mesoporous Mater. 2006, 90, 314326; (b) A. Diaf, J. L. Garcia, E. J. Beckman, J. Appl. Polym. Sci. 1994, 53, 857875. [4] H. A. Duong, T. N. Tekavec, A. M. Arif, J. Louie, Chem. Commun. 2004, 112113. [5] H. Zhou, W.-Z. Zhang, C.-H. Liu, J.-P. Qu, X.-B. Lu, J. Org. Chem. 2008, 73, 80398044. [6] B. R. Van Ausdall, J. L. Glass, K. M. Wiggins, A. M. Aarif, J. Louie, J. Org. Chem. 2009, 74, 79357942. [7] J. D. Holbrey, W. M. Reichert, I. Tkatchenko, E. Bouajila, O. Walter, I. Tommasi, R. D. Rogers, Chem. Commun. 2003, 2829. [8] I. Tommasi, F. Sorrentino, Tetrahedron Lett. 2005, 46, 21412145. [9] B. J. Flowers, R. Gautreau-Service, P. G. Jessop, Adv. Synth. Catal. 2008, 350, 29472958. Leibniz-Institut für Katalyse e.V. Leibniz-Institut für Katalyse e.V. (LIKAT (LIKAT Rostock) Rostock) Albert-Einstein-Str. 2929 A a Albert-Einstein-Str. 18059 Rostock 18059 ROSTOCK www.catalysis.de [email protected] poster Department of Interface Chemistry and Surface Engineering Prof. Dr. M. Stratmann 111 Stability of electrocatalysts for electrochemical conversion of carbon dioxide Serhiy Cherevko, Aleksandar R. Zeradjanin, Jan-Philipp Grote, Angel A. Topalov, Anna K. Schuppert, Karl J. J. Mayrhofer Electrocatalysis Group Dr. K.J.J. Mayrhofer Motivation Wind and solar renewable electricity surplus can be applied for conversion of carbon dioxide into hydrocarbons by means of electrolysis. Generated hydrocarbons can be used as fuel or as valuable feedstock for the chemical industry. In the most general case, main electrochemical reactions will be cathodic CO2 reduction and anodic water oxidation. Overall cell efficiency, thus, will depend on the activity of electrocatalysts applied for both reactions. Moreover, economic viability will be evaluated by the original catalyst price and the cell operation time. The latter parameter can be predicted by detailed stability investigation part of which is shown in the current work. 1 Figure caption Dissolution of model nobleFig. metal catalysts For all studied noble metals surface oxidation and reduction results in dissolution; PtX+ PtX+ PtX+ Difference in the dissolution rate between less stable Ru and Pd and more stable Au and Pt is more than an order of magnitude; PtX+ PtX+ PtX+ Onset of oxidation and dissolution do not always coincide. For some metals, e.g. Au, oxidation and dissolution start simultaneously, while for other metals, e.g. Pt, commencement of dissolution is ca. 200 mV more positive than the onset of oxidation; PtX+ Scanning Flow Cell (SFC) ft. ICP-MS The electrochemical cell is based on the principle of a channel electrode. The electrolyte is continuously flowing over the working electrode sitting on a three-dimensional translational stage. The online multi-element analysis at the electrolyte outlet is performed by an ICP-MS connected directly to the SFC. There is a correlation between the onset of oxygen evolution on a metal and stability of the formed oxide; High throughput and combinatorial studies using predefined experimental sequences, based on in-house LabVIEW software for full automation1; a) ICP-MS NexION 300X Time resolved dissolution profiles with low detection limit by ICP-MS (less than 10 ppt); More stable oxides reduce at lower potentials. Thus, position of the cathodic peak is different in each individual case; Reference electrode 50-500mN Counter electrode b) Electrolyte supply Electrolyte outlet Ar Ar Automated synchronization of Silicon sealing electrochemical and downstream Working electrode 2mm analytics datasets; Schematic representation: a) ICP-MS; b) CAD-model illustrating the experimental setup of Local micro-electrochemistry on the SFC2,3, including the electrodes, force sensor, electrode areas below mm²; and indicating gas and electrolyte flow; High throughput screening Max-Planck-Institut für Eisenforschung GmbH Düsseldorf/Germany Ir, Rh, and Pt predominantly dissolve during oxide reduction, while Ru and Pd show very high losses during