Chemical Processes and Use of CO2: 4th Status Conference

Transcrição

Chemical Processes and Use of CO2: 4th Status Conference
imprint
Imprint
Published by
Federal Ministry of Education and Research (BMBF)
Resources and Sustainability Unit
53170 Bonn, Germany
Orders
In writing to the publisher:
Postfach 30 02 35
53182 Bonn, Germany
or by phone.: 01805 - 262 302
fax: 01805 - 262 303 (0.14 euros / min. from German landline)
[email protected]
Internet: www.bmbf.de
Editing
DLR Project Management Agency/
DECHEMA e.V., Frankfurt am Main
Design/Layout
PM-GrafikDesign, Peter Mück, Wächtersbach
Printed by
Seltersdruck GmbH, Selters
Revision
March 2014
Image credits:
© Front cover: Thinkstock; Page 3: Bundesregierung/Denzel
This publication is distributed free of charge by the German Federal Ministry of Education and Research as part of its public relations work. It is not
intended for commercial sale. Use by political parties, candidates or campaign workers for election campaign purposes is prohibited. This applies
to German national, state and local parliamentary/council elections and
European Parliament elections.
Misuse specifically includes distribution at election campaign events or
political party information booths as well as the insertion, overprinting or
affixing of information or advertising material which promotes political
parties.
Distribution to third parties as election campaign publicity is also prohibited.
Irrespective of when, by what means and in what quantities it reaches the
recipients and even if the timing bears no relationship to an upcoming
election, this publication may not be used in a manner which could be
construed as expressing support by the Federal Government for any
political party.
Technologies for Sustainability and
Climate Protection - Chemical
Processes and Use of CO2
4th Status Conference | www.chemieundco2.de
FORSCHUNG
BILDUNG
2
contents
Contents
Preface3
Dr. Georg Schütte, State Secretary at the Ministry of Education and Research
CONFERENCE KEYNOTES
Chemical Processes and Use of CO2 4
Lothar Mennicken Dr. sc., BMBF
Five Years down the Road – Expectations and Results from the Industry Perspective6
Prof. Michael Röper
Gas Innovation for the Future – Power to Gas8
Prof. Thomas Kolb, head of the DVGW Research Center at the University of Karlsruhe Engler Bunte Institute
Opportunities for Carbon Dioxide Utilization at Bayer10
Dr. Martina Peters, Bayer Technology Services GmbH
RESEARCH PROGRAM PROJECT EXTRACTS
Session A: Chemical Energy Storage12
Session B: Energy-Efficient Processes22
Session C: Use of CO251
EUROPEAN ACTIVITIES
SCOT – Smart Carbon Dioxide Transformation69
National Contact Point (NCP): the Horizon 2020 European Research and Innovation Framework Program
71
M4CO2 – EU Project to Reduce the Cost of CO2 Capture to Below € 15/Tonne73
CyclicCO2R: Production of Cyclic Carbonates from CO2 using Renewable Feedstocks74
POSTERS
77
preface
3
Preface
Energiewende, climate protection
and resource efficiency – all
together are major societal challenges, we have to face. One key
question in this regard is how
chemical processes and techniques can be modified so that
carbon dioxide emissions can be
reduced and the combustion “waste product” (CO2) can
become a “feedstock” for the chemical industry.
Against this background, the Federal Ministry of Education and Research (BMBF) and Siemens organized a
joint seminar on CO2 utilization potential at Petersberg/
Bonn in 2009. International and national representatives
from science and industry who attended the seminar
discussed the potential for protecting the climate
through CO2 mitigation and the use of CO2 as well as
where that potential can be realized and what the associated research needs are. Based on these results, that
same year BMBF announced the call for “Technologies
for Sustainability and Climate Protection – Chemical
Processes and Use of CO2“ under the umbrella of the
FONA (Research for Sustainable Development) program. Since then, BMBF has provided approximately
100 million euros in funding for technologies such as
the use of carbon dioxide in basic chemicals, chemical
storage of renewable energy and industrial energy efficiency in processes, which have high emissions reduction potential. This makes Germany the world leader in
this innovative future technology. Private industry is
providing approximately 50 million euros in additional
funding for these research projects.
Collaboration between industry, SMEs and research
organizations on these projects promotes the development of young scientists and fully exploits the expertise of everyone involved.
At the 4th status conference of the “Technologies for
Sustainability and Climate Protection – Chemical Processes and Use of CO2” funding program at Petersberg,
the research results and questions relating to practical
implementation of innovative research results will be
presented and discussed. The first results show how
R&D and innovation can contribute to strengthen Germany as a business location and to reduce successfully
CO2 emissions from the chemical industry. By making
intelligent use of CO2, we can also expand the resource
base in the chemical industry and provide a long-term
replacement for oil which is a limited resource.
Following the Energiewende and given the associated
goals of saving energy along with the need to store
renewable energy, for example through recycling of
CO2 (Power-to-Gas, Power-to-Fuel), this BMBF research
program also now has a high political priority.
CO2 is not just a “problem”. It could possibly help resolve
the societal challenges associated with climate protection,
the Energiewende and resource efficiency. It is our
intention to continue providing funding for creative
approaches to research and innovation which have a
reasonable likelihood of success and make the expand­
ing base of European and international expertise
accessible.
Dr. Georg Schütte,
State Secretary at the Ministry
of Education and Research
4
conference keynotes
Chemical Processes and C02 Utilization
The 33 (consortium) projects with 157 research schemes
included in the BMBF “Technologies for Sustainability
and Climate Protection – Chemical Processes and Use
of CO2“ program are broadly organized into three thematic clusters:
1. Separation, activation and utilization of carbon
dioxide (CO2) in basic organic chemicals and products which have new properties
2. Development of chemical energy storage for
renewable energy using CO2
3.Increased energy efficiency in the chemical industry based on improved process, equipment and
system technology in scenarios where significant
potential exists to reduce CO2 emissions
Capture, activation and utilization of carbon dioxide
put CO2 in a different perspective. Up until this point,
CO2 has been viewed almost exclusively as a “harmful”
greenhouse gas. Recent R&D results should help change
that perception. Based on our current understanding,
utilization or rather recycling of CO2 will only make a
limited contribution to a reduction in anthropogenic
CO2 emissions, but it has considerable potential for reducing resource consumption and providing a substitute for oil, particularly in the chemical industry.
The goal of the ACER project, for example, is to develop
a catalytic closed-loop process to produce sodium
acrylate from CO2 and ethene. Sodium acrylate is a key
feedstock used in industrial-scale production of superabsorbers (millions of tonnes a year). These products
are used in items such as diapers.
Researchers working in the chemical energy storage cluster are looking at technologies for chemical
storage of renewable energy. Two pathways, currently
under investigation, are the production of hydrogen
and methane (Power to Gas) as well as gasoline, diesel
and kerosene (Power to Fuel, Power to Liquid). (Excess)
electricity generated from renewable resources is used
for water electrolysis to gain hydrogen. In a subsequent
process, hydrogen is processed with CO2 to produce
methane or liquid fuel.
In the “SEE – Storage of Electrical Energy from Renewable Resources in the Natural Gas Grid” project for example, researchers are looking at all of the steps in the
process sequence (electrolysis, methanation and conditioning to adjust the calorific value) used to produce
methane (“synthetic natural gas”). The consortium,
which is coordinated by the DVGW Research Center
at the University of Karlsruhe, at the Engler Bunte Institute, consists of eight partners from science and industry. EnBW Energie Baden-Württemberg, a potential
applicant, is evaluating the economic viability and is
looking at possible sites for demonstrators. An innovative technique for using highly efficient high-temperature steam electrolysis and renewable energy to convert CO2 and H2O into liquid fuel is being developed on
the Sunfire project. Eight partners are involved in this
project with sunfire GmbH acting as coordinator. The
primary objective is to eventually ramp up production
to pre-industrial scale. To promote development in
this field of technology, BMBF is currently funding six
consortium projects in this research program and two
projects in other research programs (Entrepreneurial
PD Dr. sc. Lothar Mennicken
Bundesministerium für Bildung und Forschung (BMBF)
724 Ressourcen und Nachhaltigkeit
Heinemannstraße 2 und 6
53170 Bonn
E-Mail:[email protected]
www.bmbf.de
conference keynotes
Regions, Energy Storage). A flyer is available which contains further information.
A number of possible pathways exist for enhancing
energy efficiency in industrial production. These
enhancements have significant emissions mitigation
potential and they are an important economic factor
as well. Therefore, most of the projects in the program
are in this cluster (14 consortium projects), spanning a
broad range of research activities. The work is directed
at mitigating CO2 emissions and reducing energy and
resource consumption. Initial indications are that this
cluster has the potential to make a very substantial
contribution to goal achievement because chemical
processes are often very energy intensive.
5
These conference proceedings present all of the
projects along with the latest results of the research
program and outline the possible effects of real-world
industrial application. The articles contain a wealth
of very readable information on possible solutions to
today’s pressing problems. No one knows what the future will bring. However, each one of us has an obligation to work towards a more sustainable future, make
more efficient use of our limited resources and avoid
placing unnecessary stress on the environment. Thirty
years from now, science historians or our grandchildren may look back and realize that what we are doing
now set the stage for a change in direction.
Solvents are used in many chemical processes and they
are normally recovered using conventional energy-intensive thermal separation. Technology for producing
membrane modules used in organophilic nanofiltration was developed on the OPHINA (Organophilic Nanofiltration for Energy-Efficient Processes) project. No
heat is needed for the recovery process which is based
on these membranes.
This BMBF research program makes a vital contribution by helping find solutions for the global challenges
of resource scarcity (oil), sustainable energy supply and
climate change. Collaboration between the academic,
research and industrial sectors is intended to accelerate
the pace of technological innovation and promote the
professional development of young scientists. Graduates gain valuable initial experience working with industry and companies have the opportunity to recruit
university graduates.
PD Dr. sc. Lothar Mennicken
6
conference keynotes
Five Years down the Road – Expectations and
Results from the Industry Perspective
Five years have now passed since the announcement
of the Sustainability and Climate Protection Technologies - Chemical Processes and Use of CO2 funding
program. This would appear to be an opportune time
to look back at the genesis and implementation of the
program, reflect on the successes and failures and think
about where we go from here in light of current developments.
Through its involvement in various DECHEMA and
SusChemD committees, the chemical industry was
involved in the development of the funding program
and the content definition right from day one. The
strategy papers “Energy Efficient Chemical Processes”
and “CO2 Utilization” published in the autumn of 2007
along with the joint position paper “CO2 Utilization and
Storage” published by VCI and DECHEMA in October
2008 should be mentioned in this context. The position paper “Evolution of the Resource Base”, which was
jointly published by GDCh, DECHEMA, DGMK and VCI
in January 2010, also identified CO2 utilization as a possible option. The results of the CO2 Utilization Potential
seminar, which was jointly organized in Bonn/Petersberg by Siemens and BMBF in September 2009, played
a role in a later phase of the funding program.
The original announcement was released two years
after the collapse of Lehman Brothers at a time when
energy and raw material prices were falling in the wake
of the worldwide economic crisis. It was clear to everyone involved, however, that these events did not really
call into question the need for sustainable technologies.
Under the circumstances, the fact that the 3 deadlines
for submission of project outlines were spread out over
a 16 month period turned out to be highly beneficial. It
encouraged the formation of large, cross-industry con-
Prof. Dr. Michael Röper
Pegauer Str. 10
67157 Wachenheim
Tel.: 06322 8518
E-Mail:[email protected]
sortiums, and it would appear to be a good approach to
take on future funding programs, because significant
potential for enhanced sustainability is lurking precisely at the boundaries between resource and energy
intensive branches of industry.
Most of the funding program projects have either now
been completed or have reached an advanced stage,
and the results were presented at this status conference. Without jumping ahead, let it be said at this point
that it is now much clearer which pathways to CO2
utilization are technically feasible. Whether development continues on to market introduction depends
on whether the technology is economically viable
compared to existing products. The hurdles tend to be
lower for products which can be phased in step-by-step
in existing applications such as foam without major
investment.
The use of reduction agents such as hydrogen or
methane for the conversion of CO2 to CO or syngas
which in turn can then be converted to hydrocarbons,
methanol or dimethyl ether looks very promising. It
opens the door to high volume products which can be
used as fuel or input materials for the chemical industry. This type of synthesis is also suitable for chemical
energy storage. In order to be competitive in the global
marketplace, the reduction agents used for all of the
options would have to be available on a sustained basis
at very low prices, which is unlikely to be the case in the
foreseeable future.
The CRI methanol plant in Iceland, which has access to
cheap electricity from a geothermal power station, does
however demonstrate the basic feasibility. Nevertheless, with a methanol output capacity of only around
conference keynotes
2,000 t/a, the plant is far from world scale despite an
expansion project which has been announced for the
middle of 2014. CO2 utilization is a future option for
the chemical industry, which will only really become
feasible over the long term, but research is underway
now to assess the potential. This includes unconventional high-risk projects which venture into uncharted territory. The first successful catalytic synthesis of
acrylate from ethylene and CO2 is a welcome outcome
of the BMBF funding program.
Improved resource efficiency in the chemical industry and the resulting avoidance of CO2 emissions were
a major facet of the funding program. The choice of
solution pathways was intentionally left open, enabling
research teams to take a variety of different approaches.
They looked at new types of equipment, methodologies
and process steps which offer greater efficiency. Membrane separation, processes with a smaller CO2 footprint, improved heat exchangers, new ways of using
ionic fluids and unconventional reaction technology
are some examples. Other projects were started to find
ways of reducing the CO2 footprint in hydrogen production and develop computer-based optimization of
chemical equipment and entire production sites. SME
involvement was particularly high on these projects.
DECHEMA provided valuable project support by ensuring the comparability of the CO2-savings potential. If
the projects produce successful outcomes, the likelihood that the results will be used in real-world applications is high in cases where little or no new investment
is needed.
So from the industry perspective, the funding program
has produced results which could be implemented in
the medium term to improve resource efficiency in
chemical production. Also there is now a better understanding of how to assess the potential for CO2
utilization. In deciding where to go from here, careful
consideration must be given to changes in the world
energy market, in particular the increased availability
7
of natural gas. Expansion of CO2 utilization beyond
the current state will only happen if the products have
tangible additional benefits for the customer or offer
a bigger economic incentive than existing resources.
Opportunities are likely to exist in chemical energy
storage and cross-industry utilization of material flows
with resource-intensive branches of industry.
8
conference keynotes
Gas Innovation for the Future – Power to Gas
The goal of Germany’s “Energiewende” policy is to
migrate most of the country’s energy supply to renewables, conserve scarce fossil-based resources and
limit anthropogenic climate change. Policy makers are
taking action to reduce energy-related CO2 emissions.
In line with the public consensus, the decision was also
taken to phase out nuclear power.
bile consumer applications. Storage of heat in thermal
storage systems is largely limited to domestic applications. Chemical energy storage systems have by far the
highest energy densities, and they form the backbone
of our energy supply. The list includes coal stock piles
at power stations, fuel in gasoline tanks and natural gas
in pipelines.
The challenge is daunting. Taking 977 million t CO2
in 1990 as the baseline, the goal is a 55% reduction in
energy-related emissions to 440 million t CO2 by 2030
and a 80-95% reduction to no more than 195 million t
CO2 by 2050. The plan is to increase the proportion of
renewables in the power generation energy mix to 80%.
In Power-to-Gas (PtG) technology, electrical energy is
used for electrolysis of water to produce hydrogen as
a chemical energy source. Oxygen is a valuable natural
byproduct of this process. In a subsequent methanation stage, hydrogen together with carbon dioxide or
carbon monoxide can be converted to synthetic natural gas (SNG). The energy infrastructure consisting of
transportation and distribution networks and underground storage facilities is capable of handling the SNG
along with limited amounts of hydrogen, transport
them over long distances and store them for extended
periods (seasonal).
Integration of an increasing proportion of fluctuating
energy such as solar thermal, photovoltaic and wind
power, which are not suitable for base load generation,
into a stable electricity supply system presents a major
challenge. Solutions are needed for feed-in, distribution and network management. Better ways need to
be found to balance energy supply and demand, and
the efficient use of energy storage systems can make a
major contribution.
Storage capacity, storage time, roundtrip efficiency,
storage losses and the efficiency of storage-related
energy conversion are the main assessment criteria for
energy storage systems. The energy density of the storage medium is another key criterion.
Pumped water is currently the most widely used storage
technology for electricity generation. Electrochemical
storage systems provide power in emergency and mo-
Beyond the transportation and storage functions, PtG
products can be used in a wide variety of energy supply
and industrial applications, and they could make an
important contribution to the energy transition. Examples include re-conversion to electricity in centralized
or distributed CHP systems, condensing boilers in the
heating market, the use of hydrogen and natural gas in
the chemical industry and gas mobility.
At the present time, PtG is not cost competitive. Efficiency enhancements in the various process steps
(particularly electrolysis), optimization of the process
dynamics and material and energy process integration
Prof. Dr.-Ing. Thomas Kolb
DVGW-Forschungsstelle am Engler-Bunte-Institut
des Karlsruher Instituts für Technologie (KIT)
Engler-Bunte-Ring 1
76131 Karlsruhe
Tel.: +49 721 608 - 42561
Fax: +49 721 9640227
E-Mail:[email protected]
conference keynotes
are the main technical challenges. Integrative studies
(electricity and gas) along with demonstration projects
will be needed to assess the potential contribution
which PtG could make to the transformation of the
energy system. Monetary analysis of the transportation
and storage function in the natural gas grid is another
necessary step on the road to integration of PtG technology.
9
10
conference keynotes
Opportunities for Carbon Dioxide Utilization
at Bayer
It seems rather obvious. If we are producing too much
carbon dioxide (CO2) and disturbing the balance of the
natural carbon dioxide cycle, why don’t we try to use
at least a small portion of this harmless gas for some
useful purpose?
For a number of years, chemists have been looking
for ways of using the carbon in CO2 to make high
value-add products (the so-called dream reaction). A
number of ideas have been put forward including suggestions for using CO2 to make urea and methanol. So,
what about high value-add plastics? Is that possible?
And does it even make sense from the ecological and
economic perspective?
The funding program on CO2 use initiated by the
Ministry for Education and Research is looking for
answers to these questions. It forms the basis for Bayer’s CO2 utilization projects. Catalysis has a key role to
play because CO2 is relatively inert, and it is by necessity the starting point for all potential strategies. The
Dream Reactions project initiated by Bayer is a joint
effort involving a number of scientific partners. The
researchers have succeeded in producing some initial
ground-breaking lab-scale results. So what next?
The next step is the Dream Production research project.
In partnership with RWE Power and RWTH Aachen
University, Bayer´s researchers are looking at ways of
using CO2 to produce polyurethane, a high-quality
plastic found in many everyday items such as upholstered furniture, sporting goods and auto parts. The
secret is a new catalytic process which makes it possible
to insert CO2 into the molecular chains of polyurethane precursors (polyols).
Dr. Martina Peters
Bayer Technology Services GmbH
Head of Chemical Catalysis
Leverkusen
Tel.: +49 214 30 20063
Fax: +49 241 30 50261
E-Mail: [email protected]
The new process is not limited to laboratory scale.
A pilot plant has been operating at the Bayer site in
Leverkusen since the beginning of 2011 as part of the
Dream Production project. Extensive testing has been
carried out on the material with so far very promising
results. Industrial-scale production could get underway
as early as 2016. The question is whether the products
make sense from the ecological standpoint. Scientists
at RWTH Aachen University have carried out a detailed
lifecycle analysis on the process. They came to the
conclusion that the new process for producing polyols
which contain CO2 actually does reduce consumption
of fossil resources and energy compared to the conventional production process. This results in an overall
reduction in CO2 emissions, with the main factor being
the use of CO2 in the new process as a substitute for
epoxide, an energy and emissions intensive polyol synthesis feedstock.
Further reductions are conceivable if ways can be
found to use CO2 as a substitute for other reaction
partners. These ideas play a crucial role in the Dream
Polymers project. Consumption of fossil-based feedstock could be reduced even further by using chemical
building blocks made from CO2. That is by no means
all. There are a number of other ideas on how CO2
could be used as a chemical feedstock. Utilization of
excess wind energy is one possibility. During power
surges, the electricity which is not needed to satisfy demand could then be used together with CO2 to produce
key chemical building blocks. Another cross-industry
project is looking into this possibility. Bayer, Siemens
and RWE Power along with a number of partners from
academia have therefore joined forces in the CO2RRECT
project consortium.
conference keynotes
So where are we? If ways are found to use carbon dioxide as a feedstock in energy-efficient industrial applications, new sustainable chemical production processes
could be developed. This could reduce carbon resource
consumption and make a limited but very welcome
and economically attractive contribution to climate
protection. Direct CO2 emissions into the atmosphere
could be reduced and oil-based substances could be replaced with carbon dioxide. Bayer has developed some
initial examples of plastics production to the point
where an environmental and economic assessment can
be made, but a significant level of long-term research
will be needed for other reactions. There is no lack of
ideas.
11
12
CHEMICAL ENERGY STORAGE
iC4 – Intergrated Carbon Capture, Conversion and
Cycling
CO2 as a Building Block for Efficient, Sustainable
Energy Storage Technology
BMBF is providing 6.3 million euros in funding for
the iC4: Integrated Carbon Capture, Conversion and
Cycling consortium project. The goal is to efficiently
capture CO2 from a variety of sources including biogas
plants, power stations and the iron & steel and cement
industries (carbon capture) and synthesize the gas
into methane or other chemical building blocks such
as formic acid, methanol, higher oxygenates and
hydrocarbons (conversion). The technologies developed during the project could make a very substantial
climate-neutral contribution to re-use of CO2 in the
energy and material streams (cycling).
The current status of the four iC4 subprojects –
COOMem, AdCOO (CO2 capture), COOMeth and
PhotoCOO (CO2 utilization) - is summarized below.
COOMem
The goal of the COOMem subproject is to develop innovative composite carbon capture membranes. Membrane technologies are used in the iC4 cluster for gas
separation, e.g. to capture CO2 emissions from power
plants and CO2/CH4 gas mixtures from biogas plants.
The project team is conducting in-depth research on
the membrane materials, membrane production and
simulated system integration, and they are also carrying out an economic and environmental assessment of
the technology. The composite membranes consist of a
selective layer on a support membrane. Silicon elastomers with intrinsically high gas permeability are used
as the support material for the asymmetric hollow-fiber membranes.
Polyelectrolytes with high CO2 selectivity were chosen
as the base material for the selective separation layer.
Based on the development work done by the project
team, large scale production of asymmetrically micro-porous hollow-fiber membranes is now feasible,
and it is possible to make separation layers with CO2/
N2 selectivity of approximately 60.
AdCOO
The research team on the COOMeth subproject is
trying to derive economic value from CO2 by using
renewable hydrogen for methanation. The technology
is highly dependent on the availability of hydrogen and
CO2 at an affordable cost.
Existing post-combustion capture techniques based on
wet scrubbing with reactive amine reagents are very
expensive and not particularly efficient. A technical/
economic feasibility study is being carried out in the
AdCOO subproject to determine whether solid sorbents in combination with suitable process technology
can improve energy efficiency. Therefore, various solid
sorbents have been produced and characterized. Some
are made using different combinations of support materials impregnated with suitable receptor molecules
while others are non-impregnated sorbents which have
a defined pore structure such as zeolites and meso-porous silicas.
The acquired analytical data is used by the technology
partner Siemens Energy to assess the economic feasibility of alternative process technologies such as fixed
bed and fluidized bed reactors. The project team is also
looking at the suitability of various solid sorbent options under pre-combustion conditions for next-generation power station technologies.
As things stand now, the results indicate that under
fixed-bed based post-combustion capture conditions,
there are no substantial energy efficiency or economic advantages compared to advanced wet scrubbing
techniques. While solid sorbents do have the advantage
of greatly reduced heat capacity, lower heat transfer
means that compared to wet scrubbing, extraction of
absorption heat for the subsequent desorption stage
requires sophisticated and expensive heat exchanger
technology.
CHEMICAL ENERGY STORAGE
As a result, the emphasis is on acquisition of data for
assessing the economic feasibility of using solid sorbents in a fluidized-bed process or with structured
reactor geometry.
COOMeth
Work on the COOMeth subproject is proceeding on
schedule. During catalytic screening, nickel-based catalysts with various promoters have been produced at
TUM using a variety of fabrication techniques. Nickeliron catalysts look very promising and have been
studied in detail. The multi-reactor system used for
catalytic screening has been transferred to TUM where
it is now operational. The researchers have conducted
experiments to assess the reaction kinetics based on
benchmark catalysts supplied by Clariant, and they
have also evaluated kinetic models for describing the
experiment results. Pilot-scale trials have shown that
under optimized reaction conditions, in-spec product
gas suitable for feed-in can be produced in a single pass
operation. Modifications have been identified which
improve hydrothermal catalyst stability.
Assuming that 10TWh of chemical energy storage will
be needed by 2050, CO2 methanation could be expected
to save a maximum 3,900 kto of CO2. The improvement
in energy efficiency resulting from the envisioned CO2
methanation process improvements (reactor/catalyst
optimization and heat coupling) is estimated to be
4.8 MWh/to SNG. In a regenerative scenario, CO2
capture (COOMem and AdCOO) in combination with
CO2 methanation does not produce any additional
CO2 mitigation, but ideally it does make CO2 capture
economically feasible by reducing specific energy
consumption.
Project partners:
•
•
•
•
•
•
•
•
Technische Universität München
MAN Diesel & Turbo SE
Wacker Chemie AG
Fraunhofer-Gesellschaft zur Förderung
der angewandten Forschung e.V.
Linde Aktiengesellschaft
Siemens Aktiengesellschaft
Clariant Produkte (Deutschland) GmbH
E.ON New Build & Technology GmbH
13
PhotoCOO
Researchers are investigating various aspects of photochemical CO2 reduction. Calculations based on quantum mechanics provide indications of possible reaction paths, activation energies and equilibrium states.
Experiments can then be set up to test the theoretical
models, initiating an iterative process. Initial results
based on this approach look promising. The team has
synthesized various rhenium and iridium complexes
which can be used to investigate the kinetics of selective CO2 reduction to CO. The researchers have gained
an in-depth insight into the electron transfer mechanism and the deactivation steps. They have developed
systems which are capable of making a large portion of
the sunlight spectrum available for the reduction process. Photochemical water splitting is an additional aspect which is being investigated using GaN/ZnO based
heterogeneous catalysts. Through selection of particle
composition and size along with suitable promoters
(Pt, Pd and Ag), the team is attempting to determine the
reaction kinetics and thermodynamics. Initial results
indicate that this approach is very promising. An Xe/Hg
lamp which simulates sunlight is being used to make
a detailed study of oxygen and hydrogen evolution.
There are strong indications that promoter cluster size
is crucial. With the aid of a DEMS (differential electrochemical mass spectrometer), the researchers are carrying out investigations on photoelectric CO2 reduction
to make various products such as formic acid, formaldehyde and methanol with the aid of decorated silicon
surfaces. Initial results indicate that covalent bonding
of organocatalysts on the silicon surface tends to increase the activity of CO2 reduction.
Contact:
Prof. Bernhard Rieger
Technische Universität München
Wacker Lehrstuhl für Makromolekulare Chemie
Lichtenbergstr. 4
85748 Garching
Tel.: +49 (0)89 289-13570
E-Mail: [email protected]
14
CHEMICAL ENERGY STORAGE
SEE – Storage of Electrical Energy from Renewable
Resources in the Natural Gas Grid
– H2O Electrolysis and Gas Component Synthesis
Electricity output from wind and solar generation fluctuates significantly over time but feed-in and demand
in the electricity grid must always be in balance. As
more and more electricity is generated from renewable
sources, there is an increasing need for highly flexible
electricity storage and retrieval systems. The available
capacity provided by existing electricity storage systems will not be sufficient to meet medium and long
term needs.
The goal of this consortium project is to develop technology to help manage the fluctuating supply of electricity from wind and solar power by storing energy as
SNG (Substitute Natural Gas). CO2 will act as the carbon
source..
Fig. 1: Process flow for production of SNG from excess electricity and CO2
Germany has an excellent natural gas storage and distribution infrastructure. The country’s pore and cavern
natural gas reservoirs have a working gas volume of
approximately 23 Giga m³ which is equivalent to about
250 TWhchem (the figure for pumped storage power stations is approx. 0.04 TWhel). Additional storage
facilities with a volume of 7 Gm³ are currently under
construction or at the planning stage. Leaving aside
the natural gas grid, storage capacity of at least 326
TWhchem will then be available, which is roughly seven
times the total amount of electricity generated from
wind power in 2012.
ionic liquids (IL)) - see Figure 2. Because the fluid has
high heat capacity, a three-phase system is well suited for dynamic operation. As an alternative, the team
is continuing to work on fixed-bed methanation in a
staged reactor, looking particularly at the cost-effectiveness of small to medium size systems.
Adjustment of the caloric value is needed following
SNG production. Liquid fossil gas has been used up to
this point for that purpose. To eliminate the dependency on fossil fuel in the process sequence, the intention
is to produce C2 - C4 hydrocarbons from H2/CO2 feedstock using Fischer-Tropsch synthesis.
In the planned process (Figure 1) a PEM pressure electrolyser with highly dynamic responding behaviour
produces hydrogen, which is subsequently transformed
into CH4 utilising CO2:
CO2 + 4 H2 à CH4 + 2 H2O (g)
ΔRH0 = -165 kJ/mol
Three-phase (slurry) reactors have advantages compared to the two-phase methanation which has been
the predominant pathway in the past. The reaction of
gaseous educts takes place at a solid catalyst, suspended
in a special heat transfer fluid (e.g. heat transfer oil or
Fig. 2: Bubble formation in a three-phase reactor with various fluids
at 200°C and 1 bar (X-BF: silicon oil, DBT: dibenzyltoluene, [BMMIM]
[BTA]: ionic liquids (IL))
CHEMICAL ENERGY STORAGE
15
Based on this approach, a consortium made up of
experts from various branches of the industrial and
research community has taken on the challenge of
designing a process which is technically and economically viable.
h-tec GmbH has built a PEM electrolyzer. Fraunhofer ISE
is carrying out dynamic operational control analysis
in order to optimize the system. The DVGW Research
Center at the Engler Bunte Institute which is part of
Karlsruhe Institute of Technology (KIT) is carrying out
investigations on methanation in a slurry reactor and
is also in charge of the project. IOLITEC Ionic Liquids
Technologies is responsible for IL development and
syntheses. Outotec has responsibility for methanation
in a staged reactor, and the Chemical Energy – Fuel
Technology team at the KIT Engler Bunte Institute is
in charge of syngas conditioning to adjust the calorific
value. The three research institutes have joint responsibility for the dynamic performan ce of the overall system. EnBW Energie Baden-Württemberg, a potential
user, is evaluating the economic viability and is looking
at possible sites for demonstrators.
Fig. 3: PEM pressure electrolyzer installed in the test environment
used to investigate dynamic behavior and optimize operational
performance in Power-to-Gas systems.
The experimental work is currently in the final stages.
Assessment of the market and CO2 mitigation potential
will be carried out based on the results. Support for
three doctoral dissertations and 15 Bachelor’s / Master’s
theses is being provided on the project.
Project partners:
Contact:
Dipl.-Ing. Dominic Buchholz
DVGW-Forschungsstelle am Engler-Bunte-Institut
des Karlsruher Instituts für Technologie (KIT)
Bereich Gastechnologie
Engler-Bunte-Ring 1
76131 Karlsruhe
Tel.: +49 (0)721 608 426 93
Fax: +49 (0)721 964 02 13
E-Mail:[email protected]
16
CHEMICAL ENERGY STORAGE
HyCats: New Catalysts and Technologies for Solar
Chemical Hydrogen Production
The goal of the HyCats project was to develop photocatalytic water splitting technology to harness solar
power for climate-neutral production of hydrogen. As
photocatalysts, the team used semiconductors in suspension or in layered systems which produce hydrogen
from water when they are exposed to sunlight in suitable solar reactors. Because existing photocatalytic systems were not economically viable, the team set out to
provide scalable technology as a basis for development
of marketable solar chemical systems for the production of hydrogen. The project delivered a toolbox which
supports rapid development of economically viable
photo-electrochemical hydrogen production systems.
The toolbox consists of the following.
•
Quantum chemistry simulation tools for calculating
band gaps, doping effects and surface reactions
•
Spectroscopic techniques to achieve an
•
understanding of the mechanisms involved
•
High throughput synthesis and activity measurements using a rapid screening system integrated
into a synthesis robot
•
Production techniques for upscaling
•
photocatalyst synthesis
•
Photocatalyst activity tests for photocatalyst
suspensions and electrodes in different types of
reactors
•
SoCRatus (Solar Concentrator with a rectangular
Flat Focus) test bed
•
Economic viability evaluation
The thermodynamic stability, electronic structure
and effect of substituents on the light absorption shift
into the visible spectrum were calculated for different
photocatalysts using quantum chemistry modelling
based on density functional theory (DFT). The team
investigated doping effects and water adsorption on
the surface of the solid-state bodies and developed a
semi-empirical method for calculating optical excitation spectrums of solid-state bodies. In some cases,
disassociation of the adsorbed water was observed,
which is the first step in the water splitting reaction.
The researchers applied spectroscopic techniques to
investigate the photocatalytic water splitting mechanism in the presence of sacrificial agents. They were
able to identify the best catalysis to promote the formation of molecular hydrogen and molecular oxygen.
Time-resolved laser pulse photolysis studies enabled
the team for the first time to identify intermediary
oxygen radicals during water oxidation and study their
subsequent reaction kinetics in detail. They developed
a synthesis robot with integrated rapid screening system (photo reactor with a gas chromatograph attached)
for high throughput production and rapid testing of
photocatalysts. The team prepared and tested approximately 620 tantalate and niobate based samples using
a variety of synthesis techniques. The most promising
photocatalysis were optimised under for conditions
analogous to those in a production environment. The
researchers analyzed the influence which different
scalable production methods and parameters have on
the physical properties, and hence the hydrogen formation rate, of the photocatalysts. A number of different
co-catalysts were also tested. Successful test results for
hydrogen production using particulate systems and
electrodes were obtained with three different types of
reactors. The solar efficiency and economic viability of
various catalysts were evaluated. A solar concentrator
test bed (SoCRatus=Solar Concentrator with a Rectangular Flat Focus) was set up and a suspension reactor
with two separate reaction chambers along with the
appropriate instrumentation was placed into operation. For parallel testing, the suspension reactor was
mounted next to a photoelectrochemical cell in the
focal plane of the SoCRatus.
Hydrogen produced using renewable resources can
make a major contribution to climate protection in a
wide range of applications such as conversion of CO2
to hydrocarbons, fuel for domestic energy supply or
vehicle fuel cells. Compared to other known renewable-based techniques, solar chemical production of
hydrogen has the advantage of much simpler process
technology, because water is split in a single low-temperature reactor. This can be an advantage in distributed applications. Hydrogen for domestic heating
systems or fuel cells could be supplied under ideal
conditions with simplified infrastructure. Hydrogen
produced on a large scale at industrial solar parks could
CHEMICAL ENERGY STORAGE
be stored and distributed as an alternative to natural
gas. Another objective of the HyCats project was to
provide career development opportunities for young
scientists. 3 Bachelor’s Theses, 2 Master’s Theses and
3 doctoral dissertations directly related to the project
17
work were completed, two other doctoral dissertations
were started which are expected to be completed next
year and work done on a Bachelor’s Thesis supported
the commissioning of a reactor.
Fig. 2: Hydrogen bubbles rise during a photocatalyst
lab test
Fig. 1: Rapid screening system for
parallel testing of photocatalysts
Project partners:
•
•
•
•
•
•
•
H.C. Starck GmbH
Leibniz Universität Hannover
(Prof. Detlef Bahnemann)
Leibniz-Institut für Katalyse e.V.
(Dr. Uwe Rodemerck)
Deutsches Zentrum für Luft- und Raumfahrt e.V.
(Dr. Christian Jung)
Universität Bonn (Prof. Thomas Bredow)
ODB-Tec GmbH & Co. KG
Zinsser Analytic GmbH
Fig. 3: Solar reactor at DLR in Cologne
Contact:
Dr. Sven Albrecht
H.C. Starck GmbH
Im Schleeke 78 - 91
38642 Goslar
Tel.: +49 (0)5321 751 3735
Fax: +49 (0)5321 751 6872
E-Mail:[email protected]
www.hcstarck.com
18
CHEMICAL ENERGY STORAGE
CO2RRECT – Utilization of CO2 as a Carbon Building
Block Mainly Using Renewable Energy
Challenges and Goals
Scope and Emphasis
The goal of the CO2RRECT project is to use hydrogen
produced with renewable energy together with CO2 to
make high-grade chemical products. A research alliance
including Bayer, RWE, Siemens and ten partners from
academia is working on the concept.
Research on this project was organized into 5 work
packages. Siemens designed a PEM electrolysis system
for hydrogen production. Trials were run on a prototype with a peak rating of 300 kW at the Niederaußem
power station during the CO2RRECT demonstration
phase. Bayer developed a reactor concept and catalysts
for the reaction of hydrogen with CO2 captured from
the power station emissions to produce carbon monoxide for use as a reactive intermediate. The source of
the carbon dioxide is RWE‘s lignite power station at
Niederaußem near Cologne, where the gas is extracted,
purified, liquefied and filled. At the end of the project,
Bayer and Invite will validate the reactor concept at a
pilot-scale plant in Leverkusen, which is scheduled to
begin operating in 2014.
Conventional power stations are demand-driven whereas
generation from alternative resources fluctuates
depending on weather conditions (e.g. wind and
sunlight). Many EU countries want to greatly expand
the use of renewable energy, thus, electricity storage
systems can be used to balance supply and demand.
Pumped storage power stations are currently the most
widely used technology. Chemical energy storage is
another option, for example production of hydrogen
using water electrolysis. Hydrogen can be stored in
large volumes.
Fig. 1: Using hydrogen produced from renewable resources, CO2 can be converted to useful products in the chemical industry
(photo: Bayer)
CHEMICAL ENERGY STORAGE
A special catalyst is needed to activate the CO2. Other
project partners are contributing their expertise in catalyst research, process technology, reactor optimization
and holistic process analysis. The consortium includes
universities in Aachen, Bochum, Dortmund, Dresden
and Stuttgart along with the Max Planck Society, the
Leibniz Institute for Catalysis at the University of Rostock (LIKAT), the Karlsruhe Institute of Technology and
the INVITE research center.
19
High-performance plastic polycarbonate can be made
from the intermediate which is synthesized from CO2
for the production of items such as DVDs, LEDs, computer enclosures and eyeglasses. Isocyanate, a major
constituent of polyurethane foam, can also be produced. The foam is found in many everyday products
such as furniture, shoes, cars and building insulation
material.
In addition to the engineering and economic aspects,
the researchers are also evaluating the potential for further reductions in greenhouse gas emissions compared
to current process technology.
Application, Exploitation of the Results,
Economic and Environmental Benefits
All of the technical goals for the project were achieved.
However, technical and economic analysis shows that
a very large amount of low-cost renewable energy will
have to be available for the technology to be economically viable. Realization is not expected before 2020 at
the earliest. The main advantages of the project are as
follows: meaningful use can be made of excess electricity from wind power, and CO2 which is otherwise
treated as a waste product can be used as a new feedstock and an alternative to feedstock produced by the
petrochemical industry.
Contact:
Dr. Stefanie Eiden
Bayer Technology Services GmbH
BTS-TD-UP-CC
Leverkusen, E 41
Tel.: +49 (0)214 30 22761
Fax: +49 (0)214 30 50262
E-Mail: [email protected]
Fig. 2: Prototype Siemens electrolyzer with a peak rating of 0.3 MW
at the RWE Niederaußem power station site near Cologne
(Photo: Siemens/RWE)
20
CHEMICAL ENERGY STORAGE
sunfire – Production of Liquid Fuels from CO2 and
H2O Using Renewable Energy
The sunfire project got underway in May 2012 and has
two main goals:
1. Design and implementation of pressurized hightemperature steam electrolysis with an electrical
efficiency (LHVH2/kWel) significantly greater than
90%.
2. Design and construction of a test system to produce
liquid hydrocarbons from CO2 and H2O with an
efficiency > 65% (LHVH2/kWel).
The complete hydrocarbon production process consists
of (1) steam electrolysis, (2) CO2 RWGS conversion1 and
(3) Fischer-Tropsch synthesis. The researchers will
optimize the three process steps before using them
together in a continuous process on the test system.
Scaling up benchtop steam electrolysis to an initial,
pre-industrial 10 kW prototype presents a major
challenge. Substantial improvements were achieved
through focused material development. The diagrams
below show the voltage rise (a degradation symptom)
at the beginning of the project and about a year later2:
Fig. 1: Steam electrolysis degradation at the start of the project (left) and one year later (right)
The comparison shows that degradation is comparable
to that of fuel cells and that the technology could be
further developed for industrial use. Construction of
the 10 kW prototype will get underway at the beginning of 2014.
design was also developed. This reactor together with
Fischer-Tropsch synthesis is being installed in a test
system. Construction work began on July 22nd, 2013.
The photo below shows how far construction had progressed as of December 2013.
Detailed lab investigation of the reverse water-gas
shift reaction (RWGS) was conducted at the University of Bayreuth including RWGS in combination
with Fischer-Tropsch synthesis, and a new reactor
Commissioning is scheduled for the middle of 2014.
The goal is to produce one barrel (159 liters) of raw
Fischer-Tropsch product which will be validated by
Lufthansa and HGM Energy (an oil dealer).
1 Reverse water-gas shift reaction: endothermic reduction of CO2 to CO
and oxidation of H2 zu H2O
2 Quelle: EIFER-Institut 2012/13
CHEMICAL ENERGY STORAGE
21
In parallel, the University of Stuttgart will carry out a
lifecycle analysis for the entire value-add chain. It has
already assessed the test system in its current state.
That information will be used to estimate the environmental impact of industrial-scale fuel production.
The project is the first step on the road to industrialization of the Power-to-Liquids process for production of
infrastructure-compatible liquid fuels (gasoline, diesel,
kerosene) using highly efficient steam electrolysis. The
process can save up to 3.14 t of CO2 per ton of fuel. It
can also help stabilize the electricity grid and provide a
basis for regional wealth creation combined with high
security of supply.
5 companies and 5 scientific institutions are working
hand-in-hand on the project, particularly on material
development and process characterization. 7 degree
theses and doctoral dissertations have been completed
up to this point within the context of the project.
Fig. 2: Test facility
sunfire
– Herstellung
von
SUNFIRE –
PRODUCTION OF
FUEL
Kraftstoffen
aus
Co2
und
H2o
FROM CO AND H O
2
2
CH2
CH2
gasoline,
diesel,
kerosene,
Benzin,
diesel,
Kerosin,
Methangas
methane
gas
* Praxisevaluierung durch lufthansa
HGM
CO2 +H2O
Co2 +H2o
carbon
dioxide
Kohlenstoffdioxyd
Wasser
water
Contact:
Christian Olshausen
Sunfire GmbH
Gasanstaltstraße 2
01237 Dresden
Tel.: +49 (0)351 89 67 97 908
E-Mail: [email protected]
Further informationen under: www.sunfirefuel.com
22
ENERGY-EFFICIENT PROCESSING
OPHINA – Organophilic Nanofiltration for
Energy-Efficient Processes
Avoidance of CO2 emissions is a key element in a broadbased strategy to reduce greenhouse gases. Finding
substitutes for fossil fuel is one option. Reducing consumption of energy which is largely fossil-based can be
another major factor in CO2 mitigation. Optimization
of process energy efficiency can make an important
contribution to CO2 avoidance.
and BASF Personal Care & Nutrition). The researchers were also able to develop a range of membranes
with different cut-off values. Two module generations
were developed. Project partners carried out feasibility
studies on flat sheets and additionally spiral-wound
modules were also produced and made available to the
partners.
Solvents are often used in the chemical industry. It can
take a lot of energy to recover the solvents at the end of
the process. Energy-efficient recovery can significantly
reduce process CO2 emissions. Organophilic nanofiltration is one such technology, because in contrast to
thermal separation it works without heat. The goal of
this project was to develop technology for producing
OSN (organophilic solvent nanofiltration) membrane
modules. Reproducibility and consistent high quality
were two of the key deliverables for the new module
production process. The solvent stability, permeate
flux, rejection (selectivity) and long-term mechanical
stability of the modules have to meet industrial-grade
standards. To improve on commercially available membranes, the project team developed membranes which
have a high-selectivity silicon-based filtration layer on
a cross-linked polymer backing. The membranes were
optimized to meet the requirements profile of industrial users (Evonik Industries, Bayer Technology Services
The chemical resistance of the material composite in
the spiral-wound modules was evaluated using process solvents. The results showed that the resistance of
the membrane material guarantees good resistance of
the module. The measurement results obtained by the
project partners were forwarded to RWTH Aachen for
modelling of mass transport through the membrane
and in a spiral-wound module.
Following the module development phase, the product carbon footprint of the membrane module was
calculated. This data can be very helpful to customers
who use the modules in their production operations
and want to carry out a complete lifecycle assessment
for their products.
A number of different OSN applications were identified during trials which were conducted by the project
partners.
Fig. 1: Photo of a spiral-wound module
ENERGY-EFFICIENT PROCESSING
The cost-effectiveness of the OSN applications was
carefully scrutinized, because low membrane flux performance can result in high investment costs for large
membrane surfaces. However, the use of OSN in the
process can also have other advantages besides a re-
23
duction in recycling costs and CO2 emissions. Recovery
with OSN membranes can enhance product purity and
product quality and reduce thermal stress on the products. The consortium project ended on April 30th, 2013.
Fig. 2: Contribution of a spiral-wound module to the product carbon footprint broken down by
class.
Project partners:
•
•
•
•
Evonik Industries AG
Bayer Technology Services GmbH
BASF Personal Care and Nutrition GmbH
RWTH Aachen
Contact:
Dr. Daniela Kruse
Creavis Technologies & Innovation
Evonik Industries AG
Paul-Baumann-Straße 1
45772 Marl
24
ENERGY-EFFICIENT PROCESSING
InReff – Integrated Resource Efficiency Analysis
to Reduce the Climate Impact of Chemical Plants
Project goals and content
The goal of the InReff consortium project is to develop an IT-based modeling and analysis environment
which can provide answers for a wide range of resource
efficiency and climate protection issues in the chemical
industry. Integrated analysis and optimization of complex production systems including raw material and
energy consumption and informed management of
the associated costs and environmental/climate impact
are needed to reduce greenhouse gas emissions in the
chemical industry.
Various tools and techniques including lifecycle analysis, thermodynamic simulation, heat integration studies, costing models and optimization methodologies
are used to quantify the climate impact and resource
efficiency of production systems in the chemical industry (Fig 1).
This holistic approach necessitates but also facilitates methodological and technological innovation in
system modeling and analysis as well as in real-world
production at project partner chemical sites.
Fig. 1: Elements included in the integrated resource efficiency analysis
The following are members of the consortium: software development - ifu Hamburg; scientific research
- the Institute for Industrial Ecology (INEC, Pforzheim
University) and the Chemical and Thermal Process Engineering Institute (ICTV, TU Braunschweig); chemical
industry - H.C. Starck GmbH and Sachtleben Chemie. Wacker Chemie, BASF SE and Worlée-Chemie (a
mid-tier company) are also involved in the project as
associate members. Funding for the three-year project
is being provided by the Federal Ministry of Education
and Research (BMBF).
Project status
Last year, the project team achieved some important
conceptual and technical results. They developed a
methodology model for integrated resource efficiency
analysis which describes the interaction between the
different analytical methods used in the application.
While doing so, they defined the specific IT support
requirements and developed the initial prototypes.
Material flow modeling plays a key role as the unifying
overall model (Fig. 2). Complementary methodologies
ENERGY-EFFICIENT PROCESSING
25
P3: emissions
Material flow network
(Umberto)
710304.6523437 kJ
1527354.652344 kJ
T4: heat recovery 3, water
P2: heating steam
125700 kJ
P1: water return
8709114 kJ
T5:pump
1975309.339844 kJ
T3: heat recovery 2, water
T2: heat recovery 1, steam
8395136.71875 kJ
1767804.6875 kJ
T1
P4: auxiliaries
Flow sheet
(ChemCAD)
T1: boiler
2289286.621094 kJ
8990754.911402 kJ
Interaction via
Interaction
transition scriptvia
transition script
Fig. 2: Sample integrated model of a steam generator
such as flow sheet simulation and heat integration
analysis can be used to refine the model. It also provides a basis for standardized visualization, evaluation
and optimization of partial results using a variety of
analytical tools.
In that context, the team developed a prototype interface which creates a link between a material flow
modeling tool and a sample flow sheet simulator. They
also added simulation-based optimization algorithms
and looked at possible ways of creating linkages to heat
integration calculation tools. Using this approach, the
researchers were able to provide an initial demonstration showing the feasibility of integrated analysis in a
largely automated process. Further progress was also
made on modeling of typical processes at industry
partner sites, and detailed research work continued on
the methodological and practical aspects of simulation-based resource efficiency optimization.
26
ENERGY-EFFICIENT PROCESSING
Economic, environmental and societal leverage
effects
Up until this point, a holistic approach to technical and
economic analysis and optimization of production systems has been lacking in the chemical industry. This is
particularly the case in the SME sector. Based on a limited information base, it seems reasonable to assume
that opportunities for reducing the environmental
impact are of a similar magnitude as opportunities to
reduce cost. A holistic approach which includes quantitative analysis of the economic and environmental
optimization potential enhances the likelihood that
companies will accept the need to take action to protect the climate and increase resource efficiency and by
doing so promote their own long-term business development. The InReff project is providing new insights
and delivering practicable solutions.
Project partners:
•
•
•
•
•
ifu Institut für Umweltinformatik Hamburg GmbH
Sachtleben Chemie GmbH
Technische Universität Braunschweig
Hochschule Pforzheim - Gestaltung, Technik,
Wirtschaft und Recht
H.C. Starck GmbH
Contact:
Nicolas Denz
ifu Hamburg GmbH
Max-Brauer-Allee 50
22765 Hamburg
Germany
Tel.: +49 (0)40 480009-0
E-Mail: [email protected]
ENERGY-EFFICIENT PROCESSING
27
InnovA2 – Innovative Equipment and System Design
for Increased Production Process Efficiency
Project goals and content
The InnovA2 consortium project is looking at ways of
increasing energy efficiency based on innovative equipment and system designs. The emphasis is on structured
tubes, plate equipment, special thermo plate heat exchangers and multi-flow plate heat exchangers in vaporization and condensation applications. This class of
equipment has very high heat integration and energy
efficiency potential. The universities which are members of the consortium run initial suitability testing on
the new equipment designs to identify suitable applications and carry out operational fluid dynamics and
heat engineering assessments. Working from this basis,
the next step is to run trials which support transfer of
the lab / test center results to scalable pilot systems
Fig. 1: Test bed with thermo plate natural circulation evaporator
(© ICTV, TU Braunschweig)
at industrial sites operated by consortium members.
Using the results including key performance characteristic relationships identified during the experiments
in both test series, it is possible to derive engineering
design methodologies which provide direction for the
design of innovative equipment in a given process application. In parallel, the team is developing techniques
for economic evaluation and general estimation of
the existing potential. Design engineers and potential
users can take that information and make their own
judgments about the advantages of using these equipment technologies. Lifecycle analysis of the process
alternatives which include or exclude the new equipment designs contributes to the development of highly
eco-friendly process and equipment design.
Project status
All of the test systems are operational and are delivering
a large volume of experimental results. The example in
Fig. 1 shows a test system with thermo plate natural
circulation evaporator at TU Braunschweig and in Fig.2 a
setup for condensation of isopropyl alcohol at a finned
carbon steel tube at the TU München is presented.
The data is collected and analyzed using standardized
methods. Agreement was reached on uniform methods
for representing the complex geometry of the heat
transfer surfaces being evaluated to ensure comparability of the results later on. Models taken from the
literature are used to describe the experimental data,
and enhancements are added where needed. All of the
investigations have shown that the innovative designs
are functionally superior to standard smooth tube
designs. Evaluations continue to determine which solutions are economically and ecologically viable. Geometric transfer experiments have been completed on pilot
systems at Linde for finned tube equipment and at BTS
for thermo plate equipment. Once again, the evidence
shows that the innovative designs perform better than
standard designs. A new modular modelling technique
based on the three-level model is used for lifecycle
assessment of the sample processes. This technique
is particularly well suited for multi-product system
modeling, the reason being that different production
methods can be used in combination in modular systems and subsystems. All of the consortium goals are
28
ENERGY-EFFICIENT PROCESSING
Fig. 2: Increment factors for condensation of iso-propanol, n-pentane and isooctane in a finned tube made
of carbon steel and comparison to literature models (© LAPt, TU München)
expected to be achieved by the time the project comes
to an end (September 30th, 2014).
Economic, environmental and societal leverage effect
The economic and environmental leverage effect of
the InnovA2 consortium project will be evident in a
number of different areas. Chemical plant operators
will be the main beneficiaries. Innovative equipment
technologies will create opportunities to increase energy efficiency in production. The reduction in fossil fuel
consumption could cut CO2 emissions by around 0.1
t CO2e/t product. The research results will also enable
equipment manufacturers and engineering service
providers to expand their product and service portfolios. The innovative designs point in new directions
compared to existing state-of-the-art equipment, creating an incentive to take a serious look at the potential
advantages.
One very positive aspect of the InnovA2 consortium
project is the opportunities it creates for young scientists to develop their professional skills and become
actively involved. Nine doctoral candidates at the
universities involved are working on the project as part
of their degree programs. In addition, many young pro-
fessionals are working in R&D at consortium member
companies. More than 30 student research papers (project papers and Bachelor‘s and Master’s Theses) have
been written in the context of the project. Some of
the graduates have been hired by consortium companies. To support networking and information sharing
among the doctoral candidates, one-day workshops are
organized specifically for them immediately following
the semi-annual consortium meetings.
A number of the companies involved in the project are
mid-tier engineering service providers or equipment
manufacturers. By generating performance data which
has been verified in trials and making that data publicly
available, the project gives these companies a fast-track
route to market penetration and enhances their innovative strength and competitiveness. This in turn provides job security for existing employees and creates an
incentive to take on new staff.
So far, information about the results of the InnovA2
project has been shared on posters and in talks at
national and international events including the 50th
European Two-Phase Flow Group Meeting in 2012
in Udine/I, a discussion corner at ACHEMA 2012 in
Frankfurt/Main and the Fluid Dynamics and Separation Technology Association’s annual conference in
2013 in Würzburg. A number of articles are planned or
ENERGY-EFFICIENT PROCESSING
29
have already been submitted to peer-reviewed professional journals for 2014. A special Chemie Ingenieur
Technik magazine supplement entitled “Innovative
Equipment and System Design” is planned for the
autumn of 2014 for whith the InnovA2 project will
contribute the bulk of the articles.
Project partners:
•
•
•
•
•
•
•
•
•
•
•
•
Technische Universität Braunschweig
Universität Kassel
Helmut-Schmidt-Universität – Universität der
Bundeswehr Hamburg
Technische Universität München
Universität Paderborn
Wieland-Werke Aktiengesellschaft
Evonik Industries AG
LANXESS Deutschland GmbH
Linde Aktiengesellschaft
MERCK Kommanditgesellschaft auf Aktie
DEG Engineering GmbH
Bayer Technology Services GmbH
Contact:
Prof. Dr.-Ing. Stephan Scholl
Technische Universität Braunschweig
Institut für Chemische und Thermische
Verfahrenstechnik ICTV
Langer Kamp 7
38106 Braunschweig
Tel.: +49 (0)531 391 2780
Fax: +49 (0)531 391 2792
E-Mail: [email protected]
www.ictv.tu-bs.de
www.innova2.de
30
ENERGY-EFFICIENT PROCESSING
HY-SILP – Development of new Resource-Efficient
Hydroformylation Technologies using Supported
Ionic Liquid Phase (SILP) Catalysts
The goal of the HY-SILP project is to develop new,
resource-efficient hydroformylation technology using
SILP catalysts. SILP catalyst technology (Fig. 1) is an innovative approach to immobilization of homogeneous
catalysts, combining the advantages of homogeneous
and heterogeneous catalysis. A SILP process, for example, eliminates all of the steps which demand a sol-
vent for the catalyst system. Specific solubility in ionic
liquids (ILs) creates pathways for selective processing of
complex educt mixtures. This can significantly reduce
the hydroformylation carbon footprint and process
design modifications can reduce energy consumption
compared to current technology.
Abb. 1: SILP-catalyst concept.