the oxidation part of a cycle; Oxygen evolution is an additional process responsible for surface depassivation and dissolution; For some metals, such as Ru and Au, dissolution rate significantly increases when potential is moved into the oxygen evolution region, while for other metals, such as Pt and Pd, change in the dissolution rate is insignificant; Ir and Rh show best performance in terms of activity and stability; Parallel activity determination and monitoring of degradation rate with respect to material composition;4 Pt and Pd can be used to stabilize less stable Ir and, especially, Ru. Though, it most likely will effect activity of the active material; Combinatorial screening over several locations (along the composition gradient); Reproducibility tests screening (along x-axis); and Stability analysis of industrially relevant catalysts parameter Screening of various parameters i.e. high temperature measurements; Special preparation of porous high surface area samples for analysis with the SFC using nanoplotter; When potential reaches approximately 1.45 V vs. RHE (redox transition RuO2 /RuO4(c),H+) anodic dissolution becomes severe;5 Morphological pattern has an impact on efficiency of gas evolution and stability; Outlook and Conclusion References [1] Topalov, A. A.; Katsounaros, I.; Meier, J. C.; Klemm, S. O.; Mayrhofer, K. J. J.; Rev. Sci. Instrum. 82 (2011), art. no. 114103, doi:10.1063/1.3660814 [2] Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.; Electrochem. Commun. 13 (2011), 1533–1535, doi:10.1016/j.elecom.2011.10.017 [3] Cherevko, S.; Topalov, A. A.; Katsounaros, I.; Mayrhofer, K. J. J.; Electrochem. Commun. 28 (2013), 44-46, doi: 10.1016/j.elecom.2012.11.040 [4] Schuppert, A. K.; Topalov, A. A.; Savan, A.; Ludwig, A.; Mayrhofer, K. J. J. ChemElectroChem Communications 1 (2013), 358–361, doi:10.1002/celc.201300078 [5] Zeradjanin A.R.; Topalov A.A.; Van Oveermere Q.; Cherevko S.; Chen X.; Ventosa E.; Schuhmann W.; Mayrhofer K.J.J.; RSC Adv. 4 (2014) 9579-9587, doi: 10.1039/c3ra45998e The unique coupling of the mass spectrometry and electrochemistry has already proven to be a powerful technique for the parallel investigation of stability and activity of single- and multicomponent systems. Fundamental issues of electrode material dissolution, both noble and nonnoble, can be addressed on a new level. The example of noble metals shows the sensitivity of detecting dissolution of sub-monolayer amounts. Furthermore, the correlation between the potential and dissolution profile for more complex systems like the gradient PtCu alloys provide a closer look for instance into dealloying phenomena. Additionally, setup was shown to be useful for the analysis of porous samples with industrial relevance. Acknowledgement We acknowledge the Bundesministerium für Bildung und Forschung (Kz:033RC1101A) for financial support. 112 poster Electrochemical CO2 Reduction: High-Throughput Selectivity Investigations by Mass Spectrometry Department of Interface Chemistry and Surface Engineering Prof. Dr. M. Stratmann Electrocatalysis Group Jan-Philipp Grote, Aleksandar R. Žerađanin, Serhiy Cherevko, Karl J. J. Mayrhofer Dr. K.J.J. Mayrhofer Max-Planck-Institut für Eisenforschung GmbH Düsseldorf/Germany Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf, Germany Introduction The strategy for the efficient conversion of CO2 into useful products (methanol, methane…) can have multilateral significance, but still represents a serious scientific and technical challenge. The conversion of CO2 at the electrochemical interface has some distinct advantages: 1) operation at ambient conditions 2) flexible control of reaction rate by the electrode potential 3) rather straightforward separation of the products. The priority task is to design catalytic materials (electrocatalysts) which will allow high rate of electrode reaction with acceptable selectivity and sufficient stability. After coupling a scanning flow