Researchers at universities in Darmstadt and ErlangenNuremberg are working closely with Evonik on 10 work
packages. The results of WP3 should give the researchers
a better understanding of how the different components
of a SILP catalyst influence the behavior of the catalyst
in continuous gas-phase hydroformylation. The results
so far clearly show that interaction between the precursor, ligand and ionic liquid (IL) in the substrate’s
pore network is highly complex. The complexation
behavior of the precursor and ligand as well as the
type of IL or substrate have a pivotal influence on the
activity, stability and selectivity of the catalysts. When
different ILs were used, a correlation was found to
exist between catalyst activity and the solubility of
the substrate in the IL. The gas solubility of ultra-pure
substances was measured using a magnetic suspension
balance and COSMO-RS modelling. Various diphosphite-based ligands provided by Evonik (WP 2) were
used to produce SILP catalysts. The ligand benzopinacol proved to be the most stable in continuous operation trials and showed outstanding stereoselectivity
(> 99%) for linear aldehyde. Initial substrate screening
trials have shown that the substrate is not an inert
component in the SILP system. Substrate morphology
and acidity influence the initial behavior, stability and
product selectivity of the SILP catalyst.[1] A quad screening
system was designed and built to enhance the efficiency
of the project trials. Virtual IL screening [2] techniques
1 Schönweiz et al. Ligand-modified rhodium catalysts on porous silica in continuous gas phase hydroformylation of short-chain alkenes – catalytic reaction in
liquid supported aldol product, ChemCatChem 2013, 5(10), 2955–296.
2 Franke et al. Accurate pre-calculation of limiting activity coefficients by COSMO-RS with molecular-class based parameterization, Fluid Phase Equilibria 2013, 340, 11-14.
3 Y. Hou; R. E. Baltus, Experimental Measurement of the Solubility and Diffusivity of CO2 in Room-Temperature Ionic Liquids Using a Transient Thin-LiquidFilm Method. Industrial & Engineering Chemistry Research 2007, 46, 24, 8166-8175.
ENERGY-EFFICIENT PROCESSING
and ligand systems (WP 1) are being developed to speed
up the WP3 screening process. Several ligand systems
which look very promising have been identified, and
sufficient quantities have been made available to the
consortium (WP2).
Based on the factors which limit the performance of
SILP catalysts, investigations are underway in WP4-6
to define the best formulations for production of SILP
catalysts. IL wetting and fluid distribution on and in
the substrate is crucial for precise characterization of
SILP catalysts (WP4). Using substrate/IL systems, the
researchers investigated the effect which the IL has on
texture. Systems with different mass fractions were
produced and the BET surface area and pore size were
measured using N2 sorption. The investigations confirmed that linear correlation exists between the mass
fraction and the surface area. The researchers carried
out TEM, HREM and HREM-EDX measurements on
the substrate and on unused and used SILP catalysts.
HREM imaging provides qualitative information about
the distribution and texture of the exterior surface.
Comparison of unused and used SILP catalyst shows a
distinct surface change.
A test bed with Berty reactor was built to carry out kinetic investigations (WP5 and 6). The system was used
to study the initial behavior of the catalysts. The results
show that SILP catalyst activity continually increased
during the first 72 hours. The rate of increase was lower
for larger amounts of catalyst (up to 400 mg). Using a
defined SILP catalyst with benzopinacol ligands, kinetic
measurements were taken at varying partial pressure,
absolute pressure, dwell time and temperature. Modelling using a simple formal kinetics model (exponential)
shows an acceptable level of agreement with the experimental results, producing reaction orders of 0.3 (H2),
-0.1 (CO) and 0.8 (1-butene). The average activation
energies for the formation of n-aldehyde and isoaldehyde are 52 and 47 kJ/mol respectively.
31
to gain a better understanding of the interplay between
substance transport and the chemical reaction. Experiments are being carried out to determine the diffusion coefficients of the pure educts and the products
in selected ILs. The team selected a suitable method
(Transient Thin Liquid Film Method)[3] and they then
installed and validated the necessary instrumentation.
This method can also provide solubility data.
Initial results for H2 and CO systems in [BMIM] [NTf2]
are now available. In both systems, the speed of diffusion increases with increasing temperature (faster for
H2 than CO). The diffusion coefficients are in the range
2·10-9 m2s-1 to 4·10-9 m2s-1 (H2) and 6·10-10 m2s-1 to
12·10-10 m2s-1 (CO).
The researchers in WP 7 investigated promising SILP
catalysts using technically relevant feed mixtures. Relatively high activity (TOF > 130 h-1) was obtained even
with highly diluted mixtures (> 90 % inerts). Traces of
water or 1,3 butadiene caused deactivation of the SILP
catalyst. Thermogravimetric analysis showed that the
ligand is the most temperature-stabile component. The
WP8 research team was able to reactivate a thermally
deactivated SILP catalyst by adding fresh ligand.
The long-term stability of selected SILP systems developed in WP3 was evaluated in WP9. Under technically
relevant conditions using technical educts and benzopinacol ligands, a catalyst system was developed
which has long-term stability > 1,000 hours and n/
iso-selectivity as good as that of homogeneous catalyst
systems. The researchers were able to demonstrate a
dwell time > 2,000 hours with a new ligand class which
was identified in WP1 and synthesized in WP2.
Besides optimizing the variables which have a crucial
effect on the reactions, researchers in WP6 are working
In parallel with the experimental work and based
on the long-term stability results obtained in WP9, a
potential emissions reduction of 0.108 t CO2e/t n-Pentanal (based on a total capacity of 1.6 Mio t) has been
identified. Looking at the societal leverage effects of the
HY-SILP project, up to this point work on four doctoral
dissertations has started and four Bachelor’s and Master’s theses have been completed.
Project partners:
Contact:
•
•
•
Evonik Industries AG
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Universität Darmstadt
PD Dr. Robert Franke
Evonik Industries AG
Performance Intermediates
Tel.: +49 (0)2365 49 2899
E-Mail:[email protected]
32
ENERGY-EFFICIENT PROCESSING
Multi-Phase – Increased Energy Efficiency and
Reduced Greenhouse Gas Emissions Based on
Multi-Scale Modelling of Multi-Phase Reactors
A gas and/or liquid or solid phase is dispersed in a
continuous phase fluid during the production and
downstream processing of many chemicals and biochemicals. Designing multi-phase reactors is a highly
complex undertaking due to the complex interplay
between the hydrodynamics, kinetics, substance transfer and heat transfer. It has not been possible up to this
point to provide a complete numerical description of
an industrial-scale scenario. Besides the amount of
computing power needed to handle the large mathematical models, another limiting factor is the availability of validated models for simulating the different
phenomena involved.
Most of the literature is limited to modeling of aqueous
multi-phase systems with air as the dispersed phase.
The derived model equations are not applicable to
typical industrial substance systems in organic media
at elevated temperature and pressure. To address this
issue, three main goals were defined for the project.
Fig. 1: Pressurized bubble column at the Evonik Industries Test Center.
•
Develop models and methods for designing, or
enhancing the design of, multi-phase equipment.
•
Suitable measurement techniques are needed to
provide the underlying experimental data. Development of these techniques is another aspect of the
project.
•
A pilot-scale test reactor at Evonik is used to evaluate
the measurement techniques and obtain measurement
data (Fig. 1).
The measurement techniques have now been developed and thoroughly tested on the pilot reactor at
Evonik Industries (Fig. 2). The researchers are using the
results to identify, validate and enhance suitable calculation models. The experimental data and calculation
models are being archived in a web-accessible database.
Other project work packages will be looking at the potential for CO2 mitigation in an industrial process. The
ENERGY-EFFICIENT PROCESSING
improved techniques for multi-phase reactor design
are being implemented in CFD code.
More efficient multi-phase reactor designs can reduce
greenhouse gas emissions and conserve resources,
and these two factors are key economic aspects of the
project. In parallel, the acquisition of new expertise can
give German companies a competitive advantage in
the global marketplace and help ensure job security at
33
home. Networking between universities and industrial
partners promotes intensive information sharing in
both directions. The results are communicated at conferences and in trade journals on an ongoing basis. Student internships and the provision of a suitable context
for Bachelor’s and Master’s theses and doctoral dissertations promote the development of young professionals, which is another positive aspect of the project.
Fig. 2: Testing a laser endoscope to measure bubble size
Project partners:
•
•
•
•
•
•
•
•
Evonik Industries AG
BRUKER OPTIK GMBH
Eurotechnica GmbH
ILA Intelligent Laser Applications GmbH
PreSens Precision Sensing GmbH
Helmholtz-Zentrum Dresden-Rossendorf e.V.
Ruhr-Universität Bochum
TU Hamburg-Harburg
Contact:
Dr. Marc Becker
Evonik Industries AG
Rellinghauser Str. 1-11
45128 Essen
Tel.:
+49 (0)2365 49-6737
E-Mail:[email protected]
34
ENERGY-EFFICIENT PROCESSING
CO2 Compressor – Development of a Miniaturized
Oil-Free CO2 Compressor with Built-In CO2-Cooled
Electric Motor Drive for Large CO2 Heat Pumps
Project goals and content
The goal of the project is to develop a miniaturized oilfree CO2 compressor with built-in CO2-cooled electric
motor drive for high-capacity CO2 heat pumps and chillers.
The project deliverable is a functional demonstration
showing the feasibility of using CO2 in a turbo machine
as the working medium in the compressor, the lubricant
in the gas bearings and the coolant in an electric motor
drive unit. The technology will be based on an innovative design, and the defined operating environment
is a high-capacity heat pump with 4.0 COP. Various
simulation-based methodologies are being developed
in the Fluid Mechanics and Hydraulic Machinery Dept.
at the University of Applied Sciences in Kaiserslautern
to quantify the power losses caused by shear forces between the rotor and the stator and determine the correct dimensioning of the gas bearings. The models are
verified on test beds installed at a subcontractor’s site
(KSB) and in the Department of Thermo and Fluid Dynamics at Mannheim University. The results are used
during development of functional prototypes for the
compressor stages, the rotor, the stator and the electric
motor drive unit.
Project status
The methods used to make the design calculations for
the hydraulic stages have progressed to the point where
an initial compressor stage consisting of an impeller
and diffuser has been evaluated in the simulator. Rotordynamic analysis has been performed for the shaft,
and the results obtained through iterative simulation
have been verified during trials. At speeds up to around
180,000 RPM, vibration resulting from the rotor’s rigid
and deformable body modes made it necessary to redesign the rotor and stator in the electric motor drive
unit. A drive unit with oil-lubricated rolling bearings
has run at speeds up to 170,000 RPM during trials. The
speed was kept below 180,000 RPM due to the characteristics of the rolling bearings. The compressor
will have gas bearings, so that aspect is of no practical
consequence. The fluid mechanics characteristics of
the CO2-lubricated gas bearings are being modeled.
The current models have not yet been verified in trials,
primarily because it has not been possible to create a
consistent model for the axial bearings and axial thrust
compensation. It is also not yet clear what material
should be used for the gas bearing shells. The researchers have succeeded in developing a satisfactory model
of the losses in the stator cavity caused by shear forces
in the CO2 induced by the rotation of the rotor. The
current models have not yet been consistently verified
in trials due to the complex manner of dilution of the
CO2 medium. It is important to know the magnitude
of these losses in order to ensure that the high capacity
heat pump delivers 4.0 COP.
Economic, environmental and societal leverage
effect
In the short term, the oil-free CO2 compressor will
make it possible to design cost-effective high-capacity heat pumps (50 – 1000 kW thermal capacity) which
use CO2 as the working medium. Large manufacturers
in the heating equipment industry have entered the
market for high-capacity heat pumps. The high-capacity CO2 heat pump will make a significant contribution
to energy-efficient space and water heating in existing
residential and commercial buildings, because CO2 has
very good specific heating characteristics along with
low space requirements due to the high energy density
of the medium. Compared to current working media,
CO2 places fewer demands on system safety design.
There is market demand for high-capacity heat pumps
which deliver reliable cooling power (e.g. for food) with
working media which are less dangerous than those
which are currently used.
In the medium term, it may be possible to use the electric motor drive in vehicles which have higher power
density (e.g. e-boost for combustion engines in the
automobile industry).
The long-term vision includes product features on
drives with very high power density in transportation
and CO2 utilization applications.
ENERGY-EFFICIENT PROCESSING
35
ig. 1: Test bed shear force losses University of Mannheim
Fig. 2: Test bed single-stage CO2 compressor KSB/awtec
Development of the oil-free CO2 compressor is also
significant from the environmental standpoint because
the potential greenhouse effect of the halogenated
working media currently in use is up to 6,000 times
greater than CO2. The use of CO2 as the working medium in high-capacity heat pumps/chillers can play
an important role in climate protection. In addition,
high-capacity heat pumps/chillers are able to use or
store electricity produced from renewable resources.
For society in general, development of a CO2 compressor which can help heat existing residential homes and
buildings at a relatively affordable cost and provide security of supply to meet the basic human need for heat
is a very significant step forward. Involvement by the
universities in Stuttgart, Kaiserslautern and Mannheim
in the project provides opportunities for students to
complete degree course requirements, which is another
important social contribution made by the project.
Project partners:
Contact:
•
•
•
•
KSB Aktiengesellschaft
Universität Stuttgart
Hochschule Mannheim
Technische Universität Kaiserslautern
Herr Dr.-Ing. Gerd Janson
KSB Aktiengesellschaft
67227 Frankenthal
Tel.: +49 (0)6233 86-1829
E-Mail: [email protected]
www.ksb.com
36
ENERGY-EFFICIENT PROCESSING
EP-WÜT – Energieeffiziente Polymerwärmeübertrager
The goal of the project is to develop an energy-efficient
heat exchanger for the chemical industry, for example
to condense organic solvents. The heat exchanger is
intended as an alternative to current equipment made
of glass or plastic, and it will be made entirely of plastic.
The unit is basically a plate heat exchanger in which
thin sheets of plastic film (75 – 150 µm) act as the heat
exchange surfaces. Fig. 1 shows a simplified diagram.
The baseplates (yellow) have rectangular dimples on
the condensation side to stabilize the highly flexible
sheets of film (blue). The heat exchanger features a
modular design, and more elements can be added as
needed.
Fig. 1: Simplified diagram of a heat exchanger
The heat exchanger must meet very demanding requirements (pressure up to 6 bar, temperatures up to
90°C, aggressive organic media such as toluene, hexane
and tetrahydrofuran). Researchers have invested two
years of intensive work studying the chemical, mechanical and thermal resistance of polymer materials.
Besides investigating the creep resistance of the film
under the specified operating conditions, they also
looked at how the foil behaves when exposed to vibration stress. Tests showed that film made of polytetrafluoroethylene and polyimide meets the resistance
requirements if it is properly supported. Heat transfer
performance was determined by experiment and numerical analysis. A simple model heat exchanger was
set up in the department to run experiments on different configurations (cross-flow, counter-flow, parallel
flow). Data collected during the experiments was used
to validate numerical models which were then used to
define the final geometry.
Because the film is highly susceptible to pressure deformation, FSI (fluid solid interaction) was used for numerical simulation of heat transfer. With this approach,
it is possible to model the geometric changes which
take place during ongoing operation and understand
the effect which these changes have on flow and heat
transfer.
Nine student papers were completed during the project
including 2 Bachelor’s theses and 2 Master’s theses.
3 other students are currently working on papers.
A final dissertation is expected to be completed at the
beginning of 2015. Information on the economic findings from the project in material science, heat transfer
and fluid mechanics is being shared with the public at
conferences and congresses.
There is constant demand in the chemical industry for
small heat exchangers, many of which are used at test
ENERGY-EFFICIENT PROCESSING
37
centers. Polymer film heat exchangers have the advantage of lower CO2 consumption during equipment
manufacturing (up to 30 t CO2e/yr compared to glass
heat exchangers). Other advantages include lighter
weight and significantly lower material costs due to the
low thickness of the heat transfer surfaces. The new
technology can give manufacturers a competitive edge
and contribute to job security. The lower costs can also
help manufacturers reduce their equipment production
costs.
Project partners:
•
•
•
Technische Universität Kaiserslautern
MERCK KGaA
Calorplast Wärmetechnik GmbH
Contact:
Dmitrij Laaber
TU Kaiserslautern
Gottlieb-Daimler Straße
67663 Kaiserslautern
Tel.: +49 (0)631 205-2124
E-Mail: dmitrij.laaber[at]mv.uni-kl.de
38
ENERGY-EFFICIENT PROCESSING
Mixed-Matrix-Membranen für die Gasseparation
Project goals and content
Progressive climate change creates the need for greater
resource and energy efficiency. Optimization of industrial production can make an important contribution.
Gas separation is used in many industrial applications.
Conventional techniques are complex and very energy-intensive. Gas permeation membrane technology is
an energy-efficient alternative. To make the technology
economically competitive with conventional techniques, the membrane material must have sufficiently
large cross-membrane flow and selectivity.
There is growing demand for separation of long chain
hydrocarbons, e.g. in natural gas upgrading. The goal of
the project is to develop high-performance membrane
material for separation of long-chain hydrocarbons
from continuous gas flows. The new material should
scale down the size of gas purification membrane systems, reducing energy consumption and CO2 emissions.
The project is based on the development of mixed
matrix membranes made of a polymer matrix with
embedded activated carbon particles which have higher hydrocarbon selectivity compared to polymer-only
membranes. When production advances to pilot scale,
it will be possible to validate the results in a bypass at
an industrial plant. A material transport model based
on the experimental data is being developed to support
process simulation later on in the project. The objective
is to demonstrate the economic viability of the process
which uses the new membranes and to provide a basis
for lifecycle analysis.
right combination of filler content and particle size
presents a major challenge. Besides the morphological parameters, operating conditions such as pressure,
temperature and composition have a crucial influence
on the separation performance of the membrane.
During material development, the researchers investigated the influence which various factors have on the
separation performance of mixed matrix membranes.
They discovered a material combination which delivers better selectivity for long-chain hydrocarbons
compared to polymer-only membranes. Extended
trials lasting about 5 weeks provided evidence that the
improved separation performance remains stable as
shown in Fig. 1.
Production is now possible on an industrial scale. More
than 100 m² of mixed matrix membrane is already
available for pilot testing (see Fig. 2). Plans are being
drawn up for a pilot test in a bypass at an industrial
plant. The system is currently under construction and
is expected to be available in the spring of this year.
A rigorous mechanistic transport model has been developed for the mixed matrix membrane. It describes
the solubility of the permeating components in the
polymer material, the diffusion process in the polymer,
transition between the polymer and activated carbon
phase and transport in the activated carbon’s pore sys-
Project status
The polymer matrix is made of rubbery, silicon-based
polymers which facilitate the transport of long-chain
hydrocarbons. In order to support solubility controlled
transport in the polymer matrix, modified hydrocarbon-selective activated charcoal is being developed on
the project as an active filler.
A number of factors influence the separation performance of the hybrid material. The materials must have
good compatibility to avoid non-selective defects at
the interfacial surface. The particles should also be well
distributed in the polymer matrix to derive maximum
benefit from the filler’s properties. Determining the
Fig. 1: Mixed matrix membrane stability over a 5 week period in an
n-Pentan/oxygen system (1.5 vol%/88.5 vol% on the high pressure side)
at 20°C, 30 bar feed pressure and 1.1 bar permeate pressure.
ENERGY-EFFICIENT PROCESSING
39
tem. The latter is further broken down into transport
processes during the gas phase and the adsorbed phase.
The model provides a very good description of the permeation process for the individual components and it
is currently being enhanced for multi-material systems.
Economic, environmental and societal leverage
effect
The assumption is that the membrane technology will
become even more competitive and that new market
opportunities can be exploited. A rough estimate of
the market potential shows that demand for the new
mixed matrix technology could be as high as 1,000 systems between now and 2030. Based on current results,
energy consumption would be 16.8% lower compared
to systems with conventional membranes. That equates
to a reduction of 16 ktCO2/yr.
That figure could increase, but the differential would
be difficult to quantify. If events were to unfold as just
described, the result would be greater job security in
membrane production and system manufacturing, and
it would further stimulate innovation in Germany. To
our knowledge, mixed matrix membranes have never
been used up to this point for gas permeation in industrial applications.
Fig. 2: Industrial-scale mixed matrix production
Three doctoral candidates on the project are working
toward completion of their degree courses. Six Bachelor’s theses and two other theses have also been completed.
Project partners:
•
•
•
Helmholtz-Zentrum Geesthacht Zentrum
für Material- und Küstenforschung GmbH
Technische Universität Berlin
Sterling Industry Consult GmbH
Contact:
Dipl.-Ing. Torsten Brinkmann Ph. D.
Helmholtz-Zentrum Geesthacht Zentrum
für Material- und Küstenforschung GmbH
Institut für Polymerforschung
Max-Planck-Straße 1
21502 Geesthacht
Tel.: +49 (0)4152 87 2400
E-Mail: [email protected]
40
ENERGY-EFFICIENT PROCESSING
EE Management – Energy Efficiency Management
and Benchmarking for the Process Industry
The ability to improve energy efficiency has long been
a major competitive factor in the chemical industry.
In addition, a reduction in greenhouse gas emissions is
becoming an increasingly important aspect of sustainable climate protection policy. Besides finding ways
of improving energy efficiency, one of today’s major
challenges is to minimize energy consumption and
greenhouse gas emissions as soon as possible using
technologies which are sustainable over the long term.
Power generation and distribution obviously need to
be optimized. Beyond that, often the most effective
strategy is to maximize energy efficiency in production.
Possible pathways for achieving that include operating
parameter enhancements, equipment optimization,
interconnection of heat flows and process engineering
improvements.
More and more companies are using energy management systems to track and control energy consumption, set energy goals and identify opportunities to save
energy. The diversity of process technologies and energy sources, the lack of benchmarks and quite simply
the definition and measurability of energy efficiency
often create unsurmountable obstacles which reduce
the utility of these systems.
Fig. 1: Energy loss cascade
The STRUCTese® energy management system developed by Bayer to facilitate continuous, sustained
maximization of energy efficiency forms the basis of
the project. In contrast to conventional energy management systems, STRUCTese® not only reports and
tracks (specific) energy consumption over time, it also
compares specific primary energy consumption to various theoretical optima. The losses (actual vs. optimum)
caused by suboptimal equipment, partial load, the
product mix, external factors and suboptimal operation are presented in a clear and transparent manner.
Using this approach, energy efficiency becomes measurable. STRUCTese® provides an optimization pathway
and removes the obstacles mentioned above.
Advanced development work is being done on the
project to transform the method into a standardized
energy efficiency management and benchmarking tool
which many companies can use for different process
scenarios. The method was implemented in a number
of real-world processes and enhanced so that it can
model a very broad spectrum of process scenarios, e.g.
parallel production lines, production of multiple products and batch-continuous transitions. The researchers
worked closely with universities to define the theoretical optima. They did this to ensure that the bench-
ENERGY-EFFICIENT PROCESSING
41
marks have been objectively defined and that they are
based on the most advanced techniques from the world
of science and technology. The project demonstrated
that the method can be applied across an entire site.
Case studies have shown that an intelligent management system can reduce energy consumption by more
than 20%. The system has already helped Bayer save
more than 1 million MWh of primary energy and reduce CO2 emissions by a good 300,000t /yr.
Project partners:
•
•
•
•
•
•
•
•
•
Bayer Technology Services GmbH
Bayer MaterialScience AG
BASF Personal Care and Nutrition GmbH
Inosim Consulting GmbH
instrAction GmbH
bitop Aktiengesellschaft (bitop AG)
RWTH Aachen
Technische Universität Dortmund
Clariant Produkte (Deutschland) GmbH
Contact:
Dr. Christian Drumm
Bayer Technology Services GmbH
Tel.: +49 (0)214 30 41978
E-Mail:[email protected]
42
ENERGY-EFFICIENT PROCESSING
EffiCO2 – New Absorbents for More Efficient
CO2 Separation
Worldwide anthropogenic CO2 emissions resulting
from the use of fossil resources were estimated at 34
Gt in 2011 (German Ministry of Economics and Technology, 2013). Fossil fuel will continue to be our major
source of energy in the future (BP, 2013). In order to
reduce CO2 emissions despite rising energy demand,
technologies are needed for efficient CO2 capture from
industrial and other waste gas streams. CO2 capture
from flue gas can make an important contribution.
However, efficiency losses during CO2 capture from
power station flue gas can currently be as high as 12%.
The goal of the consortium project was to conduct
research on new and improved absorbents for carbon
Fig. 1: Test system following detailed engineering
capture to reduce energy and resource consumption.
The project deliverables also included a demonstration
of the efficiency gains through simulation of the entire
power station and CO2 capture process and lifecycle
assessments to evaluate the sustainability of the new
processes. All substance classes in the Evonik product
portfolio were included during development of chemically stable absorbents which require less energy for regeneration. The researchers used synthesis techniques
to modify the absorbents at the molecular level. They
then conducted lab studies to analyze the CO2 absorption behavior and thermodynamics. A test system
connected to the flue gas stream at the coal-fired CHP
Fig. 2: Test system in the chimney base at the power plant
in Herne
ENERGY-EFFICIENT PROCESSING
43
plant in Herne gave the researchers the opportunity to
study the absorbents under real-world conditions. Only
the most promising absorbents were included in the
test system trials. The team collected thermodynamic
and process engineering data and analyzed and evaluated the ability of the absorbents to withstand secondary constituents in the flue gas.
Based on the results of lab and test system trials, a
simulation was run to see how the absorbents would
perform in a large-scale power station process and to
assess the economic viability. The simulation showed
that energy consumption could be reduced by around
40% compared to existing CO2 absorption using monoethanolamine. This equates to a reduction in CO2
emissions of approximately 120 kg CO2/t CO2. At the
reference power plant, the emissions reduction potential exceeds 240,000 t CO2e/a.
The technology is not limited to flue gas applications. It
could also be used, for example, in natural gas upgrading,
chemical production, cement and lime manufacturing
and the iron and steel industry. Besides efficient CO2
capture, it also provides access to high-purity CO2
which can be used for high value-add products. The
consortium project ended on September 30th, 2013.
Project partners:
•
•
•
Evonik Industries AG
Universität Erlangen-Nürnberg
Universität Duisburg-Essen
Contact:
Dr. Jens Busse
Paul-Baumann-Straße 1
45764 Marl
Tel.: +49 (0)2365 49-86509
E-Mail: [email protected]
44
ENERGY-EFFICIENT PROCESSING
IL WIND – Development of IL-Based Lubricants
for Wind Turbines
Project goal
As the rated capacity of wind turbines continues to
increase, the designs place greater specific stress on all
of the subsystems. The rolling bearings are particularly
susceptible to failure which is often caused by inadequate lubrication. The primary failure mechanism
damages the microstructure, resulting in early failure.
This significantly reduces the availability of the wind
turbines. The economic and environmental benefits
decrease, and there is a negative impact on the overall
CO2 cycle.
The goal of the IL Wind project is to develop high-efficiency IL-based lubricants which are capable of
neutralizing the damage mechanism. Higher system
availability decreases the cost and increases the environmental benefits of wind power generation, particularly on multi-megawatt turbines.
tific support. Responsibility for engineering feasibility
was placed in the hands of industry partners Merck and
Schaeffler Technologies, with consultancy provided by
the end user Senvion SE (formerly REpower Systems).
Project status
The research team on the IL WIND project developed
halogen-free ionic liquids (ILs) with a target solubility
of 5 wt% in petroleum-based oil and evaluated their
thermal properties. COSMO-RS was used to help identify the required structural elements of the ILs. The
tribologic properties (friction and wear surfaces) of the
ILs in contact with 100Cr6 steel in air, argon and CO2
atmospheres were assessed and compared with standard oils. The corrosion behavior of the ILs was also
evaluated using six different metals and alloys.
The consortium partners took responsibility for different aspects of the overall development effort. The
University of Erlangen-Nürnberg provided basic scien-
The researchers conducted screening trials to demonstrate the tribologic suitability of the structures for subsequent rolling bearing trials. A basic test bed was set
up which uses IR spectroscopy for in situ investigation
of the damage mechanism.
Fig. 1: Rolling bearing (© Schaeffler Technologies GmbH & Co. KG)
Fig. 2: Wind turbine (© Senvion SE)
ENERGY-EFFICIENT PROCESSING
The IL additive was shown to be effective in preventing
damage during rolling bearing trials at Schaeffler. Adding just 1% of the IL substance to a reference oil resulted in a four-fold increase in runtime to failure. Lubrication trials were run to further demonstrate the basic
tribologic properties of the new lubrication formulation prior to release for scale-up of the formulation to
1,000 liters by Merck. This quantity was sufficient to
run extended testing with large bearings, which was
completed after 3,000 hours without damage. The trials
demonstrated the basic suitability and damage prevention potential of the bearing lubricant.
45
The intention is to run field verification trials and continue development of the lubricant right up through
market introduction
The project outcome would of course not have been
possible without productive collaboration between
industry and the university. 10 Bachelor’s theses, 4
Master’s theses and four doctoral dissertations were
completed during the project.
Economic, environmental and societal leverage
effect
Early bearing failure on wind turbines reduces the supply of CO2-free power and the expected environmental
and economic benefits. The excellent tribologic properties and intrinsic conductivity of the lubricant with IL
additive which was developed on the IL WIND project
inhibits the bearing failure mechanism and prevents
turbine downtime.
Less conventional fossil-based fuel is needed to compensate for the loss of generation capacity.
Project partners:
•
•
•
Merck KGaA
Schaeffler Technologies GmbH & Co. KG
Friedrich-Alexander-Universität ErlangenNürnberg
Assoziierter Partner:
• Senvion SE
Contact:
Prof. Dr. P. Wasserscheid
Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Chemische Reaktionstechnik
Egerlandstr. 3
91058 Erlangen
Tel.: +49 (0)9131 85-27420
Fax: +49 (0)9131 85-27421
E-Mail: [email protected]
46
ENERGY-EFFICIENT PROCESSING
LICIL – A New Process for Extracting Lignin,
Cellulose and Hemicellulose from Biogenic
Materials with the Aid of New Ionic Liquids
A new energy and resource efficient technique for
extracting lignin, cellulose and hemicellulose from
softwood and hardwood is currently under development. Pure ionic fluids (alkoxymethyleniminium salts)
which are able to solubilize lignin and hemicellulose
with relatively good selectively at 80°C were used initially. Difficulties which occurred when filtering out
the cellulose were resolved by adding co-solvents to
the solvent solution, but that had a negative impact on
selectivity and yield.
Researchers have now found out how and to what extent the constitution of the ionic liquids influences solubilization efficiency. Other organic solvents were also
identified which can be combined with the ionic liquids during solubilization. By varying the reaction conditions, the researchers demonstrated that qualitatively
and quantitatively the solubilization result is heavily
dependent on the process temperature. The sum of
these findings enabled the researchers to create solvent
solutions which only contain relatively small amounts
of ionic liquids. At temperatures between 80°C and
160°C and reaction times between 2 and 8 hours, the
solute – solvent ratio was in the range 1:2 - 1:5.
Project partners:
•
•
•
•
Hochschule Aalen
Universität Hamburg
J. Rettenmaier & Söhne GmbH + Co KG
Bayer Technology Services GmbH
Under these conditions, fibrous low-lignin cellulose,
syrupy hemicellulose and low molecular weight lignin
which dissolves in organic solvents can be extracted
nearly quantitatively from 1 kg of spruce wood chippings. As things stand now, approx. 200-250 g of lignin,
approx. 500-600 g of cellulose, approx. 200-250 g of
hemicellulose and 30-50 g of resin can be extracted
from 1 kg of chippings using this process. The industry
partners on the project (J. Rettenmaier & Söhne and
Bayer Technology Services) are currently evaluating
the usability of the lignins and cellulose which can be
extracted. Should the investigations produce a favorable outcome, industrials-scale trials will be run and the
plan is then to build a pilot system.
2 Bachelor’s theses and a Master’s thesis were completed during the project. Work on a doctoral dissertation
began when the project started and it is expected to be
completed by the end of 2014.
Contact:
Prof. Dr. Willi Kantlehner
Hochschule Aalen
Beethovenstr. 1
73430 Aalen
Tel.: +49 (0)7361 576-2152 oder (0)7366-6766
Fax: +49 (0)7361 576-2250
E-Mail: [email protected]
ENERGY-EFFICIENT PROCESSING
47
Utilization of Low-Temperature Heat with Absorption
Loops for Generation of Cooling Power and
Heat Transformation – New Material Pairings
Large low-temperature waste heat flows between
80°C and 120°C are generated in many industries (e.g.
chemicals, food and metallurgy). In the past, the heat
has simply been released into the surroundings, but
it actually has significant potential to reduce primary
energy consumption.
Higher solvent viscosity is one issue which needs to
be addressed. Also, the researchers want to increase
system power capacity. As a result, they are working on
the development of new material exchange subsystems
to increase efficiency without the need to add wetting
enhancers.
The goal of the project funded by the German Ministry of
Education and Research (BMBF) is to develop absorption loops with a power rating > 10 MW for proportionate transformation of the heat to a higher and useable
temperature or for chilling. The use of alternate material pairings incorporating ionic fluids creates opportunities to increase operating reliability and efficiency.
The researchers took on the task of identifying suitable
material pairings, collecting material data and conducting lab trials. The material data can be used to simulate
the heat loop and study the operating parameters.
Over the course of nearly three years, the consortium
members have identified a Dream Polymers which
look very promising. Thermo-physical data and simulation tools are used to design absorption loops and
compare different material pairings. By looking at the
internal heat and material transitions, the research
team is able to simulate what happens when external
loops are connected.
Fig. 1: Diagram of an absorption heat transformer
A fully operational pilot-scale (4 kW useful heat output)
absorption heat transformer was built at the Karlsruhe
48
ENERGY-EFFICIENT PROCESSING
Institute for Technical Thermodynamics and Refrigeration (KIT) - see Fig. 1. A water – ionic liquid material pairing is currently being evaluated on the system
under various operating conditions. The experimental
results are used to evaluate predictions generated by
a simulation program and interpret the differences.
New equipment design features with highly promising
operating characteristics have been built into the lab
system. A patent application is being prepared in partnership with API Schmidt-Bretten for the fluid distribution system of the new absorber.
In parallel, the suitability of a different absorber design
is under evaluation at BASF SE, and the suitability of
the new material pairing is also being assessed under
various operating conditions. The researchers have
identified additional heat sources and the company is
considering using the process at its integrated site in
Ludwigshafen as well as at other sites.
The ionic fluids can be regenerated and reused. Recycling would further reduce costs and enhance the
sustainability of the sorption system lifecycle. Manufacturers of sorption systems would not be the only
ones to benefit from the use of sorption technology to
recover waste heat. The technology could also create
new market opportunities for the recycling industry.
Given the magnitude of the potential opportunities,
demand for the materials would probably be measured
in tonnes.
Four Bachelor’s theses, two Master’s theses and three
degree dissertations were completed during the course
of the project, and the research has generated greater
interest in this approach to energy recovery. A doctoral
dissertation on absorption heat transformation using
the water - ionic fluid material pairing is being written
this year. Information on the research results was
shared with the scientific community on posters and
during talks at various conferences.
The results achieved at KIT so far indicate that megawatt range absorption heat transformers using the
material pairings which are currently under investigation could be economically viable. Measurements and
initial estimates by BASF SE suggest that the economic
advantages are more likely to be significant if operating
conditions are favorable. As energy costs continue
to rise and CO2 emissions regulations become more
stringent, absorption loops and heat flow integration
could become more attractive. Initial estimates indicate
that annual savings by 2030 could be in the region of
500,000 t CO2e.
Project partners:
•
•
•
•
Karlsruher Institut für Technologie (KIT)
API Schmidt-Bretten GmbH & Co. KG
IoLiTec Ionic Liquids Technologies GmbH
BASF SE
Contact:
Nina Merkel
Karlsruher Institut für Technologie (KIT)
Institut für Technische Thermodynamik und
Kältetechnik (ITTK)
Engler-Bunte-Ring 21
76131 Karlsruhe
Tel.: +49 (0)721 608 42733
E-Mail:[email protected]
ENERGY-EFFICIENT PROCESSING
49
SIT – Utilization of Low-Calorific Industrial Heat by
Means of Sorption Heat Pump Systems using Ionic
Liquids and Thermochemical Accumulators (SIT)
Project goals and content
Large volumes of heat are constantly being released by
German industry into the surroundings without being
used, either because the heat temperature is too low
or there is no need for the heat at the time when it is
available. In recent years particularly in the chemical
industry, the deployment of heat integration technology at integrated sites has increased production energy
efficiency to the point where further improvement will
not be possible without the introduction of innovative
technology.
Additional heat flows can only be utilized by bringing
them up to a useable temperature with the aid of a
heat pump. High-density chemical heat storage can be
used to store the higher-temperature heat and make
it available on demand in the form of thermal energy,
significantly reducing primary energy consumption
and greenhouse gas emissions.
Fig. 1: Scenario for utilizing low-calorie industrial waste heat.
New working fluid pairs based on ionic liquids are being developed for absorption heat pumps. By tailoring
suitable ternary working fluid pairings, it is possible to
enhance overall performance and create advantages
compared to conventional working fluid pairings.
Process engineering assessment and validation are carried out using pilot-scale heat pumps as well as commercially available heat pumps.
In order to develop a thermo-chemical heat storage
system with high energy storage density, the researchers are working to identify and evaluate suitable reac-
tion systems. A reactor design is being developed which
is optimized for these materials and is suitable for this
heat pump – heat storage combination. Development
of a pilot-scale heat storage system will provide the
basis for commercial upscaling at a later date.
Project status
The project came to an end on October 31st, 2013. Two
different working fluid pairings were identified for use
in absorption heat pump systems. These pairings are
suitable for different temperature ranges. The systems
have been used successfully on a demonstration-scale
and in commercially available absorption heat pump
systems. Lifecycle analysis was carried out for production of an ionic liquid based working fluid pairing
which reduces resource and energy consumption compared to conventional working fluid pairings. Possible
storage materials were evaluated for use in chemical
heat storage systems, and lab-scale testing was carried
out on a material which the
researchers identified. They also
identified and tested various
reactor designs for a chemical
heat storage system. Important
knowledge was gained during
the project, which provides a
foundation for further development of full-scale chemical
heat storage systems. A carbon
footprint estimate derived from
the research results provides a basis for gauging the
possible reduction in CO2 emissions and resource
consumption.
Economic, environmental and societal leverage
effect
As of 2007, 406 TWh of waste heat potential was available each year at industrial sites in Germany alone. If
this potential were exploited, it would be possible to
reduce primary energy consumption and greenhouse
gas emissions and also save money. That would give
Germany a competitive advantage as a business location
50
ENERGY-EFFICIENT PROCESSING
and generate long-term growth in the country. Development of thermochemical heat storage systems is still
at an early stage and it is not yet possible to operate
an absorption heat pump and heat storage system in
combination at full scale. The work done during the
project did however demonstrate that this technology
could create opportunities to reduce CO2 emissions.
Close collaboration between university research organizations and industrial partners created opportunities
to align innovative research with application-related
needs. Young scientists involved in the project completed 4 doctoral dissertations and a number of Bachelor’s
and Master’s theses.
Fig. 2: Chemical heat storage
test system (Source: DLR e.V.)
Project partners:
•
•
•
•
Evonik Industries AG
Friedrich-Alexander-Universität ErlangenNürnberg
Deutsches Zentrum für Luft- und Raumfahrt e.V.
(DLR)
GasKlima GmbH
Contact:
Dr. Jens Busse
Senior Project Manager – Sustainable Businesses - Upstream SolutionsCREAVIS – Science to Business
Tel.: +49 2365 49-86509
Fax: +49 2365 49-8086509
E-Mail: [email protected]
CO2 UTILIZATION
51
Dream Polymers – From Dream Production to
Dream Polymers – Sustainable Pathways to
New Polymers
The goal of the Dream Polymers project is to make
maximum use of carbon dioxide and renewables as
feedstock for polyol. Polyol is an important plastics
precursor. Bayer is playing the lead role in the consortium which brings together partners from industry and
academia.
The idea is to take carbon dioxide from a power plant
and use it directly and indirectly to make polycarbonate
polyols. The gas is reacted with a substance which in
turn is made from CO2. This can be done either through
direct chemical conversion of CO2 or by using renewable
feedstock.
Polyurethane, a highly versatile plastic, can be made
from the new polyols. PU is used as foam in many
everyday products such as cars, furniture, shoes and
building insulation material. The polycarbonate polyols
can also be used to make thermoplastics which potentially have new and highly attractive properties for
electrical/electronic applications, production of machinery parts, etc.
from 2010 – 2013. Thanks to Dream Polymers, it looks
like it will be possible to use another polymer precursor,
which is also made from CO2, in Dream Production. This
would reduce the carbon footprint of the input materials compared to conventional polyols made from fossil-based resources. The properties of these polymers
are currently being evaluated.
The RWTH Aachen University CAT Catalytic Center
(ITMC) and the Leibniz Institute for Catalysis at the
University of Rostock (Likat) are working closely with
the industry partners Bayer MaterialScience and Bayer
Technology Services. The project covers the entire
spectrum from basic research right through to largerscale production. RWE Power is another industrial
partner which is associated with the project.
The environmental impact of the processes developed
by the project partners and the expected reduction in
CO2 emissions are being evaluated by the Technical
Thermodynamics Department at RWTH Aachen
University.
To a certain extent, the project is an extension of the
publicly funded Dream Production project which ran
Project partners:
•
•
•
•
•
Bayer Technology Services GmbH
RWTH-Aachen – Fachgruppe Chemie – Institut für
Technische und Makromolekulare Chemie (ITMC)
Leibniz-Institut für Katalyse e.V. an der Universität
Rostock
Fraunhofer-Institut für Chemische Technologie
(ICT)
Bayer MaterialScience AG
Assoziierter Partner:
• RWE Power AG
Contact:
Dr. Martina Peters
Bayer Technology Services GmbH
Tel.: +49 (0)214 30 20063
E-Mail:[email protected]
Dr. Christoph Gürtler
Bayer Material Science AG
Tel.: +49 (0)214 30 21771
E-Mail:[email protected]
52
CO2 UTILIZATION
ACER – Sodium Acrylate from CO2 and Ethene
(Acrylates ex Renewables)
Challenges and Goals
The goal of the project is to utilize CO2 as a feedstock
through catalytic synthesis of sodium acrylate from
CO2, ethylene and a base. Sodium acrylate is an important basic material for high-performance polymers.
Superabsorbers used in diapers are the most obvious
example. Millions of tonnes of superabsorber polymers
are produced annually worldwide.
Acrylic acid is currently made in a two-stage reaction
from propylene which is produced from straight run
gasoline (Fig. 1). The technology, which is fossil-based
(oil), has been refined over a period of many years, and
it is the benchmark against which the material and
energy aspects of a potential new process will be
measured.
Fig. 1: Current state-of-the-art sodium
acrylate synthesis process and the
production process under investigation
in the ACER project
Project status
Since January 2011, researchers at the Catalysis Research Laboratory (CaRLa) which is supported by BASF,
hte AG (part of BASF), TUM in Munich and the University of Stuttgart have been working together on the
ACER project (Acrylates ex Renewables) to find ways of
using CO2 on an industrial scale for the production of
sodium acrylate. The process must be viable from both
the economic and environmental standpoint. Creating
this “dream reaction” is no easy undertaking. From the
engineering perspective, it is a “hard nut to crack”. 30
years of intensive academic and industrial research has
failed to provide an answer.
In the first year of the project, the team which included
catalyst researchers, theoretical chemists and chemical engineers identified a nickel-based catalyst which
Fig. 2: Catalyst screening system
CO2 UTILIZATION
53
makes it possible for the first time to combine CO2
and ethylene feedstock under industrially relevant
conditions. Various homogeneous and heterogeneous
candidate catalysts and process conditions were evaluated and optimized during high-throughput screening.
Different analytical techniques were employed to gain
a deeper understanding of the critical reaction steps.
Continuous improvements are being made to catalyst
performance and life. Initial superabsorber samples
were produced using representative reaction products,
and their properties were evaluated.
an established process for making ethylene from renewable bioethanol already exists, complete changeover of acrylate synthesis to a renewable feedstock base
would be feasible. The bioethanol feedstock can contain two CO2 equivalents, so a maximum 7.3 million
tonnes of CO2 could be utilized along this value-add
pathway if total global demand for acrylic acid were
satisfied using this technology. In addition, migrating
synthesis from propylene to ethylene could substantially reduce material, energy and fossil-based feedstock consumption and drive down investment costs.
Application, Exploitation of the Results, Economic
and Environmental Benefits
An expedient patent portfolio for the entire acrylate
value-add chain, from the catalytic process to polymerization, is being put together to protect the knowledge
gained during the project. The doctoral and post-doctoral candidates involved in the project regularly
present their scientific results at national and international conferences. Significant findings are published in
leading scientific journals.
The German Ministry of Education and Research (BMBF)
is providing 2.2 million euros in funding for the project.
BASF and hte are contributing an additional 1.7 million
euros over a period of three years.
If the results of the ACER project can be transferred
to industrial scale production and assuming a market
volume of around 4 million tonnes, roughly 2.4 million
tonnes of CO2 could be utilized as feedstock. Because
Information on the project is regularly shared with international opinion-making bodies from government
and industry.
Project partners:
Contact:
•
•
•
•
BASF SE
Universität Stuttgart
Technische Universität München
hte GmbH the high throughput experimentation
company
Dr. Michael Limbach
BASF SE
67056 Ludwigshafen
E-Mail: [email protected]
54
CO2 UTILIZATION
Valery – Energy-Efficient Synthesis of Aliphatic
Aldehydes from Alkanes and Carbon Dioxide:
Valeraldehyde from Butane and CO2
Utilization of CO2 in the production of high value-add
products cycles the greenhouse gas back into the value-add chain and creates access to an alternative non
fossil fuel based C1 carbon source. Carbon dioxide is an
attractive building block for chemical syntheses. It is
available at low cost and supplies are virtually unlimited.
However, CO2 is relatively inert, and conversion to high
value-add products presents a big challenge. There are,
however, some examples which demonstrate the feasibility of utilizing CO2 on an industrial scale.
+
H2
The vision of the Valery project is to develop new feedstock sources for the chemical industry. The researchers are looking in particular at CO2 and alkanes as
alternative carbon sources for industrial-scale production of high value-add products. The specific objective
is to find an alternative process to replace conversion
of olefins and carbon monoxide (CO) into aldehydes by
hydroformylation. Carbon dioxide (CO2) will be substituted for toxic carbon monoxide, and energy-efficient
dehydrogenation of alkanes will provide the source of
olefins. The researchers have chosen synthesis of valeraldehyde from n-butane as an example.
CO2/H2
O
Fig. 1: Energy-efficient syntheses of valeraldehyede from butane and CO2.
During the course of the project, the researchers have
been able to reproduce results described in the literature, and they have also been able to improve on those
results through specific optimization. In the case of
hydroformylation using CO2, introduction of a
new ligand class has increased throughput and improved selectivity. In the case of energy-efficient dehydrogenation, selectivity performance was greatly improved. In addition, a suitable combination of two ionic
fluids and a substrate material was used to stabilize the
Fig. 2: CO2 footprint of the new process compared to established technology.
CO2 UTILIZATION
55
hydroformylation catalyst system. Besides carrying out
a detailed investigation of both reactions, the researchers were able to run energy-efficient dehydrogenation
in a semi-continuous reactor setup. In the case of
hydroformylation using CO2, the reaction could be run
continuously with the immobilized catalyst system.
In parallel with the chemical investigations, an economic and environmental evaluation was carried out
on energy-efficient synthesis of valeraldehyde from
butane and CO2. Economic analysis shows that the use
of CO2 and butane as alternative feedstock for aldehyde
production can reduce feedstock cost by up to 47%.
Utilization of CO2 and butane increases feedstock flexibility and provides a secure source of aldehydes which
are a key intermediate in plasticizer synthesis. Looking
at the environmental impact, the CO2 footprint was estimated and compared with the established technology.
Cradle-to-grave analysis of CO2 emissions shows that
energy-efficient synthesis of olefins and subsequent
hydroformylation using CO2 can reduce the carbon
footprint of valeraldehyde by up to 61% compared to
established technology.
Project partners:
•
•
•
Evonik Industries AG
Universität Bayreuth
Leibniz-Institut für Katalyse e.V. an der Universität
Rostock
Contact:
Dr. Daniela Kruse
Evonik Degussa GmbH
Creavis Technologies & Innovation
Tel.: +49 (0)2365 49-9077
E-Mail:[email protected]
56
CO2 UTILIZATION
PhotoKat – Entwicklung aktiver und selektiver
heterogener Photokatalysatoren für die Reduktion
von CO2 zu C1-Basischemikalien
The goal of the research project is to find ways of reducing
atmospheric CO2 by using sunlight in a photocatalytic
reaction to recycle CO2, producing C1 building block
products for the chemical industry, in particular
methanol and methane. The researchers are working
on development of catalyst systems which are based
on semiconducting oxide composites and have high
photon yields. The catalysts need to be durable, readily
available and suitable for industrial-scale applications.
The preferred starting materials are TiO2 and ZnO
which are tested in catalyst systems that have varying
structures and compositions.
During the initial phase of the project, the team investigated in detail the physical and chemical properties of
the known photocatalyst system consisting of isolated
titanium species on SiO2 (TiOx/SiO2). Also, the system
was modified using gold as the co-catalyst. In photo-
catalytic test reactions, the importance of the Ti-O-Si
linkages for photocatalytic activity was very apparent.
Deposition of isolated zinc oxide species improved the
potentially inadequate adsorption of CO2 on the titanium species. Using literature data as the basis, the team
also developed and built a gas phase photo reactor
with an improved design at the Chemical Engineering
Department (Fig. 1). With this reactor, they were able
to carry out investigations under ultra-pure conditions
and collect reliable product formation data. Using gas
chromatography, it is possible to quantify hydrocarbon
concentrations down to a few ppm. Initial measurements on the known TiOx/SiO2 photocatalyst made it
very obvious that meticulous photocatalytic cleaning
of the samples is essential to prevent formation of contaminant products. Overall, the quality of the photocatalytic measurements performed in Bochum have
seldom been equaled anywhere in the world.
Fig. 1: Left: schematic diagram of the complete metal-sealed gas phase photo reactor with CF flanges (1), quartz window (2), VCR connections
(3), cooling jacket (4), sample compartment (5) and cooling circuit connections (6); right: photo of the actual reactor with valves and 200 W HgXe
lamp.
The results of activity measurements on photocatalytic
reduction of CO2 demonstrate that TiO2 and titanium
dioxide based systems generally produce higher hydro­
carbon yields than ZnO and the zinc oxide based
systems which have been tested so far. As a result,
the scientists concentrated their efforts on trying to
improve the activity of titanium oxide based systems.
With a maximum yield of around 100 ppm after 7 hours
reaction time, methane was invariably the main product.
The yields are comparable with those reported in the
literature by other working groups. Methane formation
was normally accompanied by the formation of small
amounts of other hydrocarbons. Methanol or other
oxygenates were not found. In a second CO2 reduction
experiment without intermediate purification, hydro­
carbon yields appeared to be higher (Fig.2a). The explanation for this appears to be that stable surface intermediates form on the TiOx/SiO2 during the first pass.
CO2 UTILIZATION
Formaldehyde was identified as one of the intermediates. Formation of CO could not be demonstrated using
the existing gas analysis technique. A methanizer is being added to the GC application. Deposition of gold on
57
the TiOx/SiO2 system doubled the activity. Twice the
amount of methane was formed in the same reaction
time. More long-chain hydrocarbons (ethane, propane,
butane) were also detected.
Fig. 2: a) Time sequence for methane formation on TiOx/SBA-15 and Au/TiOx/SBA-15 in two successive CO2 reduction experiments, each with
7 hours exposure time, uncorrected values. The samples were not purified between successive experiments. No GC product gas analysis after
7 hours was performed for Au/TiOx/SBA-15 in the first experiment. b) Hydrocarbon concentrations in the product gas after 5 hr exposure time
in two successive CO2 reduction experiments. The hydrocarbon yields were corrected to make provision for possible contaminants which could
remain in the catalyst even after purification.
Modifying the titanium system with zinc oxide also has
an influence on activity, but an increase in activity is
only observed if the ZnO is present in large aggregates
and is not isolated. This would seem to indicate that the
exact combination of zinc oxide and titanium species
has a crucial effect on activity. Investigation is currently
underway to clarify this aspect, and the researchers are
also looking at modification of the TiOx/SiO2 system
using gold and ZnO. With regard to reaction design,
the team was able to demonstrate that for all TiOx/SiO2
systems a significant excess of CO2 has a positive effect
on the hydrocarbon yield.
Because the yields shown by commercial titanium
dioxide are similar in magnitude to TiOx/SiO2, the
researchers are looking at surface doping to improve
charge carrier life and increase activity. Another objective is to stimulate activity in visible light. They were
able to demonstrate that surface doping with Sn2+ pro-
duces hole capture clusters on the surface which have a
positive effect on pigment decomposition and facilitate
absorption of visible light. TiO2 with Sn4+ and photodeposited Rh on the surface is a highly active catalyst
which promotes the production of hydrogen from an
aqueous methanol solution. Researchers are currently
investigating the activity of these photo catalysts in the
reduction of CO2.
The results were presented in one completed doctoral
dissertation and in two others which are currently being written. They were also published in international
scientific journals and discussed at conferences. There
is currently a need for basic research on photocatalytic
CO2 reduction. Because the reaction could help reduce
CO2 emissions, it is the subject of intensive international investigation, but the yields so far are not sufficient
for industrial-scale applications.
Contact:
Dr. Jennifer Strunk
Lehrstuhl für Technische Chemie
Ruhr-Universität Bochum
44801 Bochum
Tel.:
+49 (0)234 32-23566
E-Mail: [email protected]
www.techem.rub.de
58
CO2 UTILIZATION
COOBAF – CO2-Based Acetone Fermentation
Project goal
Project status
The goal is to develop a fermentation process for biotechnology production of acetone using acetogenic
microorganisms along with carbon dioxide (CO2) as
the sole carbon building block. To the extent possible,
the CO2 should be supplied from industrial waste gas
streams and used to produce acetone which is an important base product in the chemical industry. Industrial waste gas streams which contain carbon monoxide
(CO) and hydrogen (H2) as well as CO2 are particularly
well suited for cost-effective, sustainable production of
acetone in a fermentation process. Microbiological production of acetone from CO2-laden waste gas streams
could be an economically viable and environmentally
friendly alternative to the petrochemical production
pathway.
The first step in the project was to select suitable strains
of bacteria. The strains had to tolerate the gas mixtures including the toxic constituents and convert as
much of the CO2 in the gas as possible into natural
metabolites (e.g. acetic acid). The researchers tested 39
strains and identified suitable candidates in a two-stage
process. The graph in Fig. 1 shows the results of biomass-specific and volumetric acetate productivity of
autotropic cultivation for a) H2/CO2 and b) an industrial
waste gas stream. The results were used among other
things for strain selection.
Fig. 1: Strain screening of acetogenic bacteria strains
The next step was to insert the genes needed for acetone production into the selected strains, creating new
recombinant strains capable of producing acetone
from CO2. C13-marked CO2 was used to ensure that
the acetone is actually produced from CO2 rather than
from other media constituents.
The next step in development of a production strain
was strain optimization to enhance acetone productivity. This work is currently still in progress and will
continue right through to the end of the project.
Work proceeded in parallel on development and optimization of the fermentation process. The researchers
succeeded in transferring the fermentation process
from shake flasks to lab reactor scale and they also increased the amount of acetone produced by an order of
magnitude (see Fig. 2).
Cost-effective downstream processing which produces
optimized yields is a critical factor in a biotechnologyprocess, so work on this particular aspect began at an
early stage of the project. A methodology was developed
for recovery of the acetone from the fermentation
broth, and an initial process simulation was carried
out. Modifications to the downstream process over
the course of the project improved yields to the point
where industrial feasibility could be envisioned.
CO2 UTILIZATION
59
Fig. 2: Comparison between cultivation of a
recombinant acetogenic strain (with CO2 as
the only carbon source) in a shake flask and
a lab fermenter
The economic viability of acetone production using
CO2 as the sole carbon building block and H2 as an energy source will depend heavily on the productivity of
the overall process. The researchers have continuously
improved acetone productivity during the project, but
before the process can be used in industry, a further
substantial productivity increase will be needed. The
acetone productivity and selectivity of the CO2 based
acetone production process will have to be further optimized to make industrial scale-up feasible. That will
have to take place systematically on a pathway leading
from lab bench and test systems to pilot and industrial
production. Besides process enhancement, more work
will be needed to improve the genetically modified
strain.
CO2 emissions could be reduced by more than 1000 kt.
An initial lifecycle analysis (LCA) of the biotechnology
process taking the factors mentioned above into account indicates an overall reduction of CO2 emissions.
Compared to the existing petrochemical process, emissions would be cut by at least 0.3 kg CO2/kg acetone
even in a conservative scenario. Once again, the size of
the emissions reduction is directly related to acetone
productivity.
8 Bachelor’s theses and 3 doctoral dissertations are
expected to be completed during the course of the
project.
Economic, environmental and societal leverage
effect
Leaving aside yields, substitution of thermal energy
and the cost of biotechnology production, the process
has the potential to eliminate 1.7 kg CO2/kg acetone.