cell (SFC) to an inductively-coupled-plasma mass spectrometer (ICP-MS) for stability investigations, we now coupled a differential electrochemical mass spectrometer (DEMS) to the SFC for studying selectivity. [1][2] Electrochemical CO2 reduction High overpotential on anode and cathode Products cathode: Hydrocarbons, Alcohols, Formic acid (0.17 to 0.11V)1 Stability of cathode materials is not reported until now Products anode: O2 (1.23V) Selectivity can be improved Power from renewable energy sources enables us to create a sustainable CO2 cycle for industry. Alloys are promising cathode materials to overcome challenges. By utilizing unused wind energy, additional CO2 emission is prevented and the question about efficiency fades into the background. Motivation • • • • Operation Conditions Voltage/Current Technique Temperature ... • • • • Electrode Material • • • • Composition Morphology Roughness ... Big parameter space in electrochemistry gives several possibilities for optimization, but is also time consuming when standard analysis techniques are utilized Several transient and steady state measurements were performed on different points Non linear dependence of transferred load to measured amount SFC-DEMS Electrolyte pH Ionic concentration Impurities ... 1/16“ steel pipe A combinatorial approach with online analysis is useful, if progress needs to be achieved in a short period of time valve Our setup enables automatic electrolyte exchange, temperature control, easy gas exchange and fast screening of alloys combined with the direct product analysis by mass spectrometry4,5 mass spectrometer pre-pump Good alignment to exponential fit curve Non quantitative method, but qualitative comparison between different measurements is possible Gas chromatography with optimal parameters will give quantitative results Hydrogen evolution CO2 reduction - onset potentials On the one hand competing process to CO2 reduction On the other hand needed to provide adsorbed hydrogen for hydrocarbon production One key-process for efficient CO2 reduction2. Reproducibility Differential electrochemical mass spectrometer (DEMS), with soft ionization method is coupled to the SFC, to allow direct online product analysis down to 10 ppb through a porous PTFE membrane With SFC a high throughput material screening can be performed while the product detection is synchronized with the electrochemical experiments. SFC DEMS system gives many possibilities for characterizing CO2 reduction products Two important factors for finding good catalysts are selectivity and onset potential Local microelectrochemistry for high spatial resolution3 LabVIEW Software for full automation4 Fast response time (1-3sec), sufficient recovery time (120s) Sweep measurement on Cu cathode in CO2 saturated 0.1 M KHCO3 aqueous solution Low noise, even at higher bubble evolution rates Easy and fast determination of onset potentials Acknowledgement We acknowledge the Bundesministerium für Bildung und Forschung (Kz:033RC1101A) for financial support. References [1] Hori, Y., K. Kikuchi, et al. (1985). Chemistry Letters 14(11): 1695-1698. [2] Hori, Y. (2008). Modern Aspects of Electrochemistry. C. Vayenas, R. White and M. Gamboa-Aldeco, Springer New York. 42: 89-189. [3] Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.; Electrochem. Commun. 13 (2011), 1533–1535, doi:10.1016/j.elecom.2011.10.017 [4] Topalov, A. A.; Katsounaros, I.; Meier, J. C.; Klemm, S. O.; Mayrhofer, K. J. J.; Rev. Sci. Instrum. 