If only 10% of current annual acetone production
(6 million tonnes) were migrated to the CO2 process,
Project partners:
•
•
•
Evonik Industries AG
Universität Rostock
Universität Ulm
Contact:
Dr. Jörg-Joachim Nitz
Paul-Baumann-Str. 1
D-45764 Marl
Tel.: +49 (0)2365 49 4882
E-Mail:[email protected]
60
CO2 UTILIZATION
OrgKoKAT – New Organocatalysts for Utilization of
CO2 as a Building Block for Chemical Synthesis
The researchers carried out intensive investigations on
different catalysts in four sub-projects: cyclic carbonic
acid esters (SP1), polycarbonates (SP2), b-Keto and
b-hydroxy carboxylic acid derivatives (SP3) and
a-unsaturated carboxylic acids (SP4) - see Fig. 1.
The objective of the OrgKoKat project is to find ways
of using carbon dioxide as an alternative, sustainable
C1 source for high value-add industrial products. The
main emphasis is on development of highly active and
selective catalyst systems for chemical fixation of CO2.
O
R
O
O
oder
O
R
R
R
TP1
CO2H
O
R
R
O
O
O
R
R
TP4
n
TP2
CO2
m
O
R
R
TP3
O
R
R
O
CO2H
R
Fig. 1. Utilization of CO2 through direct chemical fixation. See posters TP1: Hydroxy-Phosphoniumsalze – Aktive Organokatalysatoren zur
Synthese zyklischer Carbonate, H. Büttner, T. Werner*, 08 April 2014, Königswinter; TP2: Entwicklung neuer Katalysatorsysteme zur Synthese
von Polycarbonaten, A. Pommeres, W. Desens, T. Werner*, 08 April 2014, Königswinter; TP3: Carboxylierung CH- acider Verbindungen mittels zwitterionischen Imidazoliumcarboxylaten, W. Desens, T. Werner*, 08 April 2014, Königswinter.
The results so far from sub-project 1 look very promising. The catalyst used for synthesis of cyclic carbonates
has two different functionalities in the molecule. The
bi-functional organocatalysts are particularly active
and in contrast to their mono-functional equivalents
they are able to promote synthesis of cyclic carbonate
under very mild reaction conditions. Two classes of
bi-functional organocatalysts have been identified.
Lifecycle analysis using the most active catalyst was
carried out to assess the possible environmental impact
of glycerol carbonate methacrylate (GCMA) synthesis.
This product is of interest to industry because it is an
excellent polymer building block.[1]
Lifecycle analysis is focused particularly on the Global
Warming Potential (GWP) of the greenhouse gas emissions expressed in kg CO2e per kg of product. Stoichio­
metric analysis shows fixation of 148 g CO2 per kg
GCMA in the target compound. Looking at the carbon
footprint, utilization of CO2 equates to between 3% 6% of total emissions depending on the epoxide source.
Besides a number of different terminal epoxides, the
researchers also investigated the formation of cyclic
carbonates from internal epoxides and CO2. Fatty acid
carbonates are ideally suited as plasticizers in plastics
as well as for biomedical applications and they are also
regarded as potential fuel additives[2].
[1] a) D.-W. Park, J.-Y. Moon, H.-J. Jang, K.-H. Kim, React. Kinet. Catal. Lett. 2001, 72, 83–92; b) N. Kihara, T. Endo, Makromol. Chem. 1992, 193, 1481–1492.
[2] a) K. M. Doll, S. Z. Erhan, J. Agri. Food Chem. 2005, 53, 9608–9614; b) G. Rokicki, Prog. Polym. Sci. 2000, 25, 259–342; c) J. Langanke, L. Greiner, W. Leitner,
Green Chem. 2013, 15, 1173–1182; d) B. Schäffner (Evonik Industries AG) Presentation at 2nd International Scientific Forum on CO2 Chemistry and Biochemistry, Lyon, September 27–28, 2012.
CO2 UTILIZATION
61
The researchers also developed a cooperative catalyst
system which delivers high throughput and high selectivity for the desired target compounds. The system
is relatively simple and commercially available. The
researchers are currently investigating the immobilization of catalysts for insertion of CO2 into epoxides.
It is easier to recycle the catalysts if they are deposited
on suitable carriers, and catalytic activity remained
nearly the same in ten successive reactions. The heterogeneous catalysts are particularly well suited for transfer from batch reactors to a micro reactor.
Project partners:
Contact:
•
•
•
Leibniz-Institut für Katalyse e. V.
an der Universität Rostock
Bayer Technology Services GmbH
Creavis Technologies & Innovation
During the course of the project, 2 degree theses and
1 Bachelor’s Thesis have been completed and work on
3 doctoral dissertations is in progress. There were also
three postdoctoral internships.
Dr. Thomas Werner
Leibniz-Institut für Katalyse e. V.
an der Universität Rostock
Albert-Einstein-Str. 29a
18059 Rostock,
E-Mail:[email protected]
62
CO2 UTILIZATION
ECCO2 – Electrochemical CO2 Reduction Project –
High-Throughput Search for new Electrocatalysts
The team of scientists on the ECCO2 Project is exploring electrochemical pathways for conversion of CO2
into high-grade chemical products for energy storage
and synthesis of building block chemicals. The project
is funded by the German Ministry of Education and Research. Practical demonstrations have shown that production of methane and methanol using this technique
is feasible in principle, but how reaction conditions and
the materials used affect fundamental reaction mechanisms is not sufficiently understood. The research team
is attempting to significantly improve catalyst performance beyond the current state of the art by using special high-throughput electrochemical screening which
enables them to run a large number of experiments in
a short space of time. This is essential due to the very
large range of operating parameters, which is typical of
electrochemistry in general and CO2 reduction in particular. Beyond enhancing the speed and reliability of
online Produktanalytik
(Selektivität der Reaktion)
the investigations, the team is using additional complementary techniques, for example combining electrochemistry with online element analysis, to generate
more detailed data. Based on this new approach, the
researchers are trying to gain an in-depth understanding of electrochemical CO2 reduction and also oxygen
evolution which is the other half-reaction. They intend
to use the results to develop new active, stable, selective
catalysts.
Project Status
During the first two years of the project, the team
developed a new high-throughput catalyst screening
and online analysis setup (Fig. 1). The core element is
an electrochemical cell (Scanning Flow Cell) with flow
system and fully automatic positioning. The SFC can be
used to scan the surface of a sample and carry out local
2mm
elektrochemische Untersuchung
(Katalysatoraktivität)
online-Elementanalytik
(Katalysatorstabilität)
Fig. 1: Schematic representation of the new experimental setup using an electrochemical flow cell (top right) for high-throughput screening
(bottom
right)
with online electrolyte analysis (left).
Mittwoch,
5. coupled
März 2014
CO2 UTILIZATION
electrochemical investigations. This makes it possible
to quickly evaluate different operating conditions
with minimum effort using a homogeneous sample
and ensure that the starting conditions are the same by
repositioning the cell. This is important if, for example,
corrosion or poisoning alters the surface of the catalyst
during the course of the reaction. With the cell, it is also
possible to carry out combinatorial investigations on
material libraries under comparable operating conditions, for example to quickly identify ideal catalyst
compositions. The ability to evaluate the activity of catalyst materials along with their stability in electrolytes
63
and their selectivity for the desired reaction products is
a particularly attractive feature of this technology. This
is accomplished by directly linking the SFC to instrumentation which analyzes the product stream. Element
analysis using inductively coupled plasma (ICP-MS) is a
unique development.
Fig. 2 shows a small excerpt from the very extensive set
of results delivered by this approach. The effect of the
applied voltage on reduction of CO2 to methane and
methanol on a copper catalyst and the stability of copper in dilute acidic electrolytes can be seen in these ex-
Fig. 2: Top: Product analysis of hydrogen, methane, ethylene and methanol evolution during cyclic voltammograms at a copper electrode.
Bottom: Example of element analysis showing the dissolution behavior of a copper electrode
64
amples. The SFC is currently being used to test different
material libraries under varying conditions to gain an
understanding of the complex interrelationships. Based
on the results, the researchers will evaluate the best
catalysts which they have found by running individual
tests in actual reactors.
Future Potential
Given the initial starting point, this project is by necessity focused on basic research. As a result, it is not yet
possible to estimate the potential economic, environmental and societal effects of CO2 utilization based
on this technology. The technical developments and
results to date show the enormous benefits of this
CO2 UTILIZATION
approach for achieving a deeper understanding of
important electrochemical processes. It also highlights
the benefits which further investigation could have for
important related areas of technology such as energy
conversion (e.g. water electrolysis and fuel cells) and
corrosion in general. A number of high-profile articles
have been published in leading international journals
such as Angewandte Chemie and Science. The project
has given a number of young scientists the opportunity
to work on their Master’s theses and doctoral dissertations. They will be able to pass on the knowledge they
have gained to industry. In addition, by bringing new
knowledge to the attention of the general public, the
project promotes the development of various sustainable
technologies.
Contact:
Dr. Karl J.J. Mayrhofer
Abteilung für Grenzflächenchemie und
Oberflächentechnik,
Max-Planck-Institut für Eisenforschung GmbH
Max-Planck-Straße 1
40237 Düsseldorf
Tel.:
+49 (0)211 6792-160
Fax:
+49 (0)211 6792-218
E-Mail: [email protected]
CO2 UTILIZATION
65
FfPaG – Gas to Liquids and Solids
The goal of the project is to develop a conceptual design for a pilot system which uses a new technique to
produce liquid and solid products from gas (GTL and
GTS). The technique involves pyrolytic breakdown of
natural gas into hydrogen and carbon, catalytic conversion of the hydrogen together with CO2 to produce
syngas (CO2 activation) and formulation of the carbon.
In the chemical industry and in fuel production, the
hydrogen can be used either directly or as syngas fol-
lowing CO2 activation. The carbon is potentially a high
value-add input material for a variety of coke and steel
production applications.
Utilization of the carbon reduces coal consumption in
the coking and blast furnace process, mitigating the
total carbon footprint and substantially enhancing the
competitiveness of the new technique.
Fig. 1: Block diagram of the GTL/GTS process
Fig. 1 shows a block flow diagram of the new technique.
The process stages are methane pyrolysis, carbon
formulation and catalytic CO2 activation using the
Reverse Water-Gas Shift Reaction (RWGS).
and hydrogen in a mass ratio of 3:1. The quantity of
carbon produced is sufficient for industrial utilization,
for example as a blending agent for coke assuming it
meets the quality requirements.
Cross-industry collaboration ensures that a carbon
product which meets the requirements of the coke and
steel industry will be a suitable replacement for coal. If
energy integration can be optimized to minimize CO2
emissions resulting from the supply of energy for the
endothermic pyrolysis process, the CO2 mitigation factor will be in the region of 50% for hydrogen production. CO2 utilization in CO2 activation for the production of syngas has even greater mitigation potential.
The technology protects and enhances the competitiveness of participating companies in the hydrogen
and syngas market. Plant construction, catalyst pro­
duction and sales, engineering and scientific service
activities provide job security. The technique creates
the need for new types of systems and instrumentation.
The list includes reactors, temperature measurement,
infeed and discharge systems and carbon formulation
equipment, much of which will be developed by
mid-tier companies. Marketing on a broad scale can
be expected to create new market opportunities. From
the scientific perspective, utilization involves coke, iron
and steel, chemical engineering and process engineering and enhances interaction between these disciplines.
The research objective is to provide a source of hydrogen
and syngas with a small CO2 footprint. The products
are intended for the chemical industry and future
mobility applications. The carbon produced will also be
utilized. Coke is currently the most widely used form
of carbon. Worldwide demand for coke is currently
estimated at around 1 billion t/a. Global demand for
hydrogen and syngas is 50 million t/a and 220 million
t/a respectively. Methane pyrolysis produces carbon
The three-year project got underway in July 2013 and is
currently proceeding on schedule. The initial analysis
and specification phase for the GTL/GTS process has
been completed and forms the basis for subsequent
66
CO2 UTILIZATION
project work. In parallel, preliminary trials on hightemperature pyrolysis and heating systems are being
conducted to gain experience and provide a reliable set
of data for the pilot systems which are currently at the
planning stage or under construction. Initial pyrolysis
trials to produce samples in significant quantities are
planned for 2014. Development trials for CO2 activation catalysts are proceeding according to plan.
Project partners:
•
•
•
•
•
•
•
BASF SE, Ludwigshafen
hte AG, Heidelberg
Linde AG, Pullach
ThyssenKrupp Steel Europe AG, Duisburg
ThyssenKrupp Uhde GmbH, Dortmund
Technische Universität Dortmund, Lehrstuhl für
Chemische Verfahrenstechnik, Dortmund
VDEh-Betriebsforschungsinstitut, Düsseldorf
Contact:
Dr.-Ing. Andreas Bode
BASF New Business GmbH
4. Gartenweg – Z025
67063 Ludwigshafen
CO2 UTILIZATION
67
DMEEXCO2 – Integrated Dimethyl Ether Synthesis
from Methane and CO2
Project goal
The goal of the project is to develop a single-stage, heterogeneous catalyzed process for synthesis of dimethyl
ether (DME) from carbon monoxide rich syngas which
may contain CO2. The process design will include substance and energy integration into the upstream syngas
Due to reduced energy demand resulting from the
process thermodynamics, the new technology has a
CO2 mitigation potential of around 30% (125 kg CO2
per tonne of DME) compared to the current state-ofthe-art process with an intermediate methanol stage.
Taking into consideration the specific process energy
and heat consumption and elimination of the need for
an energy-intensive supply of pure oxygen, dry reforming and utilization of the CO2 increase the CO2 mitigation potential by an additional 125 kg CO2 per tonne
of DME. The process can be expected to reduce total
specific CO2 emissions by around 60% compared to the
current state of the art.
stage. “Dry” (CO2) reforming of methane is one of the
assumptions made in the process simulation for this
stage. The large amount of hydrogen needed to activate
the CO2 is already present in the process in the methane feed component and does not have to be supplied
from an external source. The diagram below shows the
process concept in highly simplified form:
Single-stage synthesis of DME from syngas is a markedly exothermic reaction. The research team is looking
at running the reaction in a slurry bubble column reactor which creates the option of isothermal operation.
A pilot system to explore that possibility as well was
started up in Q4/2013. Initial results indicate that this
process variant is feasible, but a final evaluation has not
yet been completed.
Basic mechanistic research is underway to determine
the best way of fabricating the multi-function catalyst
system. The options include a physical mixture of multiple catalysts and catalysts in which the various functions are atomically dispersed right next to each other.
Project status
Two catalyst formulations were identified during
high-throughput screening, and catalyst molds have
been fabricated. Since Q4/2013, the researchers have
been running long-term tests on a new tube reactor
test bed. Several hundred hours of testing have confirmed the screening results. In parallel with catalyst
screening, complete material and heat integrated
process simulations were run for the new process and
for current 2-stage state-of-the-art DME synthesis. The
catalyst design reflects the simulation results, particularly as they relate to the optimal temperature operating
window.
Economic, environmental and societal leverage
effect
The only way to significantly reduce anthropogenic
CO2 emissions is to change our consumption of fossil
fuels which contain carbon. Due to its physical properties profile, dimethyl ether appears to be a good candidate. It is already widely used in Asia as an LPG substitute. Due to its combustion characteristics, DME is a
very good alternative to diesel and it has much lower
soot particle emissions (www.aboutdme.org). Compared to the 2-stage process using the methanol pathway, CO2 emissions from a DME plant with a capacity
68
CO2 UTILIZATION
of 1 million tonnes which uses the single-stage process
could be reduced by up to 0.25 million
tonnes.
of CO2 in the dry reforming material stream would
eliminate the need for costly separation of the CO2
from the biogas.
The CO2 footprint of the process could be further reduced by obtaining the energy needed for the process
from renewable sources. The process can be coupled to
biomass-based syngas production. Production of a CO/
H2 mixture through gasification is conceivable as well
as direct upgrading of biogas (CO2/CH4) in place of
biomass gasification, utilizing both C sources. Utilization
The project has provided a framework for three doctoral dissertations on process simulation, kinetics and
catalyst development at partner academic institutions.
One Master’s Thesis has already been completed. A
number of students have supported or added to the
project with their scientific contributions.
Contact:
Dr. Ekkehard Schwab
Chemicals Research and Engineering
BASF SE
D-67056 Ludwigshafen/Rhein
E-Mail:[email protected]
Technische
Universität
München
CO2 UTILIZATION
69
SCOT – Smart Carbon Dioxide Transformation
Sustainability and Climate Protection – Chemical Processes and Use of CO2“ program, DECHEMA has played
a key role at the interface between government, science
and industry and in communicating with the outside
world.
Since March 1st, 2014 DECHEMA has been one of the
contributors on the EU FP7 funded SCOT (Smart Carbon Dioxide Transformation) project. The coordination and networking action is the first European CO2
utilization initiative. Partners from Belgium, France,
Holland, Germany and the UK are working together to
increase the emphasis on CO2 utilization in European
research funding programs, and one of the things they
are doing to achieve that is to put together a European
research agenda. For implementation of the research
activities, one of the priorities is to single out regions
where real potential exists to make meaningful progress.
Through its involvement in the CO2Net project which
provides scientific support for the “Technologies for
Fig. 1: Funding program status conference
Since 2010, DECHEMA has been the program’s public
voice. It has tracked and supported the projects to
identify possible synergies. It has also kept an eye on
national and international developments which are
relevant to the various aspects of the research program.
The development of recommendations on the future
roadmap is another important contribution made by
the support project.
70
DECHEMA also organizes status seminars and crossfunctional workshops.
This includes a series of workshops dedicated to development of a common methodology for assessing the
carbon footprint of CO2 utilization and the associated
products. With DECHEMA acting as moderator, scientists and the business community reached agreement
on a common approach. The results of the meeting will
soon be made available to all of the program projects.
CO2NET already provides a good networking environment, creating linkages between most of the national
entities which are involved in CO2 utilization, and the
network is continually expanding. Involvement in the
SCOT Initiative expands the networking horizon at the
European level. A number of other European regions
are involved in the Initiative, creating a triple helix
which brings together the scientific, business and government communities and acts as a catalyst to promote
the development and intensification of the SCOT
agenda in Europe. The exchange of expertise at all
levels creates opportunities for faster implementation
of CO2 management technologies which appear to
have high potential.
SCOT – Smart Carbon Dioxide Transformation
BMBF expressly supports knowledge transfer and
DECHEMA’s membership in the SCOT consortium as
well as European expansion of the CO2NET network.
The SCOT consortium action plan:
•
Define a strategic European research roadmap
•
Attract additional clusters, regions and investors to
take part in multi-disciplinary research programs
and joint projects
•
Produce recommendations on a European funding
policy for SCOT research. The overall objective is
to bring about a paradigm change in mindsets and
highlight the role of CO2 as a raw material.
Networking within the professional community in
Germany is already very well established. A further
extension to link into international networks will
benefit everyone involved. DECHEMA is ideally placed
to foster networking within the research community
in Europe or even worldwide.
Contact:
Dr. Alexis Bazzanella
DECHEMA e.V.
Theodor-Heuss-Allee 25
60486 Frankfurt am Main
Tel.: +49 (0)69 7564-343
E-Mail: [email protected]
Dennis Krämer
DECHEMA e.V.
Tel.: +49 (0)69 7564-618
E-Mail: [email protected]
SCOT – Smart Carbon Dioxide Transformation
71
The European Horizon 2020 Research and
Innovation Framework Program
Climate Protection, Environment, Resource Efficiency
and Raw Materials – a Societal Challenge
Raw materials are an important aspect of the European
Horizon 2020 Research and Innovation Framework
Program. The focus area “Waste A Resource to Recycle,
Reuse and Recover Raw Materials“ is dedicated to this
specific issue. In providing the funding, the EU Commission is pursuing a number of goals. Besides reducing
or avoiding waste, the Commission wants to support
the search for innovative ways of using waste as raw
material for new products. Raw material recycling is
another key aspect. Moreover, alternatives are needed
for critical raw materials (for which Europe has no
secure source of supply).
SC5 (Societal Challenge 5) sub call Growing a Low Carbon,
Resource Efficient Economy with a Sustainable Supply
of Raw Materials also addresses the raw materials issue.
The Calls for Proposal are closely related to the European EIP Raw Materials research agenda. The intention
is to promote the competitiveness of European companies and provide motivation for faster implementation
of the results from research on innovation in the field
of raw materials.
The issue of CO2 utilization also appears in a number of
other societal challenge calls (SC2 Bioeconomy,
SC3 Energy, SC4 Transport). Relevant calls for 2014
(with deadlines later than April 2014) and 2015 are as
follows:
Call: Sustainable and competitive bio-based industries
ISIB-06-2015 Converting CO2 into chemicals
(Research and Innovation Action; Deadline 24.02.2015)
Call: Enabling the decarbonisation of the use of fossil
fuels during the transition to a low-carbon economy
LCE-15-2015 Enabling decarbonisation of the fossil
fuel-based power sector and energy intensive industry
through CCS
(Research and Innovation Action; Deadline 03.09.2014)
The deadline for most of the 2014/2015 Work Program
submissions was April 8th, 2014 so they are not included in the following list. The following items related to
CO2capture, utilization or emissions avoidance are not
yet included in the current Work Program or are still
open (as of March 3rd, 2014):
Call: Waste – A Resource to Recycle, Reuse and
Recover Raw Materials
WASTE-4d-2015 Raw materials partnerships
(CSA; Deadline 10.03.2015)
WASTE-6a-2015 Eco-innovative solutions
(Innovation Action; Deadline 16.10.2014)
WASTE-6b-2015 Eco-innovative strategies
(Research and Innovation Action; Deadline 16.10.2014)
72
WASTE-7-2015 Ensuring sustainable use of agricultural
waste, co-products and by-products
(Research and Innovation Action; Deadline 16.10.2014)
Call: Growing a Low Carbon, Resource Efficient
Economy with a Sustainable Supply of Raw Materials
NATIONAL CONTACT OFFICE NCO
Further information on the calls can be accessed at
(http://ec.europa.eu/ research/participants/portal/
desktop/en/home.html). You will find all of the associated documentation there. This is also the portal to use
for online submissions.
SC5-04-2015 Improving the air quality and reducing
the carbon footprint of European cities
(Research and Innovation Action; Deadline 16.10.2014)
SC5-05b-2015 Coordinating and supporting research
and innovation for climate action
(CSA; Deadline 10.03.2015)
SC5-11 -2015 New solutions for sustainable production
of raw materials
(Research and Innovation Action; Deadline 10.03.2015)
SC5-11c-2015 Deep mining on continent and in sea-bed
SC5-11d-2015 New sustainable exploration technologies and geomodels
SC5-11e-2015 New metallurgical systems
SC5-12b-2015 Innovative and sustainable solutions
leading to substitution of raw Materials: Materials
under extreme conditions
(Research and Innovation Action; Deadline 10.03.2015)
SC5-13 -2015 Coordinating and supporting raw
materials research and innovation:
(CSA; Deadline 10.03.2015)
SC5-13c-2015 Innovation friendly minerals policy
framework
SC5-13d-2015 Raw materials research and innovation
coordination
SC5-13e-2015 Raw materials intelligence capacity
SC5-13f-2015 Strategic international dialogues and
cooperation with raw materials producing countries
and industry
SC5-20-2014/2015 Boosting the potential of small
businesses for eco-innovation and a sustainable
supply of raw materials
(SME-instrument (70%); cut-off-dates)
Advice on SC5 topics including environmental research,
raw materials and waste is available from the National
Contact Office for the Environment. An individual
advisory service providing assistance from the initial
outline right through to the completed application is
also available free of charge. This is a good place to obtain suggestions for improvement prior to submission.
Other services including the newsletter and partner
search are available at www.nks-umwelt.de.
Place to contact:
Persons to contact:
Nationale Kontaktstelle Umwelt
Projektträger Jülich, Forschungszentrum Jülich GmbH
Standorte:
Bonn:
Godesberger Allee 105-107, 53175 Bonn
Tel.: 0228 60884 214
Berlin:
Zimmerstr. 26-27, 10969 Berlin
Tel.: 030 20199 3215 (Erstberatung)
Dr. Andreas Volz
Tel.: 0228 60884-214
E-Mail:[email protected]
www.nks-umwelt.de
NATIONAL CONTACT OFFICE NCO
73
M4CO2 – Energy efficient MOF-based Mixed Matrix
Membranes for CO2 capture to Below € 15/Tonne
The EU is providing €10 million in funding to a consortium of 16 partners who have taken on the task of
developing energy-efficient technology to capture CO2
from power plant and industrial emissions. Delft University of Technology (TU Delft) is acting as coordinator on the M4CO2 (Energy efficient MOF-based Mixed
Matrix Membranes for CO2 Capture) project. DECHEMA is providing management support. The M4CO2
research consortium is working on the development
of continuous CO2 capture systems based on metal organic frameworks and high-performance membranes.
Capture can be pre- or post-combustion. The four-year
project got underway in January 2014, and the source
of the funding is the European Union Seventh Framework Programme.
Current forecasts indicate that global energy consumption will increase by 53% between 2008 and 2035. Annual carbon dioxide emissions from power generation
are expected to increase from 30.2 billion tonnes to 43.2
billion tonnes during the same period. Strong economic growth and intensive use of fossil-based resources
are the factors which are driving this trend. Mitigation
of anthropogenic greenhouse gas emissions including
carbon dioxide presents a major challenge in the battle
against climate change. The use of CO2 capture technology to reduce carbon emissions from point sources
such as power plants and other energy-intensive facil-
ities could make a significant contribution to climate
protection. The goal of the consortium, which brings
together some of the world’s leading companies and
research organizations, is to use innovative membrane
technology for continuous capture of CO2. Absence of
the gas-liquid phase avoids energy losses and reduces
the CO2 footprint, bringing unprecedented levels of energy-efficiency within reach. Gas separation membrane
units are safer and have a lower environmental impact
than other technologies such as amine stripping.
Using the highly selective membranes, CO2 capture is
feasible at costs below € 15/tonne CO2 (approx. €10-15
/MWh), which is significantly below the targets defined
in the European SET (Strategic Energy Technologies)
plan, which demands to separate 90% of the CO2 at a
price below 25 €/MWh.
The M4CO2 consortium promotes scientific exchange
beyond the borders of Europe. Close linkages with
Australian initiatives are planned.
Companies and research organizations which are leaders
in membrane, polymer and reaction technology are
members of the consortium. Total (France), Johnson
Matthey (UK), Polymem (France), Technalia (Spain) and
HyGear (Holland) are the major industry partners.
Contact:
Freek Kapteijn
University of Technology Delft
Catalysis Engineering
Deutschland
Tel.:
+31 15 278 6725
E-Mail: [email protected]
74
EUROPEAN PROJECTS
CyclicCO2R: Production of Cyclic Carbonates from
CO2 using Renewable Feedstocks
The aim of the CyclicCO2R consortium project
(NMP.2012.2.1-2: Fine chemicals from CO2) is to find
ways of utilizing CO2 in sustainable production of
chemicals, particularly fine chemicals. The researchers
are concentrating their efforts on syntheses of cyclic
carbonates. Due to the broad application spectrum
including Li-ion battery electrolytes, coatings, green
solvents, additives in the cosmetics industry and intermediates in chemical synthesis, these products are
attracting an increasing level of attention.
The CyclicCO2R project is working on development
of a continuous process for production of industrially
relevant cyclic carbonates such as glycerol carbonate,
with CO2 and glycerol as the main feedstocks. Large
amounts of glycerol are currently available from biodiesel production. The economic and environmental
performance of the new process should be comparable
to an established industrial process.
To achieve the projects goals, three routes are being
investigated in parallel
1. Synthesis of glycerol carbonate directly from CO2
and glycerol
2. Synthesis of glycerol carbonate indirectly by addition of CO2 to an epoxide (glycidol)
3. Synthesis of glycerol carbonate and other intermediates directly from CO2 and water using CO2-neutral
energy sources (e.g. photochemical and electrochemical)
In order to achieve the project goals, there are two
essential milestones which have to be reached: 1.)
synthesis and optimization of a reusable high-performance catalyst which delivers the necessary separation performance and 2.) development of an efficient
process which provides a net reduction in CO2 emis-
Consortium partners and contacts:
E. Kimball, C. Schuurbiers, J. Zevenbergen, TNO, Netherlands
S.F. Håkonsen, R. Heyn, SINTEF, Norway
W. Offermans, W. Leitner, M. Picard, T.E. Müller, RWTH Aachen University, Institute for Technical and
Macromolecular Chemistry and CAT Catalytic Center, Germany
G. Mul, University of Twente – MESA+ Institute for Nanotechnology, Netherlands
M. North, Newcastle University, United Kingdom
A. Metlen, A-F. Ngomsik, FeyeCon Carbon Dioxide Technology, Netherlands
E. Sarron, Ó. Sigurbjörnsson, Carbon Recycling International, Iceland
B. Schäffner, CREAVIS – Science to Business, Evonik Industries AG, Germany
EUROPEAN PROJECTS
75
sions compared to the established benchmark. Catalyst
development is a multi-stage process which leverages
the diversity of expertise which the project partners are
able to contribute (high-throughput screening, catalyst
design & modelling). Intensive information sharing
between the catalyst and process development teams
promotes development of the new process. The initial
process development task is to model and discuss
various reactor types before building a suitable reactor.
Following a test phase, development work will continue on a small-scale reactor. The design will accommo-
date improved catalysts and other process steps. Over
the life of the project, the researchers will explore other
routes for utilization of CO2 and water and review
current literature on all aspects of the project. They will
also define and continually assess the general economic
and environmental framework.
3 universities, 3 companies and two of Europe’s largest
research organizations are taking part in the CyclicCO2R
project.
Partner:
Projektkoordinator:
76
poster
77
Verbundprojekt „Alkalische P2G-Elektrolyse“
- Ziele, Status der Arbeiten, erste Ergebnisse Andreas Brinner, Verena Kindl, Ulli Lenz, Stefan Steiert, Michael Specht
Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)
Industriestraße 6, 70565 Stuttgart
Telefon: ++49 (0)711-7870-338, Fax: -200, E-Mail: [email protected]
• Investigate the systematically lower
Projektstruktur & Ziele
VOC of the ZnS/(Zn,Mg)O cells
Arbeitsfelder des Elektrolyse-Projektes
• Study the carrier collection properties,
§Druckelektrolyseblock
Elektrodenpackage
space
charge width and &
charge
density
of
the ZnS
and CdS
& Betrieb
300devices
kWel Systemdemonstrator
§Bau
Conclusion
§Gleichrichter,
Hilfs-/ Sicherheitssysteme
§Steuerungssystem & Automatisierung
Solar Cell Parameters
§System-Modularisierung
& Simulation
§Thermische Optimierung
• ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers
• I-V analysis under AM 1.5G and EQE without background illumination
• Electron beam induced current measurements in junction configuration (J-EBIC)
• Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking
• The gain in jSC (350 - 550 nm) is accompanied by a reduced VOC for our ZnS cells.
J-EBIC Geometry
§Kostenanalyse zur industriellen Umsetzung
• Investigate the systematically lower
VOC ofSystemsimulation
the ZnS/(Zn,Mg)O cells
&
Komponentenauslegung
• Study the carrier collection properties,
• ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers
• I-V analysis under AM 1.5G and EQE without background illumination
• Electron beam induced current measurements in junction configuration (J-EBIC)
space charge width and charge density
§ Verwendung Simulationstool IPSEpro zur Lösung von Massen- und Energiebilanzen
of the ZnS and CdS devices
• Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking
• Erweiterung der Modellbibliothek (z.B. alkalische Druckelektrolyse, Gasseparator)
Conclusion
• Entwicklung eines Modells zur Beschreibung des Naturumlaufs
(350
- 550 nm) is accom• The gain in jSCmit
§ Solar
Unterstützung
Simulationsdaten
CellBlockkonstruktion
Parametersund Komponentenauslegung
panied by a reduced VOC for our ZnS cells.
§ Validierung entwickelter Einzelmodelle mit Versuchsdaten
J-EBIC Geometry
Abbildung 1: Auslegung Systemumgebung mit IPSEpro
• Investigate the systematically lower
Elektrolyseblock-Konzept
of the ZnS/(Zn,Mg)O cells
VOC
& Kurzblock-Realisierung
• Study
the carrier collection properties,
space charge width and charge density
Zellrahmenkonzept
aus Zweistoffverbund
of§ the
ZnS and CdS devices
Alkalische
Elektrolyse
• ZnS, AEL:
CdS buffers
(CBD)
and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers
• I-V analysis under AM 1.5G and EQE without background illumination
• Electron beam induced current measurements in junction configuration (J-EBIC)
• Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking
§ Conclusion
Keine zusätzlichen Einlegeteile
(integrierte Dichtungen, Membran und Elektrodenpackages)
§Solar
Entwicklung
Elektrodenpackages • The gain in jSC (350 - 550 nm) is accomCellinnovativer
Parameters
panied by a reduced VOC for our ZnS cells.
§ Aufbau und Qualifizierung des AEL-Druckelektrolyse-Kurzblocks
mit 300 kWel in Systemumgebung
Abbildung 2: Aufbau Modell
• Investigate the systematically lower
Prüfstand
für Kurzblöcke
VOC
of the ZnS/(Zn,Mg)O
cells
& the
Systemkomponenten
• Study
carrier collection properties,
space
charge widthdes
andPrüfstandes
charge density
§ Leistungsdaten
of the ZnS and CdS devices
• Druck-Bereich: 6 – 25 bara
Conclusion
J-EBIC Geometry
Abbildung 3: Strömungsführung Stack (negativ)
• ZnS, CdS buffers (CBD) and sputtered (Zn,Mg)O, i-ZnO, and ZnO:Al layers
• I-V analysis under AM 1.5G and EQE without background illumination
• Electron beam induced current measurements in junction configuration (J-EBIC)
• Capacitance analysis (Cf and CV) at room temperature after 30 minutes of light soaking
• DC-Versorgung: 0 – 50 VDC / 0 – 5000 ADC
• Betriebstemperatur: 25 – 100 °C
• The gain in jSC (350 - 550 nm) is accomSolar
Cell Parameters
• Elektrolyt:
Naturumlauf / gepumpter Umlauf, 30 Gew.-% KOH
panied by a reduced VOC for our ZnS cells.
• Online-Messdatenerfassung der Stack-Performance & Gasqualitäten
§ Lastabhängige Detailuntersuchungen von AEL-Kurzblöcken
(1 - 20 Zellen, 0,05 – 0,6 m² Elektrodenfläche) und Systemkomponenten möglich
Ausblick
J-EBIC Geometry
Abbildung 4: AEL-Prüfsttand
Industriepartner des Projekts
§ Fertigstellung 300 kWel AEL-Druckelektrolyse-Kurzblock
bis 02 / 2015
§ Start-Up 300 kWel AEL-Elektrolyse-Demonstrator
bis 04 / 2015
ETG GmbH, Stuttgart
DANKSAGUNG: Dieses Projekt wird finanziert mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) unter
dem
Förderkennzeichen 0325524A.
ZSW June 14
§ Installation und Inbetriebnahme AEL-Elektrolyse-Prüfstand bis 05 / 2014
78
poster
“Power-to-Gas“ - P2G®
Renewable Energy Storage
“Power-to-Gas” Concept
A New Route for the Production of
Substitute Natural Gas (SNG) from Renewables
for Bidirectional Coupling of Electricity and Gas Grid and
Interconnection to Consumer Sector Mobility
Together with the Fraunhofer Institute for Wind Energy and Energy System
Technology (IWES) and the company ETOGAS, the Centre for Solar Energy
and Hydrogen Research (ZSW) has developed a new method for electricity
storage and to guarantee grid stability in electricity grids with a high
percentage of renewable power generation.
Electricity
grid
Gas distribution
system
Wind
CCPP /
B-CHP
Solar
In this concept, excess renewable electricity from fluctuation sources (e.g.
from wind turbines) is used for hydrogen generation via water electrolysis. In
a downstream process, hydrogen and CO2 (e.g. from biogas) are converted
to methane which is fed into the gas grid as SNG. The renewable energy
carrier methane can be efficiently stored in the natural gas
infrastructure and distributed according to customers' needs. The mutual
convertibility of electricity/gas enables a smoothing of the electrical supply
by offering negative control power by feed-in SNG in the case of surplus
energy and positive control power by electricity generation from SNG.
Besides stationary power generation, SNG can be used as a renewable
low-emission fuel in road transport.
POWER GENERATION
Biomass
Gas
underground
storage
ELECTRICITY STORAGE
Electrolysis /
H2 buffer
Biogas plant
with SNG
production
CO2
CO2 buffer
H2
H2
CH4
Methanation
CO2
Heat
BEV
Renewable Energy Storage Systems
H2
Electricity
Mobility
Plug-In HEV
SNG
FCEV
Plug-In HEV
CNG-V
CCPP: Combined
Cycle Power Plant;
B-CHP: Block-type
Combined Heat and
Power Station; BEV:
Battery Electric
Vehicle; FCEV: Fuel
Cell Electric Vehicle;
CNG-V: Compressed
Natural Gas Vehicle;
Plug-In HEV: Plug-In
Hybrid Electric
Vehicle
Schematic Diagram of a “Power-to-Gas“ Plant
CAES Compressed air energy storage
PHS Pumped hydro storage
SNG Substitute natural gas
 Feed gas stoichiometry adapted for optimized methanation operation
conditions
 Addition of steam to avoid carbon depositions / catalyst deactivation
Energy consumption and storage capacity in Germany (2012)
Power
Consumption
[TWh/a]
Natural
gas
Liquid
fuels
595
909
711
80
Average Power
[GW]
70
1002)
Storage capacity
[TWh]
0,043)
2174)
2505)
0,6
2000
3000
Operating range of storage
[h]
 Methanation heat utilization at T > 200 °C possible
Energy Flow of a “Power-to-Gas“ Plant
 Required storage capacity for electricity grid in Germany: 20 – 40 TWh
Commercialisation Plan
PILOT PLANT
“Alpha“ Plant
25 kWel
2013
2012
Nov. 2009
DEMONSTRATION PLANT
“Alpha-Plus“
Plant
250 kWel
Contact ETOGAS: DI Gregor Waldstein
E-Mail: [email protected]
Contact IWES: M.Sc. Mareike Jentsch
E-Mail: [email protected]
Contact ZSW: Dr. Ulrich Zuberbühler
E-Mail: [email protected]
“Beta“ Plant
6 MWel
2015
COMMERCIAL PRODUCT
“Gamma“ Plant
Zentrum für Sonnenenergie- und
Wasserstoff-Forschung (ZSW)
Baden-Württemberg
Industriestr. 6, 70565 Stuttgart
www.zsw-bw.de
poster
79
Ergebnisse des Untersuchungsprogramms an
der CO2-Wäsche-Pilotanlage in Niederaußem
Peter Moser1, Sandra Schmidt1, Torsten Stoffregen2, Frank Rösler2, Gerald Vorberg3, Gustavo Lozano3,
1RWE Power AG, 2Linde Engineering Dresden GmbH, 3BASF SE
Das Entwicklungsprogramm
Prozess der CO2-Wäsche-Pilotanlage
Kooperation
BASF - Linde - RWE Power
> BASF
Abtrenntechnologie OASE blue®,
Waschmittelperformance
(Wirkungsgrad, Waschmittelstabilität, Kosten)
Kondensat
Desorber
Feinwäsche
Absorber
Rauchgas
Rauchgas
Kondensat
Ziel: 90% CO2-Abscheidung mit hocheffizienter PCC-Technik,
PCC-Design für ein 1.100 MW-Kraftwerk
 Versuchsphase MEA & Prozess
 Versuchsphase GUSTAV200
 Versuchsphase LUDWIG540
 Auswahl des besten Waschmittels
Langzeitversuche, Optimierung
 Umbau von Anlagenkomponenten
 Zwischenversuche
 Langzeitversuch (REA)
 Langzeitversuch (REAplus)
2010
2011
2012
2013
Phase II
2014
2015
2016
Phase III
 Rauchgasteilstrom: 1.550
NaOHaq
Nm3/h
Waschmittel
Kondensat
 Anlagenverfügbarkeit > 97 %
 CO2-Produkt: 7,2 tCO2/Tag; Abtrennrate 90%
 Erste Anlage in Deutschland, IBN 2009
 Absorberhöhe entspricht Full-Scale-Anlage
 Budget RWE Power Phasen I/II: 15 Mio. €
 Instrumentierung: 275 Messstellen
 40% Förderung durch das BMWi
Optionen zur Variation der Prozesskonfiguration des
Emissionsminderungssystems
Optimierung, Langzeittest
 Gesamtoptimum Emissionsminderung
 Zwischenversuch (+ O2)
Wasserwäsche
Trockenes Bett
Saure Wäsche
Wasser,
Säure
 Variation OASE® blue
 Optimum OASE ® blue
 Langzeitversuch (REA/REAplus)
Maßnahme
vor Absorber
Wasser
Ergebnisse
Regeneration
Energy [MJ/t
CO2]CO2]
Spezifischer
Energiebedarf
[MJ/t
Kondensator
Wasser
> RWE Power
Integration Abtrennungsanlage
(Wirkungsgrad, Betrieb, Kosten)
Phase I
CO2
WasserWäsche
Zusatzwäsche
Kraftwerk
> Linde
Engineering Abtrennungsanlage,
Komponenten
(Wirkungsgrad, Scale-Up, Kosten)
2009
Wasser
Engineering
Chemie
Optimierungsaufgaben
Waschmittelversuche
CO2-armes
Rauchgas Wasser
Additiv
Wasser
Absorber
Absorber
Absorber
Absorber
4000
3800
Rauchgas
Rauchgas
Rauchgas
Rauchgas
3600
3400
Optimum MEA
3200
3000
2800
2600
2400
Optimum
OptimumGUSTAV200
OASE blue ®
MEA
GUSTAV200
OASE blue ®
Variation der Prozesskonfigurationen:
> REAplus/REA-Feinwäsche (mit NaOH-Zugabe)
> Anzahl der Wasserwäschen (1 oder 2)
> Wasserwäsche mit doppelter Höhe
> Kombination Wasserwäsche und Trockenes Bett
> Kombination Zusatzwäsche (saure Wäsche) und
Trockenes Bett
Parametervariationen:
> Waschwassertemperatur (40°, 60°C)
> Zwischenkühlertemperatur
> pH-Wert Saure Wäsche
Circulation rate
Waschmittel-Umlaufrate
lange Kolonne
> 20% niedrigere spezifische Energiebedarf
> geringer Waschmittelverbrauch
trockenes Bett
Absorber
Absorber
> hohe zyklische Beladung und reduzierter Waschmittelumlauf
> Druckverlust und Durchmesser Absorber verringert
kurze Kolonne & „Trockenes Bett"
Make-up
Wasser
Aminkonzentration
> Waschmittel OASE blue® über einen Zeitraum von mehr als
26.000 Betriebsstunden getestet
Rauchgas
Rauchgas
1
3
5
7
9
11
13
15
17
19
21
23
25
27
Zeit [Tage]
Ausblick Phase III
> Optimierung des Emissionsminderungssystems, insbesondere
durch Beeinflussung der Rohgasqualität
> Simulation eines Gasturbinen-Rohgases für den CO2Wäscheprozess
> Test und Bewertung von zwei neuen OASE blue®-Varianten zur
nochmaligen Verbesserung der Prozessperformance
Förderkennzeichen: 0327793A-I
Nutzung des CO2 aus Niederaußem in CCU-Projekten
Rauchgas
CO2-Wäsche
CO2
CO2-Verflüssigungs-,
Aufbereitungs- und
Abfüllstation
CO2
CO2
Direktanwendung
CO2
Chemie
CO2
chem. Energiespeicher
Verflüssigung/Kompression
Projekt Dream Production
Projekt CO2RRECT
80
poster
CO2 im AUFWIND
stoffliche und energetische Wertschöpfung durch Algen
D. Behrendt, A. Müller, C. M. Schreiber, L. Nedbal, U. Schurr
Algen
Algen bilden eine noch weitgehend ungenutzte Quelle für Treib- und Baustoffe oder Plattformchemikalien – meist werden sie für
Nahrungszusätze, Pharmazie und Kosmetik eingesetzt. Sie haben weit höheres Potential zur Biomasseproduktion als
Landpflanzen, können auch hohe CO2-Konzentrationen sehr gut nutzen – und ihr Anbau ist nicht auf Agrarflächen beschränkt.
OptimAL: Erhöhung der Lipidproduktion von einzelligen Grünalgen.
Methodischer Schwerpunkt ist die Stammentwicklung als Grundlage
für neue Anwendungen, so werden Algen auf mögliche
Einsatzgebiete
gezüchtet,
zum
Beispiel
bezüglich
Ihres
Energiegehaltes, der Lichtausnutzung, der CO2-Fixierung oder
Temperaturtoleranz.
AUFWIND: Analysiert werden Algenproduktion, DownstreamProcessing, die Kraftstoffproduktion und Konversion sowie weitere
verwertbare Nebenprodukte (Kohlenhydrate, Proteine). Fokus liegt auf
der ökonomische und ökologische Effizienz und ein Upscaling zum
wirtschaftlichen Großanlagenkonzept. Die Forschungsergebnisse
werden in eine LCA eingebettet.
Projekt: OptimALl
Projekt: AUFWIND
Algenproduktion und Umwandlung in Flugzeugtreibstoffe:
Wirtschaftlichkeit, Nachhaltigkeit und Demonstration
Optimierte Algen für nachhaltige Luftfahrt
Synergien mit AUFWIND, Algenproduzenten und
Forschung – Entwicklung der optimalen Algen für
unterschiedliche Anwendungsbereiche
Hintergrund: Suche von nachhaltigen
Treibstoff zur Verbesserung der CO2 Bilanz
in der Luftfahrtindustrie
12 Partner aus
Industrie und
Forschung
 Modifikation des Photosystems
 Adaption an hohe CO2Konzentrationen
 Gerichtete Evolution
 Selektion
Grundlagenforschung für innovative Produkte
Algae Science Center
Algae Science Center: Algenproduktionsanlage am
Forschungszentrum Jülich
Betrachtung der gesamten Wertschöpfungskette
Vergleich und
Upscaling von 3 PBRSystemen
Neue und innovative
Produkte aus Algen
Sonnenlicht
Mitglied der Helmholtz-Gemeinschaft
Nährstoffe, CO2
Algen-Suspension in
Schläuchen
im Gewächshaus
Kontakt
Dr. Dominik Behrendt
IBG-2: Pflanzenwissenschaften
Institut für Bio- und Geowissenschaften
Forschungszentrum Jülich GmbH
52425 Jülich
Algen-Suspension tropft
durch Netze in einer CO2angereicherten Atmosphäre
Finanzierung
Algen-Suspension in
freihängenden
Schläuchen
Partner
poster
81
B i o t e c h n o l o g i e 2 0 2 0 p l u s – B a s i s t e c h n o l o g i e n f ü r e i n e n ä c h s t e G e n e r a t i o n b i o t e c h n o l o g i s c h e r Ve r f a h r e n
Analysis and Design of Bacterial Enzyme Cascades for
Utilization of CO2
Melanie Straub1, Christiane Rudolf2, Oliver Hädicke2, Steffen Klamt2, Hartmut Grammel1
1 Biberach University of Applied Sciences, Biberach, Germany
2 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
Background
The project is an interdisciplinary approach of wet lab experiments and computational modeling. The goal is to evaluate the capacity of bacterial enzymes for
utilizing CO2 as a feedstock for organic chemicals or fuels. Work packages of the participating partners include:
Biberach University of Applied Science
• 13C metabolomics for identifying CO2-fixing pathways
• Isolation and kinetic characterization of CO2-fixing enzymes
• in vitro (electrochemical) operation of enzyme cascades
Max Planck Institut for Dynamics of Complex Technical Systems, Magdeburg
• Metabolic network analysis
• Dynamical modeling
• Simulation studies
The starting point: Systems Biology development of the purple bacterium Rhodospirillum rubrum for biotechnological applications
1, 2, 5 % CO2
Production of:
 Porphyrins
 Photodynamic Tumor Therapy
0 % CO2
 Poly-b-hydroxyalkanoates
 Biopolymers
 Biohydrogen
 Energy carrier
b
 Carotenoids
 Food supplement
 Vitamins,
Coenzymes
 Food industry
 B12, Q10
10 % CO2
0 % CO2
 Membrane proteins
 Vaccines
…
…independent of light; at high cell densities ?
2 % CO2
1 % CO2
Fructose
Succinate
Figure 3. CO2 requirement for growth
of R. rubrum with acetate (a) and
fructose (b) as carbon sources (2).
Fructose/Succinate
Figure 1. Biotechnological potential of R. rubrum for high-level expression of photosynthetic products
independent of light.
Figure 2. Metabolic network of central carbon metabolism in purple nonsulfur bacteria, implemented in CellNetAnalyzer (1) .
CO2 Fixation by the Reductive TCA Cycle
CO2 fixation by plants reaches > 100 bill. tons/year global net primary production via enzyme 1 (ribulose-bisphosphate carboxylase) in Fig. 2.
Yet, the catalytic efficiency of the enzyme is low.
The reductive tricarboxylic acid (rTCA) cycle has been discovered in green sulfur bacteria in the 1960s as the first alternative pathway to the Calvin-cycle for
autotrophic growth (3). One turn of the cycle converts 4 CO2 into organic intermediates (Fig. 5).
With the increasing number of available microbial genomes, many anaerobic bacteria have now been recognized to carry all required genes/enzymes.
We study enzymes of the rTCA cycle from different bacterial species for their capacity to convert CO2 into organic compounds in technical applications.
A key enzyme enzyme of the pathway is pyruvate-ferredoxin oxidoreductase (PFOR) (EC 1.2.7.1) (E1 in
Fig. 5) which catalyzes the reductive carboxylation of acetyl-CoA according to the following reaction:
acetyl-CoA + CO2 + Fdred
Estimated ΔrG'° 10.0 kJ / mol
pyruvate +Fdox
(K'eq = 0.018),… DE0 -520 mV
Tab 1. Specific enzyme activity of pyruvate:ferredoxinoxidoreductase of anaerobically grown C. tepidum and R. rubrum
Strain
C. tepidum
C. tepidum + 50 mM acetate
R. rubrum
U/mg
0.101  0.015
0.039  0.007
0.0014  0.00033
f ocus.de
Figure 5: CO2 fixation by the reductive TCA cycle. E1: PFOR; E2:
pyruvate formate-lyase; E3: a-ketoglutarate synthase; E4: isocitrate
dehydrogenase; E5: pyruvate carboxylase
Figure 4: Crystal structure of pyruvate-ferredoxin oxidoreductase from Desulfovibrio
africanus (Protein databank entry 1B0P) showing ligands and pocket.
Current Status and Outlook
 PFOR genes of R. rubrum, Chlorobaculum tepidum, Desulfovibrio africanus , Acetobacterium woodi have been cloned for expression in E. coli
 in vitro activity of crude extracts determined (Tab. 1)
 Purification of PFOR and ferredoxin of R. rubrum and C. tepidum
 HPLC/MS platform established for determination of metabolic fluxes of the 13CO2-fixing metabolic network (Fig. 2)
Next steps: Coupling of purified enzymes to electrodes for electrochemical regeneration of cofactors (Fd)
Ultimately, bacterial enzymes should be useful for conversion of CO2 and regenerative energy into storable and transportable chemical
compounds and fuels
References:
1) Hädicke, O., H. Grammel, and S. Klamt. 2011. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst. Biol. 5:150.
2) Rudolf, C., and H. Grammel. 2012. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: Effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids. Enzyme Microb. Technol. 50:238-246.
3) Evans, M.C.W., Buchanan, B.B. and D. I. Arnon. 1966. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55, 928-934.
82
poster
Institute of Catalysis Research and Technology
The coupling of epoxides and CO2 to carbonates:
On the search for new N2O2 and N4-ligand systems.
M. Fuchs, M. Adolph, T. Zevaco, C. Altesleben, O. Walter, E. Dinjus, S. Pitter, J. Sauer
Karlsruher Institut für Technologie (KIT), Institut für Katalyseforschung und Technologie (IKFT)
Postfach 3640, 76021 Karlsruhe, Germany [email protected], [email protected]
An ever increasing interest…
Copolymerisation
Carbon dioxide can be seen as an “ideal” C1-building block
because of its low toxicity and sheer endless availability, if one
neglects its thermodynamic stability. For a long time the focus
on the CO2-chemistry was limited to few reactions with rapid
implementation in industrial processes like, e.g. the production
of precipitated calcium carbonate for the paper industry, the
syntheses of salicylic acid, urea, or indirectly that of methanol.
However since the nineties a new trend rises continuously
dealing with the production of organic carbonates: principally
monomeric
cyclic
carbonates
(CC)
and
aliphatic
polycarbonates (aPC) obtained from the related reactive
epoxides.
CH CH O C O
CH CH O
R2
R1
R2
n R1
+
CO2
(pure polycarbonate: m = 0)
[ Catalyst ]
P,T
R2
O
C
O
Cyclisation
ryls
ente Ac
2 äquval
R1
O
NH2
NH
NH2
vat
äurederi
NH
O
O
NH
O
NH2
NH2
R1
Results / Topic 2 : N2O2 ligands based on diethyl ethoxymethylenemalonate
and their aluminium complexes in the formation of aliphatic polycarbonates.
More details in European Journal of Inorganic Chemistry 2013, 26, 4541–4545
O
O
NH
O
NH
O
O
NH2
NH2
NH2
NH2
NH2
NH2
NH2
(H2C)2
NH2
NH2
(H2C)4
NH2
(H2C)6
NH2
♦ Easy synthesis via reaction of AlEt3
and AlEt2Cl with the ester-substituted
N2O2 ligands.
♦ Very high activity and selectivity of
the Al-chloro derivatives in the
formation
of
Poly-CycloHexeneCarbonate. Promising PDI and Tg but
unsatisfactory stereoselectivity (atactic
polycarbonates).
NH2
H2N
NH2
NH2
NH2
NH2
O
R2
The o-phenylene diamine-substituted ligand reacted easily with
Fe(OAc)2 and a nitrogen base (pyridin or 1-methyl-imidazole).
N
N
N
NH
O
N
Fe(OAc)2
DMF
Pyridin
Fe
N
O
N
O
N
N
I2
Fe
N
Pyridin
O
66%
95%
O
+ CO2
O
O
Entrya) epoxide
Cat.
Catalyst (a)
co-Cat.
Cat. /
mol%
p/bar
T/°C
Yield
-
1.0
50
80
-
nBu4NBr
0.2
35
80
37%
N
Fe(II)
O
Fe
N
O
O
N
O
N
3
1.0
50
80
91%
-
0.2
50
80
99%
-
0.1
35
80
69%
-
0.2
2
80
36%
I
O
Fe
N
N
N
O
O
N
N
Fe(II)
-
0.2
50
80
-
TBAB
0.2
50
80
75%
TBAB
1.0
50
80
94%
O
N
N
N
O
N
Fe
N
N
O
O
/bar
Yield b)
50
96
50
100
35
98
50
99
35
95
50
100
50
-
50
-
50
-
50
-
Ph
O
O
Ph
O
Ph
5
O
Ph
O
t-Bu
O
O
O
O
Cl
7
9
O
O
O
Bu
10
O
O
Ph
O
O
Cl
6
8
O
O
4
O
O
0.2
0.2
0.1
0.2
0.2
1.0
T
(°C)
p
(bar)
80
100
80
80
80
80
50
50
50
50
50
2
t
(h)
PCHC
Carbonate
Linkageb
20
20
20
10
20
48
100%
99%
100%
100%
100%
99%
Yieldc
TON
Mnd
(g mol-1)
PDId
Tge
(°C)
77%
76%
66%
46%
32%
29%
384
379
660
230
158
29
11 100
7 000
15 000
7 600
4 200
3 100
1.53
1.65
1.28
1.233
1.49
1.37
103.9
93.0
106.3
101.1
93.0
93.8
a catalyst:cocatalyst=1:1; TBAB=Tetra-butylammonium bromide, DMAP=4-Dimethyl-aminopyridine; b Determined by 1H-NMR
spectroscopy: 100*([email protected] / ([email protected] + [email protected] ppm)); c Determined on precipitated polymer: 100 % yield being
equivalent to 14.05 g copolymer (/a complete conversion of 0.099 mol of CHO (10 ml) into pure alternating PCHC);
d Determined by Gel Permeation Chromatography (GPC) calibrated with polystyrene standard in THF at 40 °C; e Measured with
Differential Scanning Calorimetry (DSC); f Screening was done with dichloromethane as co-solvent (CHO:DCM=1:1).
X ray structure:
(Lester(Cl)2N2O2)Zn(DMSO)
X ray structure:
[(Lnitrile(Me)2N2O2)Zn(DMSO]∞
monomeric unit
O
TBAB
N
Fe(III)
O
Ph
P
O
2
O
N
N
product
O
1
(b)
2 + DMAP
2 + TBAB
2 + TBAB
2 + TBAB
2 + TBABf
2 + TBAB
♦ Easy synthesis via reaction of ZnEt2 with
the ester- and nitrile- substituted N2O2
ligands.