82 (2011), art. no. 114103, doi:10.1063/1.3660814 [5] Schuppert, A. K.; Topalov, A. A.; Katsounaros, I.; Klemm, S. O.; Mayrhofer, K. J. J., J. Electrochem. Soc. (in press) (2012), doi: 10.1149/2.009211jes Outlook and Conclusion The successful coupling between Scanning Flow Cell and ICP-MS enabled us to investigate the stability of some important electrode materials like ruthenium oxide. The microstructured surfaces lower overpotentials and increase stability and are therefore an interesting candidate for counter electrodes in CO2 reduction. First measurements with the SFC coupled to the DEMS show characteristic behavior during hydrogen evolution and CO2 reduction on copper electrodes. Further investigations will concern the production of hydrocarbons and alcohols on various electrodes during electrolysis in an CO2 saturated electrolyte. The focus will be set on Cu electrodes alloyed for example with Ni, Co, Ag or Au. Special alloy electrodes with a concentration gradient will be used5 Alloys are prepared by Prof. Ludwig, RuhrUniversität Bochum, Institute of Materials, Faculty of Mechanical Engineering poster 113 4. Statuskonferenz der BMBF-Fördermaßnahme "Technologien für Nachhaltigkeit und Klimaschutz - Chemische Prozesse und stoffliche Nutzung von CO2" 08. April 2014, Steigenberger Grandhotel Petersberg, Königswinter FfPaG: „Feste und fluide Produkte aus Gas“ Projektdaten Laufzeit: Projektstart: Fördermittel: Förderkennzeichen: 3 Jahre 01.07.2013 9,2 Mio.€ 033RC1301 Gefördert vom Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2 Konzept FfPaG BMBF Projekt CO2 100 TNm3/h * Zielsetzung • • • • • Energie Pyrolyse (CH4 2 H2 + C) Formulierung Erdgas Konzept Gasaufbereitung + Konzept Pilotanlage Reinheit, Zusammensetzung Formulierung + Erprobung Kohlenstoffprodukt, verfahrenstechnisches Gesamtkonzept Struktur, Partikeldesign Prozessentwicklung und Design Apparatedesign, Feststoffreaktor C-Produkte Kohlenstoff 36 t/h * Gesamtprojektleitung, Hochtemperatur Reaktortechnologie + Katalysatorentwicklung homogene und heterogene Reaktionskinetik, Kohlenstoffbildung, Reaktorkonzept, Herstellung von Testchargen aktive Komponenten, Katalysatorträger Basischemikalien Kraftstoffe CO2 – Aktivierung durch umgekehrte WassergasShiftreaktion (CO2 + H2 ↔ CO + H2O) Alternativverfahren zur H2-Herstellung bei geringem CO2-Footprint und wettbewerbsfähigen Kosten Alternative zu Erdöl (Chemie) Umsetzung von CO2 mit H2 aus der Pyrolyse zu Synthesegas Bereitstellung eines hochwertigen Kohlenstoffträgers für den Hochofenprozess / Kokereiprozess Erschließung einer zusätzlichen, nachhaltigen Rohstoffquelle für die Stahlindustrie und Chemische Industrie Kompetenzen im Konsortium Chemische Industrie Synthesegas Wasserstoff Stahlindustrie Kokskohle Blend Einblaskohle 300.000 t/a * Hochofen * Ideale Werte auf Basis Stöchiometrie Herausforderungen Pyrolyse • • • • • • • Hochtemperaturprozess Energieeintrag Wärmeintegration Gasaufreinigung Spezifikation Kohlenstoff Feststoffhandling Werkstoffe CO2-Aktivierung • • • • • • Aktivmassen Stabilität Prozessführung Wärmeintegration Werkstoffe CO2-Quelle Aufbereitung und Handling des Kohlenstoffproduktes, Beheizungskonzept Kohlenstoffspezifikation, wissenschaftlich-technische Begleitung Reaktionstechnik und Modellierung Reaktormodellierung, alternative Konzepte CO2-Bilanz für die Wasserstoffherstellung (Gleiche Produktionsmengen für Wasserstoff, Koks und Wärme) Branchenübergreifende Zusammenarbeit Stahlindustrie Quelle: TKSE (http://www.de.stratus.com/Uber_Uns/Anwenderberichte/ThyssenKruppSteelAG) Anlagenbau Chemieindustrie Quelle: BASF (http://www.lvz-online.de/region/markkleeberg/basf-verdient-im-2quartal-etwas-mehr/r-markkleeberg-b-120327-0.html) Gaseindustrie • Ziel ca. 50 % CO2-Emissionsreduktion bezogen auf H2-Herstellung • Stoffliche Verwertung des Kohlenstoffs in der Stahlerzeugung Quelle: http://www.lindeus-engineering.com/en/services/construction/index.html Quelle: Siemens http://www.industry.siemens.com/verticals/global/de/chemicalindustries/referenzen/Seiten/referenzen.aspx) • Zusätzliche Nutzung von CO2 in der anschließenden Synthesegasherstellung Kontakt: Dr. Andreas Bode, BASF New Business GmbH, [email protected] Kokerei 114 poster Integrierte Dimethylethersynthese aus Methan und CO2 BASF SE, hte GmbH, Linde AG, Technische Universität München, Max Plank Institut für Kohlenforschung, Fraunhofer-Institut UMSICHT Motivation Ziel des