♦ Interesting structural characteristics with
neutral ligands e.g. dimethyl sulfoxide.
♦ Very high activity and selectivity in the
formation of Cyclic Carbonates (e.g. PC)
High activity in the formation of Cyclic Carbonates via the “Cat/Co-Cat in one” concept.
O
Catalysta
Entry
10
11
12
13
14
15
c(cat.)
(mol%)
More details in Dalton Transactions, 2014, 43(6), 2344–2347 and
Catalysis Science & Technology, 2014, accepted DOI: 10.1039/C4CY00125G
X ray structure of the related
(1-Me-Imidazole)-Iron derivative:
[(Lnitrile(H)2N2O2)Fe(II)(1-Me-Im)2].DMF
O
N
N
N
N
O
O
O
O
C
O
Results / Topic 3 : N2O2 ligands based on cyano-acrylate and methylene-malonate
and their zinc complexes in the formation of cyclic carbonates.
I
O
O
O
O
O
Cat.
n
N
R1 und R2 = CN oder COOEt
NH
+ CO2
n
NH2
NH2
NH2
NH2
NH2
O
O
O
O
NH2
NH2
O
R2
R1
NH2
M. North, R. Pasquale, C. Young,
Green Chem., 2010, 12, 1514
A wide range of diamine linkers investigated:
O
R1
O
CCs find an industrial application as nontoxic, polar, high boiling-point solvents, as
electrolytes in lithium ion batteries or as
reactive intermediates.
(1,3-dioxolan-2-one)
R2
R1
The ligands are formed by condensation of a diamine and ethyl 2-cyano-3-ethoxy-acrylate or diethylethoxymethylenemalonate in yields of up to 99%.
Synthesis adapted from E.G.
Jäger et al., Z. anorg. Allg.
Chem. 1985, 525, 67.
M.R. Kember, A. Buchard, C.K. Williams,
Chem. Commun., 2011, 47, 141
Cyclic Carbonate
O
good overview: P.P. Pescarmona, M. Taherimehr,
Catal. Sci. Technol., 2012, 2, 2169
Results / Topic 1 : N2O2 ligands based on 2-cyano-3-ethoxyacrylate and their
iron (II) / Iion(III) complexes in the formation of cyclic carbonates.
More details in Dalton Transactions , 2013, 42(15) 5322-5329
R1
m
aliphatic poly(ether-carbonate)
O
R1
aPCs are a useful complement to the
aromatic
bisphenol-A-based
polycarbonates owing a.o. to a higher intrinsic
biodegradability
(e.g.
polypropylene
carbonate) and find an increasing
utilisation in many technical applications as
evaporative pattern castings or midsegments in new polyurethanes.
O
O
O
O
O
Bu
O
O
O
O
t-Bu
O
O
O
O
O
O
O
O
+ CO2
O
O
Cat.
coordination polymer : linkage via
one of the nitrile groups
O
O
O
O
O
O
a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h, reaction
temperature 80°C. b) Conversion by 1H-NMR with internal standard.
N
a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h,
b) Conversion by 1H-NMR with internal standard.
Results / Topic 4 : N4-ligands with 2-pyridinecarboxamide/phenylene diamine moieties and their
metal complexes in the formation of organic carbonates (CC & aPC).
Easy synthesis of the
substituted N,N-Bis(2-pyridine1.44 eq
carboxamide)-1,2-benzene
[NEt ](OAc) 4H O,
O
ligands and their cobalt, iron
DMF
and chromium complexes.
+ M(OAc)
Yields ranging from 50 to 90%.
.
4
2
Y1
Y2
N
N
2
2
N
N
+
OAc
5 Y1, Y2 = H , 78%
6 Y1, Y2 = Cl , 78%
7 Y1 = H, Y2 = NO2 , 63%
8 Y1, Y2 = Me , 51%
Pyridine
NH2
NH2
Y1
O
NH
N
O
Y2
Cl
O
Triphenylphosphite
High Selectivity and catalytic activity of the
Cobalt-N4-acetate system (“Cat/Co-Cat in one”
concept): pure alternating (atactic) PCHC were
isolated in high yields with CHO whereas cyclic
carbonates were obtained with common terminal
epoxides.
N
N
Y2
OH
2
O
Co
Y1
Y1
O
More details in Polyhedron, 2012, 48(1), 92-98 and Dalton Transactions, 2014, 43(8), 3285–3296
OAc
O
NH
N
+ MCl2-3
O
2.21 eq [NEt4]Cl H2O,
2 eq TEA, O2
1 Y1, Y2 = H , 50%
2 Y1, Y2 = Cl , 62%
3 Y1 = H, Y2 = NO2 , 36%
4 Y1, Y2 = Me , 78%
Catalyst a
X ray structure determination of the
cobalt complex 22:
[[L(NO2)N4]Co(III)Br2][Et4N]
N
N
Br
N
N
20 Y1, Y2 = H , 56%
21 Y1, Y2 = Cl , 65%
22 Y1 = H, Y2 = NO2 , 62%
23 Y1, Y2 = Me , 74%
Cl
R
Product
O
Mn (g/mol)d Mw/Mn
Co/L(H)/OAc
9600
1.15
Co/L(Cl)/OAc
50
80
70
100-
7600
1.28
104
Co/L(NO2)/OAc
50
80
35
100
10100
1.27
106
Co/L(Me)/OAc
50
80
83
100
8600
1.27
105
+ CO2
O
X ray structure determination of 6
[[L(Cl)2N4]Co(III)(OAc)2][Et4N]
p (bar)
35
T (°C)
80
Yield
62
Co/L(Cl)/OAc
35
84
50
Co/L(NO2)/OAc
35
80
32
Co/L(Me)/OAc
35
80
70
P
(bar)
Cl
Catalyst
O
N
N
Conversionb
50
76
35
78
O
50
60
O
50
60
50
96
50
93
50
99
50
0
O
Tg (°C)e
n
d
O
O
O
104
O
O
O
O
O
O
O
O
PC
Standard reaction conditions: 10 ml of Epoxide, 20 h, 0.5 Mol% catalyst, 80 °C, 50
bar for CHO and 35 bar of CO2 for PO; (~ 7 g CO2) b yields = n(Monomer units in
isolated product)/n(epoxide)*100 c Evaluated via 1H NMR d Evaluated via gel
permeation chromatography e Determined by DSC
a
O
C
O
O
Cl
Cl
O
O
O
Catalyst
Co/L(H)/OAc
N
N
Co
N
O
Yield CO3 b
%c
64
100-
Cat.
O
Co
Cat.
O
O
O
Br
N
PCHC
T
(°C)
80
O
Y2
Y1
R
Cl
Cl
O
O
Epoxide a
O
p
(bar)
50
DMF
O
+ CO2
O
n
N
9 M = Co, Y1, Y2 = H , 86%
10 M = Co, Y1, Y2 = Cl , 66%
11 M = Co, Y1 = H, Y2 = NO2 , 91%
12 M = Co, Y1, Y2 = Me , 88%
13 M = Fe, Y1, Y2 = H , 83%
14 M = Fe, Y1, Y2 = Cl , 84%
15 M = Fe, Y1 = H, Y2 = NO2 , 80%
16 M = Fe, Y1, Y2 = Me , 68%
17 M = Cr, Y1, Y2 = H , 88%
18 M = Cr, Y1, Y2 = Cl , 71%
19 M = Cr, Y1, Y2 = Me , 87%
2.21 eq [NEt4]Br H2O,
2 eq TEA, O2
Synthesis adapted from R. N. Mukherjee, M.
Ray, Polyhedron, 1992, 11, 2929.
Cl
C
O
N
M
N
O
Cat.
O
N
DMF
Y2
+ CoBr2
N
+ CO2
n
Broader catalytic screening: The highest yields of
cyclic carbonates were attained with terminal epoxides
displaying an electron-withdrawing group.
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
a) Reaction conditions: cat. loading 0.2 mol%, reaction time 20 h,
temperature 80°C. b) Conversion by 1H-NMR with internal standard.
Acknowledgement: This work was supported by the BMBF-Project “Dream Reactions” (Förderkennzeichen 01RC0901A) and the Helmholtz Research School „Energy-Related Catalysis“.
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association
poster
83
84
poster
iC4 - PhotoCOO
Photokatalytische Nutzung von CO2
Prof. Dr. Bernhard Rieger (TUM)
Die vierte, weiter in die Zukunft blickende Säule des iC4-Projektclusters - PhotoCOO - untersucht die direkte,
photochemische Umsetzung von Kohlendioxid und Wasser zu Wertprodukten analog zur natürlichen Photosynthese.
Unter besten ökologischen und auch vorteilhaften ökonomischen Bedingungen würde vorab emittiertes CO2 - via
Adsorption oder membrangestützter Trennverfahren (siehe die komplementären iC4-Teilprojekte AdCOO und
COOMem zum Stand der Optimierung der CO2-Abtrennung) - wieder dem Stoffkreislauf zugeführt werden. Dies schützt
die Umwelt und dient zudem zwei Wirtschaftssektoren – Energie und Chemie - in perfekter Symbiose.
AK Rieger
Funktionalisierte Si-Oberflächen für die
photoelektrochemische CO2-Reduktion
Photokatalytische Reduktion von CO2 mit
gekoppelten Ligandsystemen
Photophysikalische
Eigenschaften
Kontrollierte Si-Funktionalisierung:
 Erhöhung der elektrochemischen Reaktivität
2000
ε*M*cm
1600
AG Krischer
— Zweikerniger
Katalysator
1200
--- Einkerniger
Katalysator
800
400
0
450
470
490
510
530
550
λ/nm
Triplett-MLCT- Absorption :
λ(3MLCT) = 474 nm + 506 nm, dπ(Ir)-π*(tpy)
Elektrochemische Eigenschaften
C1
C2
-0.6
-0.8
-0.4
-0.6
C2
-2.0
C3
-2.5
-2.0
-1.5
A1
A2
0.0
-0.2
-1.0
-0.5
C1
-1.5
-1.0
EiR [V vs. Fc+/0]
0.0
0.5
+/0
iR-corrected Potential [ V vs. Fc
45
0.6
-0.4
-0.6
C2
C1
-0.8
-1.0
-1.4
0.2
A2
0.0
-0.6
-2.0
-1.5
-1.0
C1
C2
-2.0
-1.5
-1.0
EiR [V vs. Fc+/0]
C3
-2.5
1.0
A1
0.4
-0.2
-0.4
-1.2
-0.5
relative irradiance/%
0.2
-0.4
Current [ mA/cm² ]
0.4
-0.2
-0.5
0.0
-0.5
0.5
40
35
30
25
20
15
10
5
0
1.0
iR-corrected Potential [ V vs. Fc+/0 ]
]
On-line Produktanalyse:
 Optimierte DEMS-Zelle (Differentielle
elektrochemische Massensprektrometrie)
 Bessere Verzahnung von Produktanalyse
und (photo-)elektrochemischem Experiment
50
A1
0.0
450
500
Decrease of
enthalpic barrier
from
9 to 25 kcal·mol-1
with the aid of
water
2 H2O
650
700
750
800
Poröse,
gasdurchlässige
PTFE-Membran
20
18
16
14
12
10
8
6
4
2
0
HPLC und
Referenzelektrode
y = 524,25x - 0,0825
0
0,01
0,02
c(TEOA)*l/mol
0,03
Stern Volmer Plot
HCOO–
formation
0 kcal·mol-1 :
sum of reduced
(neutral)
reactants
F0/F1 - 1
Homogeneous conversion of CO2 to HCOO–
The effect of H2O in the CO2 insertion reaction at Ru(bpy)2(CO)H complex
1 H2O
600
λ/nm
AG Rösch
0 H2O
550
Emission: λem = 562 nm
0,04
Beleuchtung
0.2
-0.2
i [mA/cm²]
A1
A2
0.0
i [mA/cm²]
Current [ mA/cm² ]
0.2
DEMS
Probe
ElektrolytFluss
Transition state structure of
CO2 insertion with 2 H2O
Entwicklung eines effizienten
eingebetteten Clusteransatzes (QM/MM):
Heterogeneous conversion of CO2 on Ru(0001) into HCOO* or *COOH species
28
Potential hydrogenation
pathways from various
CO2/H configurations
21
PhotoCOO
Electronic barriers of ~ 14–20 kcal·mol-1
14
12
9
7
η2–HCOO species
most stable isomer
2
0
0
H2O
-9
-9
AG Reuter
Ab initio Methodik für
ladungsgetriebene Redoxreaktionen
O2
- Speed-up im Vergleich zu regulären
Superzellansätzen >100fach
- Ermöglicht:
• detaillierte kinetische Rechnungen
auf DFT Hybridniveau
• explizite Berechnungen ladungsgetriebener Prozesse
Proof-of-concept:
Wasserspaltung
an TiO2(110)
GaN:ZnO
→ What is the effect of co-adsorbed H2O?
CO2
AG Lercher CO2-Reduktion gekoppelt mit
Treibstoffe
Chemikalien
Wasserspaltung
Projektziel: Design eines künstlichen Photosynthesesystems
- Nanostrukturierte Halbleitermaterialien zur photokatalytischen Wasserstoffdarstellung aus
Wasser und gekoppelter CO2-Reduktion mit Sonnenlicht
Charakterisierung
Biomasse
H2O
H2 + O2/CO2
Wasserstoffdarstellung
CO2
CH4/CO
Katalyse
CO2-Reduktion
zu Treibstoffen
Synthese
ZnO
Ga2O3
(Ga(1-x) Znx)(N(1-x)Ox)
Optische und strukturelle
Eigenschaften
Co-Katalysator
Modifikation
Struktur-Aktivitäts-Beziehungen
Photokatalytische
Produktbildungsraten
AG Heiz
poster
85
iC4
iC4 - AdCOO
Energieeffiziente Abtrennung von CO2
Dr. Andreas Geisbauer (Clariant)
Die Bedeutung von AdCOO im iC4 Verbund: Die Verfügbarkeit einer effizienten Abtrenntechnologie stellt die notwendige Voraussetzung dar, um
CO2 in ausreichender Reinheit der stofflichen Nutzung zuzuführen. Ziel ist sowohl die Entwicklung von neuartigen flüssigen, sowie modifizierten
festen Sorbentien, welche im Vergleich zum Stand der Technik eine energieeffizientere Abtrennung von CO2 ermöglichen sollen. Auf Basis der
bisherigen Ergebnislage und grundlegender thermodynamischer Betrachtungen erscheint eine Reduzierung des Energieaufwandes für den
Regenerationsschritt auf 2 GJ/t CO2 bei Verwendung fester Sorbentien erreichbar, allerdings steigen auch die Ansprüche an die Prozesstechnik.
In der Projektlaufzeit sollen die wesentlichen Grundlagen zur Auslegung eines Prozesskonzeptes für eine anschließende Pilotierungsphase
erarbeitet werden.
Langzeitziel: Die Minimierung des Wirkungsgradverlustes für Kraftwerksprozesse mit CO2 Abscheidung bei gleichzeitiger Kostenreduktion.
AP1: Charakterisierung geeigenter CO2 Fängermoleküle
Ermittlung thermodynamischer und kinetischer Daten
 Basis für rationale Entwicklung optimierter CO2 Fänger
AP2: Herstellung geeigneter Trägerpartikel durch unterschiedliche Methoden der Formgebung aus kostengünstigen Rohstoffen
AP3: Coating von Trägerpartikeln mit Fängermolekülen zur Herstellung funktionalisierter, fester CO2 Sorbentien
AP4: Computational Screening zur Identifikation geeigneter Fängermoleküle, systematisches Screening auf Basis von Kraftfeld‐ und Dichtefunktionaltheorie
AP5: Analytik: Charakterisierung der relevanten thermodynamischen und kinetischen Materialparameter, Performance über Vielfachzyklen
Post combustion:
C + O2 / N2  CO2 / N2 , Partialdruck CO2 ~ 100 – 150mbar
Pre combustion:
WG‐Shift
C + O2 / H2O  Synthesegas CO / H2  CO2 / H2 , Druck ~ 20 – 40bar
Entwicklung fester Sorbentien
Analytik
AK Lercher
Hochdruck CO2 Adsorptionsanlage zur Simulation von
statischen Adsorptionsvorgängen bis 40 bar und max
350° C.
Clariant Standorte Heufeld, Moosburg:
Entwicklung und Untersuchung geeigneter Verfahren zur Formgebung wie z.B. Sprühtrocknung,
Aufbaugranulation aus kostengünstigen Rohstoffen mit hoher Verfügbarkeit.
Gezielte Abtrennung von CO2
über N2 mittels sphäroidaler
Partikel (Cage Concept)
Direktes Einbringen von Zr in die
SiO2 Struktur erhöht die CO2
Aufnahmekapazität durch Bildung
von monodentatem Carbonat (CO32-) und monodentatem Bicarbonat (HCO3-).
Coating: Modifikation geeigneter Trägerpartikel mit CO2 Fängermolekülen,
Qualifikation von Fängermolekülen mit niedrigen Dampfdrücken.
 Vermeidung von Emissionen
TUM AK Lercher:
Gezielte Synthese hierarchisch geordneter,
sphäroidaler Partikel zum Erreichen hoher
Aufnahmekapazität sowie hoher Ad- und Desorptionskinetik.
Neuartige flüssige Sorbentien
Erhöhte Zr Gehalte in den sphäroidalen Partikeln
verbessern die Abriebsfestigkeit der Adsorbentien.
AdCOO
Die Abtrennung von CO2 mit aliphatischen Aminen wird als Benchmark
herangezogen, um in Kooperation mit Computational Screening geeignete
Fängermoleküle zu bestimmen. In einem Reaktor können Ab- und Desorption flüssiger Systeme untersucht, sowie deren pH - Änderung verfolgt
werden. Zusätzlich werden Polymersysteme entwickelt, die Nachteile der
aliphatischen Amine lösen sollen.
Computational Screening
Zielsetzung: Verständnis der grundlegenden
Mechanismen und energetischen Beiträge bei
der Reaktion von CO2 und Fängermolekülen.
Berechnung von Reaktionskinetiken z.B. für
die Bildung der Carbamat- / Hydrogencarbonat Spezies. Beispiel: Monoethanolamin
~2.3Å
AK Rieger
CO2 @ CN3H5: -0.28 eV
Computational Screening:
Voraussage und Design energetisch optimierter Fängermoleküle über Kraftfeld / DFT –
Rechnungen
Beispiel: Guanidin
Carbamat
Bicarbonat
AK Reuter
Prozesskonzept
Eine zentrale Fragestellung des Projektes mit Auswirkungen auf die Entwicklung geeigneter
Adsorbentien bezieht sich auf die Suche nach einem entsprechenden Prozesskonzept, mit dem CO2 aus den Rauchgasen von
Kraftwerken effizient und nachhaltig abgetrennt werden kann. Aufbauend auf den Erfahrungen von Siemens bei der Entwicklung eines entsprechenden
Abtrennverfahrens auf Basis Flüssig-Absorption (PostCap™-Verfahren) konnten vielversprechende Konzepte identifiziert werden. Mit einem Apparate- und
Prozessdesign für mögliche Full-Scale-Anlagen und basierend auf ersten Messdaten ausgewählter Adsorbentien wurden Wirtschaftlichkeitsbetrachtungen für
Festbett- sowie gestufte Wirbelschichtverfahren als beste Konzepte durchgeführt. Es zeigt sich, dass die Verfahren deutlich verringerte Betriebskosten gegenüber
den etablierten Aminwäschen erreichen können – insbesondere jedoch hinsichtlich der Kapitalkosten noch verbessert werden müssen. Die im Kraftwerk zu
realisierende Größenordnung der CO2-Abtrennung stellt eine besondere Herausforderung dar. Als besonders relevant für die Wirtschaftlichkeit – und somit bei der
zukünftigen Entwicklung fester Sorbentien besonders zu beachten – erweist sich die Abfuhr großer Mengen an Adsorptionswärme oder der Preis des Adsorbens.
86
poster
iC4
iC4 - COOMem
CO2-Abtrennung mittels Membranen
Dr. Christian Anger (Wacker Chemie AG)
Das Ziel des Verbundprojekts ist es, neuartige
Kompositmembranen
zur
CO2-Abtrennung
zu
entwickeln. Kompositmembranen bestehen aus einer
Trägermembran mit aufgebrachter Trennschicht und
sollten in ihren Eigenschaften bevorzugt durch die
Trennschicht dominiert werden.
Für dieses interdisziplinäre Vorhaben werden die Kompetenzen der
Projektpartner
auf
ihren
jeweiligen
Feldern
zusammengeführt.
Trennschicht
(TUM)
Bewertung & Pilotanlage
(Linde)
Trägermembran
(WACKER)
Membranherstellung &
Beschichtung (FhG IGB)
Grenzfläche
(WACKER & TUM)
Modulbau (FhG IGB)
Der Fokus des iC4-Projekts COOMem liegt auf:
• neuen Materialansätzen zur Gastrennung
• Verbesserung bestehender Verfahren
• Verbesserung von Effizienz und Kosten bei der CO2Abtrennung
Durch Materialentwicklung soll eine
• Verbesserung der Selektivität
• Erhöhung der Permeabilität
erreicht werden.
Siliconelastomere
Aufbau asymmetrisch poröser Trägermembranen
Darstellung CO2-selektiver Trennschichten
Ausgehend von schwach Brønsted-sauren Polymeren
und verschiedenen Tetraalkylphosphonium-Hydroxiden
wurden Anion-funktionalisierte Polymere synthetisiert
und hinsichtlich ihrer Filmbildungseigenschaften sowie
ihrer CO2-Aufnahmekapazität untersucht.
Substanz
x
y
n
1
1
0
0
2
ZH
9
1
2
3
2.2
2
2
4
38.7
1
9
5a
5b
-
1
0
0
OCH3 / H
5c
OCH3 / OCH3
H/H
6b
6c
1
1
2
N2
2900
260
PVOH Membran
asymmetrisch
(best value)
2800
2700
TPSE 100 Membran
asymmetrisch
7100
700
Darstellung von Siliconelastomeren mittels Polyaddition
H/H
6a
CO2
Silikonvollfilm
Die Gaspermeabilität im Vergleich
zu Siliconvollfilmen steigt bei
asymmetrischen TPSE Membranen
um den Faktor 2,5,
Es wurden hochdurchlässige asymmetrisch poröse Trägermembranen auf
Siliconbasis entwickelt. Der Vorteil gegenüber konventionellen Membranen
ist die intrinsisch hohe Durchlässigkeit von Siliconen. Nur mit
thermoplastischen Siliconelastomeren können im Phaseninversionsprozess asymmetrisch poröse Strukturen hergestellt werden.
S / S’
Permeabilität [Barrer]
OCH3 / H
OCH3 / OCH3
Im Fall der Poly(vinylphenol)-basierten Substanzen
konnte mittels 13C-FestkörperKernspinresonanzspektroskopie und Infrarotspektroskopie
die Bildung eines Carbonat-komplexes als wesentlicher
CO2-Absorptions-mechanismus identifiziert werden.
Komposit-Flachmembrane aus Polysiloxan-Vollfilmen und
4-8 µm starken Polyelektrolytbeschichtungen zeigen hohe
ideale Permeabilitäts-Selektivitäten für CO2.
Material
Gasflussdichte [L d-1 m2 bar-1]
15 °C
25 °C
Selektivität αCO2/N2
15 °C
25 °C
CO2
N2
CO2
N2
[P66614][5a]
742
35.0
770
57.0
21.20
13.51
[P66614][5b]
430
28.5
463
35.0
15.09
13.23
[P66614][5c]
385
17.3
487
25.7
22.23
18.95
[P66614][6a]
282
6.50
303
12.2
43.38
24.85
[P66614][6b]
207
4.80
160
5.34
43.13
29.96
[P66614][6c]
199
2.94
347
11.3
67.69
30.71
Aktuellwird
wirdweiter
weiteran
ander
der
Aktuell
mechanischenund
undchemischen
chemischen
mechanischen
Stabilitätder
derMaterialien
Materialiengearbeitet.
gearbeitet.
Stabilität
AmFraunhofer
FraunhoferIGB
IGBwird
wirddas
dasMaterial
Material
Am
zurEntwicklung
Entwicklungvon
vonKompositKompositzur
Hohlfasermembranenverwendet.
verwendet.
Hohlfasermembranen
Herstellung von porösen Hohlfaser-Trägermembranen
mittels kontinuierlichem Naßspinnen
SHPNM zeigt im Vergleich zu TPSE 100 bessere
mechanische Eigenschaften und eine verbesserte
Temperaturstabilität. Es konnte gezeigt werden, dass
mit diesem Material ebenfalls asymmetrisch
microporöse Hohlfasern dargestellt werden. Um die
chemische Beständigkeit zu verbessern wurde eine
Vernetzung mittels Aldehyden etabliert.
Eigenschaften
TPSE 100
NEU : SHPNM
Degradation
180
Schmelzpunkt
133
Schmilzt nicht !
Polymerisation
Reaktivextrusion
Polymerisation in Lösung
200
Membranperformance
Polyelektrolyt (TUM)
beschichteter
Silikonvollfilm
Asymmetrische TPSE
Membran
L.M. Robeson, J. Membr. Sci. 320 (2008) 390–400
COOMem
COOMem
TPSE100 in iPrOH/NMP
Mw = 120000 g/mol
Erprobung von Membranmodulen im Pilotmaßstab
Abb.2 Druckgehäuse mit Membranmodul aus TPSETrägermaterial
Abb.1 Membranteststand mit Druckgehäuse für die
Aufnahme von Membranmodulen im Pilotmaßstab
Charakterisierung des TPSE-Moduls
Dip-Coating Anlage zur kontinuierlichen Beschichtung
von HF-Membranen und Modulbau
Prozessbedingungen
Feed/Permeat Druck [bara]
1.3 - 7
Temperatur [°C]
25
Feedmenge [Nm3/h]
1-4
Feedgas
REM - Aufnahme einer
beschichteten HF-Membran
N2
•
•
Abb.3 Schematische Darstellung des Teststandes
Exp
Fit
Abb.4 Herleitung von Druckverlustbeziehungen
Abb.5 Bestimmung des mittleren Porendurchmessers des TPSETrägers
Ausblick
 Vermessung von Membranmodulen mit CO2 -selektiver Trennschicht
 Bestimmung von Mischgaspermeanzen unter prozessrelevanten Bedingungen
Membranmodul mit porösen
HF-Membranen
REM-Aufnahmen einer
TPSE-Hohlfasermembran
 Erste Untersuchung zur Langzeitstabilität der Membran
poster
87
iC4
iC4
- COOMeth
CO2-Methanisierung: Neue Katalysatoren zur Hydrierung von
CO2 zu Methan zur Energiespeicherung
Dr. Alexander Zipp (Wacker Chemie AG), Dr. Andreas Geisbauer (Clariant)
Abstract:
Teilprojekt mit dem Ziel der Entwicklung von Katalysatoren zur effizienten und unstetigen Methanisierung von Kohlendioxid zur Speicherung
elektrischer Überschussenergie. Auf Materialbasis der Clariant und Wacker Chemie AG wurden durch die TU München erste Katalysatoren
präpariert, untersucht und mit Nickel-basierten Benchmarks verglichen. Auf Basis von Literaturkinetiken wurden von der TUM bereits kinetische
Modelle implementiert, die eine Simulation der Reaktionsführung ermöglichen. Bei MAN erfolgten erste Pilotversuche zur Bestimmung der
Aktivität der Benchmarks. Von Linde und E.ON wurden die Rahmenbedingungen beleuchtet und verfahrenstechnische Simulationen zum
Verfahrenskonzept durchgeführt.
Katalysatorentwicklung zur Methanisierung von Kohlendioxid mit dem Ziel zur
Speicherung elektrischer Überschussenergie mit bestehender Infrastruktur:
Sabatier-Reaktion
CO2 + 4 H2  CH4 + 2 H2O RH0 = -253,15 kJ mol-1
Anforderungsprofil für die Entwicklung:
Verwertung realer Kraftwerksabgase
Verunreinigungen in realen Verbrennungsabgasen
 vergiftungsresistente Katalysatoren
unsteter Anfall von Überschussenergie
erfordern kurzfristige Anpassung der Beladung an Verfügbarkeit der Energie
 lastwechselstabile Katalysatoren
 gekühlte Rohrbündelreaktoren
hohe Exothermie der Methanisierung
aus Wärmetönung der Umsetzung resultierende Beanspruchung sowie Gleichgewichtslimitierung
 gekühlte Rohrbündelreaktoren
Darstellung einspeisefertiger Gasqualitäten ohne Abtrennung von Edukten, Nachverdichtung, …
 Umsetzung stöchiometrischer Mischungen
Katalysatorentwicklung
Kinetikmessung und Modellierung
100%
80%
Entwicklung und Bereitstellung angepasster Trägermaterialien für Katalysatoren ausgehend von hochreiner
pyrogener Kieselsäure (WACKER HDK®).