Projektes ist die Entwicklung eines einstufigen, heterogen katalysierten Verfahrens zur Synthese von Dimethylether (DME). Das Verfahren soll stofflich und energetisch in die vorgelagerte Synthesegasstufe integriert sein und die stoffliche Nutzung von CO2 ermöglichen. Integriertes Verfahrenskonzept Katalysator-Screening •Stand der Technik: zweistufige DME Synthese über die Zwischenstufe Methanol •Problem: starke Umsatzlimitierung durch 75 MeOH das thermodynamische Gleichgewicht •Neues Verfahren: einstufige DME Synthe50 se erhöht den Gleichgewichtsumsatz durch 56 % die unmittelbare Folgereaktion zu DME 25 •Benchmark: Vergleich beider Prozesse auf einheitlicher Basis mit kommerziellen p = 50 bar und proprietären Prozesssimulatoren 0 200 250 300 •Ergebnis: signifikante Verbesserung von Temperatur in °C Kaltgaseffizienz und spezifischer CO2 Thermodynamischer Gleichgewichtsumsatz von Wasserstoff für DME- und Methanolsynthese als Funktion der Emissionen pro Tonne DME gegenüber Temperatur bei einem Druck von p = 50 bar. AusgangsStand der Technik punkt sind jeweils stöchiometrische Gemische; für DME • 16- und 48-fach Reaktor zur parallelen Vermessung von Katalysatoren • Test mehrerer hundert Katalysatorformulierungen im Hochdurchsatzverfahren • Optimierung der Katalysatorformulierung und Untersuchung der Prozessbedingungen mittels high throughput Technologie • Untersuchung aussichtsreicher Kandidaten im Hinblick auf Langzeit-Stabilität • Zusätzlich Aufnahme kinetischer Daten 100 Umsatz in % DME 91 % ist ein Synthesegas von H2/CO = 1 und für Methanol von H2/CO = 2 eingesetzt. 1-Liter Anlagen und Slurry Reaktor Reaktionsmechanismus • Herstellung eines Cu-γ-Al2O3 Katalysators mittels selbstinduzierter regelmäßiger Anordnung während des Verdampfungsprozesses • Hohe Aktivität für direkte DME Synthese • Differentialkreislaufreaktor vom Typ Berty • Starke Durchmischung des Reaktionsraums • Verhalten nahe dem Modell des idealen Rührkessels • Gradientenfreie Vermessung der Reaktionskinetik • Kinetik dient als Grundlage für die Reaktorauslegung Novel Concept 1-Liter Anlage im Technikum (BASF) New Catalytic concepts for direct DME synthesis Dr. Petar Djinović, Dr. Heqing Jiang, Dr. Wolfgang Schmidt, Daniel Wendt Jiang, H., et al. (2012) Microporous and Mesoporous Materials 164(0): 3-8. Differentialkreislaufreaktor vom Typ Berty (Linde) Reaktor und Katalysatorkorb (Linde) Zusammenfassung Die durchgeführten Prozesssimulationen zeigen im Vergleich zum Stand der Technik eine signifikante Verbesserung der Kaltgaseffizienz und der spezifischen CO2 Emissionen. Mehrere hundert Katalysatoren für die direkte DME Synthese wurden im Hochdurchsatzverfahren analysiert. Besonders aktive und stabile Formulierungen werden zur Bestimmung kinetischer Daten für die Reaktorauslegung verwendet. Das Langzeitverhalten des Katalysators wird im Festbettreaktor als Formkörper und im Slurry Verfahren als Dispersion unter industriell relevanten Rahmenbedingungen untersucht. • Untersuchung des Umsatzverhaltens in einem Dreiphasenreaktor (Slurry Verfahren) • Verbesserte Wärmeabfuhr und Vermeidung von Temperaturgradienten durch Dispergierung des Katalysators in einem Fluidisierungsmedium • Analyse der Auswirkung von Stofftransportwiderstand und Hydrodynamik auf das Reaktionssystem • Scale-Up auf großtechnischen Slurry Reaktor und Vergleich mit Festbettkonzepten Slurry Reaktor (Fraunhofer UMSICHT) DMEEXCO2 www.apt.mw.tum.de 1-Liter Anlage im Technikum (Linde) • Zwei Festbettreaktoren mit 1-Liter Katalysatorvolumen (Formkörper) • Dimensionierung des Reaktionsrohrs in Anlehnung an die großtechnische Synthese in Rohrbündelreaktoren • Prüfung auf Temperaturspitzen und Anfahrverhalten • Teilweise Rückführung von Produktströmen möglich • Analyse der Langzeitaktivität des Katalysators unter industriell relevanten Prozessbedingungen • Bereits mehrere hundert Stunden Standzeit erreicht, wird fortgesetzt www.chemieundco2.de c APT 2014 www.apt.mw.tum.de