60%
40%
20%
Abgeschlossene Arbeiten
0%
Optimierung der Trägermaterialien hinsichtlich
hydrothermaler Stabilität aufgrund des bei notwendigen
Umsätzen hohen Wasserpartialdrucks (s. rechts).
vorher nach 7 d vorher nach 7 d vorher nach 7 d
unmodifiziert
Clariant
kommerz.
Al2O3
unmodifiziert
modifiziert
Wacker
WACKER
HDK® (SiO2)
prozentuale Abnahme der spezifischen Oberfläche (BET)
nach 7 Tagen bei 100% Wasserdampf, 200 °C (autobar)
Clariant stellt für die Methanisierung von Synthesegas etablierte,
Ni-basierte Katalysatoren als industriellen Benchmark zur
Verfügung. Die Katalysatorpräparation an der TUM wird durch
geeignete Trägermaterialien und Beratung unterstützt. Daraus
resultierende, erfolgversprechende neue Systeme werden von Clariant aufskaliert zur weiteren Testung
im Pilotreaktor von MAN.
Verfahren für die Parallelsynthese einer großen Zahl von Katalysatoren für das HighThroughput-Screening (HTS) wurden entwickelt. In enger Kooperation mit WACKER wird
aktuell die von WACKER entwickelte und zur Verfügung gestellte HTS-Testanlage
optimiert und für Paralleltests eingesetzt. Mit Methoden der Statistischen Versuchsplanung (SVP,
DoE) werden signifikante Präparationsparameter erkannt und evaluiert. Die Erkenntnisse
bilden das Fundament für eine zielstrebige Optimierung und die Präparation der
Katalysatoren. Aktuell konzentrieren sich die Messungen auf Nickel-TrägerKatalysatoren (auf Trägern der Industriepartner).
• Erfolgreiche mikrokinetische Vermessung
des Benchmark-Katalysatorsystems
• Modellierungsansatz mittels LHHW Kinetik
wurde erfolgreich angewendet.
• Leistungsprofil des Benchmark Katalysators
konnte erfolgreich reproduzierbar modelliert
werden.
Kommende Arbeiten
• Vermessung weiterer, im Projektrahmen hergestellter Katalysatoren mit
anschließender mikrokinetischer Modellierung.
• Detaillierte Charakterisierung der Katalysatorsysteme im Hinblick auf
Struktur-Eigenschaftsbeziehungen
COOMeth
MAN Diesel & Turbo betreibt am
Standort Deggendorf eine PilotAnlage zur Methanisierung von
Kohlendioxid und Wasserstoff .
Verfahrenssimulation:
• Gesamtkonzept
• Energie- und Massenbilanz
• Kostenabschätzung und
Dimensionierung
Blau: Methangehalt > 92%
Variation der GHSV
Langzeittest 1500 hrs + mehrere Start / Stops
Das System zeichnet sich durch gute Beherrschung der Hotspot Entwicklung aus. Entsprechend der
Zielanwendung, der Speicherung von intermittierend verfügbarer Überschußelektrizität, wurde die GHSV
zur Simulation von Lastwechseln auf unterschiedlichen Zeitskalen variiiert sowie mehrere Start / Stop
Zyklen mit unterschiedlichen Stillstandszeiten durchgeführt. Die unter diesen Bedingungen erhaltene
Produktgaszusammensetzung entspricht den Einspeisebedingungen der DVGW für L- Gas-Netze.
Das Diagramm zeigt die Ergebnisse unter Verwendung eines Benchmark-Katalysators von Clariant.
Pilotversuche
Muster des von der TUM neu entwickelten Katalysators werden von Clariant und WACKER LINDE LE zur
Verfügung gestellt. In einer designierten Testanlage werden diese auf ihr Verhalten gegenüber
Katalysatorgiften untersucht.
In Zusammenarbeit mit MAN Turbo und E.on erstellt LINDE LE ein Verfahrenskonzept, Energie und
Massenbilanzen. Anhand der von der TUM erstellten Kinetik erfolgt die Dimensionierung der Reaktoren
und anschließend die Kostenabschätzung des gesamten Methanisierungsprozesses.
E.ON identifiziert Randparameter zur Auslegung der Methanisierung wie:
• Die erforderlichen Gasbeschaffenheiten und -reinheiten zur Produkteeinspeisung ins Erdgasnetz.
• Identifikation, Bewertung und Spezifikation von CO2-Quellen: Sowohl CO2-Mengen als auch deren
Reinheiten werden in erheblichem Umfang die Auslegung und damit die Kosten der CO2-Methanisierung
beeinflussen, berücksichtigt werden soll CO2 aus Kraftwerksabgasen und aus Biogasanlagen.
Des Weiteren wird E.ON eine techno-ökonomische Bewertung der Gesamtketten
durchführen. Je nach Konzept wird die Methanisierung und Nutzung des Methans zu
unterschiedlichen Kosten und Erlösen führen. Im Rahmen des Projektes sollen
daher entsprechende Anwendungsfälle identifiziert und bewertet werden.
Verfahrenskonzept
88
poster
DVGW-Forschungsstelle
Engler-Bunte-Institut (KIT)
Engler-Bunte-Ring 1
76131 Karlsruhe
http://www.dvgw-ebi.de/
Speicherung elektrischer Energie aus regenerativen Quellen im Erdgasnetz
- H2O-Elektrolyse und Synthese von Gaskomponenten  CH4 + 2 H2Og
4 H2 + CO2
Konzept
Erneuerbare Energien
RH0 = -165 kJ/mol
7 H2 + 2 CO2  C2H6 + 4 H2Og
Elektrolyse
dynamisch
el. Energie
(fluktuierend)
RH0 = -265 kJ/mol
Erdgasnetz
H2-Speicher
Chemische
• In Deutschland sehr gut
Energieträger
H2
ausgebaut
• Große Speicherfähigkeit
in Poren- und Kavernenspeichern
H2O
O2
H2O

H2 + ½ O2
Vergasung
Entschwefelung Biogas
CO/CO2-Quellen
Klein: Biogasanlage,
BHKW
Synthese: CH4 + KW
CO2 (CO)
Nutzung O2
Speicherbedarf / Wirkungsgrad
Quellen: www.bbfm.de,
http://www.repotec.at,
Badische Zeitung
Groß: Industrie,
Mittel: Vergasung,
Kraftwerke
BHKW, Heizwerke
Prognostizierter Speicherbedarf
schwankt von 0,1 bis 15 TWh für 2020
In Poren- und Kavernenspeichern
können ca. 230 TWh gespeichert
werden (vgl. Pumpspeicherkraftwerke:
0,04 TWh)
Wirkungsgrad der Prozesskette Strom
 Methan derzeit 55 - 65 %
Durch Kopplung mit anderen
Prozessen und Abwärmenutzung
können Wirkungsgrade erhöht werden
1)
2)
3)
1) Fraunhofer IWES, Windgas Gutachten für Greenpeace Energy, 2011
2) Sauer, Buck, 2009
3) DVGW-Forschungsvorhaben „Energiespeicherkonzepte“, 2011
Arbeitspakete
AP1 Elektrolyse
Entwicklung eines PEMDruckelektrolyseurs
System- und Betriebsoptimierung für eine
dynamische Betriebsweise
Teststand
Fluktuation
Windkraft
Leistungsgeführt: 5 - 100 %
AP2
2-Phasen-Methanisierung
Frischgas:
a. 10 000 m³/h (NTP) CO2
b. 40 000 m³/h (NTP) H2
Prozessparameter:
a. P = 20 bar
b. Tein (R1, R2) = 220 °C
c. Taus (R1) = 550 °C
d. Taus (R2) = 240 °C
Produktspezifikation:
98 %
a. CH4
b. CO2
<2%
<1%
c. H2
d. H2O
< 100 ppm
Betrieb der Anlage: autark
Kühlwasser: 7,5 MW (T < 80 °C)
Nutzwärme:
a. 12 MW (T > 220 °C)
b. 9,2 MW (80 °bis 180 °C)
R2 = Reaktor 2
S2 = Molekularsieb
S1 = Wasserabscheider 1
S3 = Wasserabscheider 2
Fluktuation Photovoltaik
CO2-Umsatz bis 70 % in einer Stufe möglich
mehrstufige Power-to-Gas Anlage ausgelegt
AP3 Ionische Fluide (IL)
Langzeitstabilität des Stacks
Kein/kaum messbarer Dampfdruck
Fluorierte Anionen, wie z. B. BTA,
ermöglichen die Synthese von relativ
temperaturstabilen ILs
Temperatureffekt
Bereits bei kleiner Katalysatormassenbeladung cS
sind hohe Umsätze von CO2 möglich
AP4 Brennwertanpassung
Erzeugung von C2-C4 aus regenerativen Quellen
HS
Beispiel(kWh/m³) Mischung (%)
H2
3,5
5
CH4
11,1
85,7
C2H6
19,5
9,3
C3H8
28,1
Randbedingungen
Festbettreaktor
T= 250-330C
p= 1 -2 MPa
H2/CO2, ein= 3-8
mod= 100-6000 kg s/m3
MischErdgas H
Stack current in A
AP5 Systemanalyse
Simulation einer „Power to Gas“-Anlage im
markt- und erzeugergeführten Betrieb
marktgeführt, zentral
Methanisierung im 3-Phasen-System
 Gute Temperaturkontrolle, optimale Wärmeabfuhr,
vereinfachter Aufbau
erzeugergeführt, dezentral
Randbedingungen
800 m³ H2-Speicher als Puffer
Elektrolyseur (10 MW) folgt eingespeistem Strom 1:1
Methanisierung (6 MW) folgt langsamer:
10 % Lastwechsel pro 10 min
40..100 % Last
11,5
AP6 Wirtschaftlichkeit
Abschätzung des Einflusses fluktuierender Energiebereitstellung
auf das „Energiesystem Strom“
Ermittlung der Residuallast
auf Basis der ErneuerbarenAusbauszenarien des
Netzentwicklungsplans
2013 mit Hilfe historischer
Stromnachfrage- und
Wetterdaten
Residuallast in GW
Stack voltage in V
Kennlinien für 25 bar bei Tsoll = 60 °C
3-Phasen-Methanisierung
Erarbeitung eines Konzeptes zur
Methanisierung in der Gasphase (Hordenreaktor)
R1 = Reaktor 1
3)
 Negative Residuallast als
Obergrenze für Betriebsdauer
A 2023
Onshore 45,7 GW
Offshore 10,3 GW
PV
55,3 GW
›
›
›
B 2023
Onshore 49,3 GW
Offshore 14,1 GW
PV
61,3 GW
›
›
›
B 2033
Onshore 66,3 GW
Offshore 25,3 GW
PV
65,3 GW
›
›
›
C 2023
Onshore 86,0 GW
Offshore 17,8 GW
PV
55,6 GW
›
›
›
poster
89
4. BMBF-Statuskonferenz 08.04.2014
Neue Katalysatoren und Technologien
für die solarchemische Wasserstofferzeugung
- HyCats Uwe Rodemerck
Martin Fait
Werner Zinsser
Detlef Bahnemann
Irina Ivanova
Sven Albrecht
Dieter Ostermann
Durchgeführte Arbeiten:
 Entwicklung einer Toolbox bestehend aus Katalysatoren, Entwicklungswerkzeugen und
Reaktoren
 Benchmark: Effizienzsteigerung um den Faktor 2 gegenüber dem Stand der Technik
Toolbox:
Quantenchemische Simulationsmethoden zur Berechnung von Bandlücken, Dotiereffekten,
Oberflächenenergien, Phasenstabilitäten
Mechanismusauflärung mittels spektroskopischer Methoden, Untersuchungen mit deuteriertem
Wasser, Laser-Blitz-Photolyse
Hochdurchsatzsynthesen und -aktivitätsmessungen mit einem in einen Syntheseroboter
integrierten Schnellscreeningsystem
Test von Verfahren zur Produktion von Photokatalysatoren Aktivitätstests von
Photokatalysatoren in unterschiedlichen Reaktortypen an Photokatalysator-Suspensionen und –
Elektroden
solarer Konzentratorteststand SoCRatus (Solar Concentrator with a Rectangular Flat Focus)
DOS-Berechnungen
TEM an NaTaO3
Experimental shape
analysis for pure NaTaO3
nanoparticles: a) TEM
bright-field micrograph, b)
electron diffraction
pattern of circa 100 nm
circular area in a indexed
according to [010] zone
axis, c) STEM annular
dark-field micrograph with
normal distances of
polyhedron facets to
center of crystal, d)
reconstructed polyhedron
shape, e) relative
abundance of crystal
facets (same color index
applies for as in c). e)
Secondary electron closeup
 Entwicklung von Verfahren zur Berechnung von Photokatalysator-Eigenschaften:
Phasenstabilitäten, Oberflächenenergien, Bandlücken, Bandlagen, Einfluss von
Dotierelementen auf Photokatalysatoren
 IR-Spektroskopie, Messung von Bandlücken und Flachbandpotentialen, direkte/indirekte
Übergänge, Mechanismusuntersuchungen mit deuterierten Reagenzien, Messung der
Lebensdauer angeregter Zustände mit Laser-Blitz-Photolyse
 Entwicklung und Durchführung von robotergestützten, systematischen
Photokatalysatorsynthesen, Hochdurchsatzmessungen zur H2-Entwicklung;
 Synthese von insgesamt 930 Proben, Durchführung von ca. 1300 photokatalytischen
Messungen
 Entwicklung und Test von Verfahren zur Photokatalysator-Produktion
 Optimierung von Photokatalysatoren durch Variation der Syntheserouten und
Cokatalysatoren
 Verfahren zur Herstellung von Photokatalysator-Elektroden, Effizienzbestimmungen,
Systemanalysen
 Aufbau des Konzentratorteststands „SoCRatus“, solare Versuche an Suspensionen und
Elektroden, Berechnung von Einsparungspotentialen
Korrelation zwischen Relaxationszeiten aus LaserBlitz-Photolyse und photokatalytischer H2-Aktivität
110
30
100
25
90
80
20
70
15
60
10
50
40
5
Aufsteigende Wasserstoffbläschen
aus NaTaO3-Suspension
Zusammenfassung:
 Toolbox wurde entwickelt und wird für weitere Entwicklung genutzt werden
 Quanteneffizienzen verbessert, aber Ziel nicht erreicht; Stand der Wissenschaft aus der Literatur z.T. noch nicht nachvollziehbar
 Solarer Konzentratorteststand am DLR liefert Wasserstoff, weitere Tests in Zusammenarbeit mit ODB und H.C. Starck werden
derzeit durchgeführt
Bare
0,57 % La
0,83 % La
1,11 % La
30
H 2 (µ mol/h)
Projektziele:
 Entwicklung von Photokatalysatoren und Reaktortechnologien für die solare Wasserspaltung
[email protected]
www.hcstarck.com
Christian Jung
Michael Wullenkord
t1/2 (µ s)
Thomas Bredow
90
poster
CO2RRECT – Verwertung von CO2 unter
Verwendung überwiegend regenerativer Energie
Motivation
 Entwicklung neuer, nachhaltiger Prozesse
durch die Vernetzung von chemischer
Produktion mit Energiemanagement und
Energiespeicherung
 Evaluierung von Synergien zwischen der
Energieerzeugung und chemischen Industrie
 Reduzierung des CO2-footprint
 Sicherung der CO Versorgung
Ziele von CO2RRECT
Dynamische
H2O-Elektrolyse für
• H2 als chem. Energiespeicher
• Lastregulierung
H2-Speicherkonzepte
Nutzung von
Stromspitzen für
chemische
Prozesse
Reaktorentwicklung
Katalysatorentwicklung
Bewertung des
Gesamtprozesses
(ökonomisch,
ökologisch)
Integration in
bestehende
Wertschöpfungskette
Szenarien zur
Verfügbarkeit von
regenerativen
Energien
CO2
50
Austretender Molenbruch / %
Entwicklung flexibler
Prozesskonzepte
• RWGS
• CO2-Reforming
• Ameisensäuresynthese
Produktionskonzepte der
Zukunft
CH4
CO
H2
TOfen
Stabiler Ni/MgAlOx-Katalysator
40
30
600
20
400
10
0
800
50 mol% Ni
0
20
40
5 mol% Ni
60
80
Temperatur / °C
Nutzung
regenerativer
Energien
CO2 als
chemischer
Rohstoff
Katalysatorentwicklung
Für die Umsetzung von CO2 in der Trockenreformierung und der RWGS bei
Temperaturen über 800 °C wurden unterschiedliche Wege der
Katalysatoroptimierung verfolgt
 An der TU Dresden wurde das Problem der lokalen Unterkühlung, dem
Auftreten sogenannter Coldspots, durch Entwicklung eines Siliziumcarbidbasierten Nickel-Katalysators begegnet.
 Das Fritz-Haber-Institut Berlin hat zusammen mit dem Lehrstuhl für
Technische Chemie an der Ruhr-Universität Bochum bzgl.
Temperaturstabilität auf Magnesium-Aluminium-Mischoxide gesetzt. Auch
hier wurde Nickel als aktive Katalysatorkomponente eingesetzt.
 BMS und BTS hat einen Katalysator auf Perowskit-Basis entwickelt sowie
eine Katalysatorbeschichtungstechnologie für die Heizwendeln.
 In situ XRD-Untersuchungen zur Stabilität erfolgten am LIKAT Rostock
200
100
Zeit / h
Nutzung regenerativer Energie
Reaktorentwicklung
Vom Heizkonzept bis zum Demonstrator unter Nutzung von Überschussstrom für
hohe Temperaturen über 800°C
 ICVT und Uni Stuttgart: Funktionsprinzip des Reaktors dargestellt am Einzelrohr.
Notwendige Wärme durch diskrete O2-Einspeisung gewährleistet. Erwärmung
direkt im Reaktionsraum und nicht über Wand.
 KIT: Entwicklung einer Mikrowellenbeheizung, die eine direkte Beheizung des
Katalysators ermöglicht.
 BTS: Elektrische direkte Beheizung des Reaktionsraums über Heizwendeln.
 INVITE: Auslegung und Betrieb einer Demonstrationsanlage zum Nachweis der
Machbarkeit der direkten elektrischen Beheizung gemäss des Bayer-Konzepts.
Inbetriebnahme im Juni 2014: Betrieb von RWGS- und CO2-ReformingKampagnen
POX beheizter
keramischer
Gegenstromreaktor
Mikrowellenbeheizung
Produktionskonzepte der Zukunft
Elektrisch
beheizter
Monolithreaktor
Heizwendel
Monolith
Die Proton Exchange Membrane (PEM)Elektrolyse von Siemens ist in der Lage, auch
starke Lastschwankungen zu folgen, was im
Labormaßstab bereits in mehreren Tausend
Betriebsstunden gezeigt wurde. Am RWEStandort Niederaußem bei Köln wurde ein
Elektrolysecontainer mit 100kW (300kW peak)
installiert und im März 2013 in Betrieb
genommen. Dauer- und Überlastbetrieb,
Dynamik
des
Lastwechsels
und
der
Wirkungsgrad der Anlage wurden untersucht
und bewertet. Mehr als 4 t H2 wurden erzeugt.
6 Heating
Elements
Ceramic
Insulation
Gas Sampling
Electrical
Connections
 Die Umsetzung der berücksichtigten Konzepte ist sehr kapitalintensiv.
 Eine Amortisierung kann nur mittel-bis langfristig unter bestimmten
Voraussetzungen erreicht werden
 Wichtiger Beitrag zur wirtschaftlichen Nachhaltigkeit der Konzepte CO2RRECT
sind
 CCU muss in den Emissionshandel berücksichtigt werden.
 Die Verwendung von Überschussenergie muss von
Regulierungskosten entlastet werden
 Kleine Anwendungen sind bereits mittelfristig an Standorten mit H2 Überangebot
interessant .
 Die betrachteten Konzepte sind sehr flexibel, so dass eine maßgeschneiderte
HyCO Versorgung möglich ist.
poster
91
Environmental assessment of energy storage systems
André Sternberg, André Bardow
Chair of Technical Thermodynamics, RWTH Aachen University, JARA|ENERGY
Motivation
How to compare
storage systems with
non-equal products?
By environmental
impact reductions
Comparative assessment of storage systems based on life cycle assessment (LCA)
Storage systems
Direct storage
product
Pumped hydro storage1 (PHS)
Power
Gas turbine (η = 35%)
Compressed air energy storage1 (CAES)
Power
Gas turbine (η = 35%)
Power
Gas turbine (η = 35%)
1
Vanadium redox flow battery (VRB)
2
Products from conversion of fuels
Conventional process
Battery electric vehicle (BEV)
Mobility
Gasoline and diesel engines
Heat pump & Hot water storage3
Heat
Natural gas boiler (η = 100%)
1 MWh
Surplus
electricity
Hydrogen
H2
Power
H2
Methane
H2
Methanol
production6
Methanol
Chemical
Power
H2
Syngas
production7
Syngas
Chemical
Power
Electrolysis4
Environmental impact
of product from
storage system
Chemical
Methane
production5
Heat supply8
CO2 supply8
Mobility
Steam-Methane-Reforming
Fossil natural gas
Grid power
supply8
Mobility
Natural gas based production
Steam-Methane-Reforming
Environmental impact
of product from
conventional process8
Combustion of fuel
Global warming impact reduction
Environmental impact
reduction
for storage systems
Fossil depletion impact reduction
Conclusions
Environmental assessment:
Order of environmental impact reductions:
Among Power-to-Fuel:
• allows sound and consistent comparison
of storage systems
1. Power-to-Heat
• Highest environmental impact reductions for
direct utilization of hydrogen
2. Power-to-Mobility
• accounts for the actual use of the product
Further Information
André Sternberg
RWTH Aachen University
Institute of Technical Thermodynamics
Schinkelstr. 8, 52062 Aachen, Germany
E-Mail: [email protected]
Phone: + 49 241 80 95 391
vCard
For CO2-using storage systems:
3. Power-to-Power
• indicates most promising storage system:
Power-to-Heat
• Highest environmental impact reductions for
utilization of product as chemical feedstock
4. Power-to-Fuel
Acknowledgements
This
work
has been carried out within the project
“CO2RRECT”. The project (ref. no. 33RC1006B)
is funded by the German Federal Ministry of
Education and Research (BMBF) within the
funding priority “Technologies for Sustainability
and Climate Protection – Chemicals Processes
and CO2 Utilization”.
References
1 P. Denholm and G. L. Kulcinski, Energy Conversion and Management, 2004, 45, 2153 – 2172.
2 M. Metz and C. Doetsch, Energy, 2012, 48, 369 – 374.
3 FIZ Karlsruhe GmBH, Electrical driven heat pumps, Technical report, 2013.
4 F. Schüth, Chemie Ingenieur Technik, 2011, 83, 1984–1993.
5 B. Müller, K. Müller, D. Teichmann and W. Arlt, Chemie Ingenieur Technik, 2011, 83, 2002–2013.
6 L. K. Rihko-Struckmann et. al., Industrial & Engineering Chemistry Research, 2010, 49, 11073–11078.
7 Project report “CO2RRECT” (ref. no. 33RC1006B)
8 PE INTERNATIONAL AG, GaBi 6, Software-System and Database for Life Cycle Engineering., 2013.
92
poster
FRAUNHOFER-INSTITUT FüR CHEmISCHE TECHNOlOgIE ICT
oxidation Von interkonnektor-beschichtungen in
reinem sauerstoff und in wasserdampf bei 30 bar
C. geipel, D. Schimanke
sunfire GmbH, Gasanstaltstr. 2, 01237 Dresden
m. Juez lorenzo, V. Kolarik, V. Kuchenreuther
Fraunhofer-Institut für Chemische Technologie ICT,
E-Mail: [email protected]
e i n l e i t u n g u n d m o t i Vat i o n
Versuchsaufbau und experimentelle Vorgehensweise
Das BMBF-geförderte Projekt »Sunfire« befasst sich mit Forschung zur Entwicklung einer
Versuchsbedingungen
100 % H2O-Dampf und reiner O2, p = 30 bar, T = 850 °C
Technologie, um Kohlendioxid (CO2) und Wasser (H2O) mittels erneuerbarer Energie zu
Untersuchte Proben
RC – µLSM: Roll Coating – La065Sr0,3MnO3
RC – MCF: Roll Coating – MnCo1,9Fe0,1O4
flüssigen Kraftstoffen umzuwandeln. Um eine hohe Effizienz bei der Umwandlung zu
gewährleisten, wird zur Aufspaltung des Wasserdampfs in H2 und O2 die HochtemperaturDampfelektrolyse (SOEC) bei Drücken bis zu 30 bar eingesetzt. Dabei werden die
Materialien mit Betriebsparametern von 850°C und max. 30 bar extremen Bedingungen
Atmosphäre
Wasserdampf
ausgesetzt, im äußersten Fall Atmosphären aus reinem Sauerstoff (O2) oder aus reinem
Wasserdampf (H2O).
Grundmaterial
ITM
Beschichtung
RC – µLSM
RC – MCF
RC – µLSM
RC – MCF
RC – µLSM
RC – MCF
RC – µLSM
RC – MCF
Crofer 22 APU
Sauerstoff
ZielsetZung
ITM
Crofer 22 APU
Untersuchung des Korrosionsverhaltens ausgewählter InterkonnektorBeschichtungen in O2 und in H2O bei 850 °C und 30 bar
Schweißnaht
Untersuchte Proben und durchgeführte Versuche.
300 h
x
x
x
x
1.000 h
x
Proben
x
x
x
x
x
Miniatur-Testautoklaven
aus Nicrofer 6025 HT
zugeschweißt
Zusammensetzung der Interkonnektor-materialien.
Beitrag zum Verständnis der Degradationsmechanismen und des Einflusses von Druck
Beurteilung der Korrosionsbeständigkeit bei den gegebenen systemspezifischen
Betriebsbedingungen
Material
Crofer 22 APU
ITM
Fe
Bal.
Bal.
Cr
22,0
26,0
Mn
0,42
–
Ti
0,08
–
Al
0,12
<0,03
Si
0,11
<0,03
Andere
La (0,08)
(Mo)x, (Ti)y, (Y)xy
Versuchsaufbau: Testautoklav im
geschlossenen Ofen mit Druck- und
Temperaturüberwachung und
Wasser-Nachdosierung
e r g e b n i s s e – Q u e r s c h l i f f e d e r s c h i c h t e n n a c h a u s l a g e r u n g i n r e i n e m o 2 u n d r e i n e m h 2o b e i 8 5 0 ° c u n d 3 0 b a r
RC-mCF + Crofer 22 APU
O2 – 1000 h
RC-mCF + Crofer 22 APU
H2O – 1000 h
RC-µlSm + Crofer 22 APU
O2 – 1000 h
RC-µlSm + Crofer 22 APU
H2O – 300 h
RC-µlSm + Crofer 22 APU
H2O – 1000 h
x2000
RC-mCF + ITm
O2 – 1000 h
RC-mCF + ITm
H2O – 1000 h
RC-µlSm + ITm
O2 – 1000 h
RC-µlSm + ITm
H2O – 300 h
Oberfläche
RC-µlSm + ITm
H2O – 1000 h
Oberfläche
x1000
e l e m e n ta n a ly s e – m a p p i n g
Phasenidentifizierung mittels Röntgenbeugung an der Oberfläche der Schicht.
RC-mCF + Crofer 22 APU in Sauerstoff 1000 h
RC-mCF + Crofer 22 APU in Wasserdampf 300 h
Schicht
Sauerstoff 1000 h
RC-MCF
CoCr2O4/CoO∙Cr2O3
RC-µLSM
SrCrO4, La0,65Sr0,35MnO3
RC-MCF
Co, (FeO)0,099(MnO)0,901
RC-µLSM
Sr0,1MnLa0,9O3
Wasserdampf 300 h
o
o
cr
Formel
Atmosphäre
cr
Z u s a m m e n fa s s u n g
Die RC-MCF Schicht ist in reinem Sauerstoff in ihrer Zusammensetzung beständig.
Chrom ist in gleichmäßig verteilter Konzentration in der Schicht zu finden.
In Wasserdampf tritt eine Reduktion der Schicht zu metallischem Kobalt auf und
mn
mn
fe
RC-µlSm + Crofer 22 APU in Sauerstoff 1000 h
co
das Gefüge wird grobkörnig. Dagegen ist in Wasserdampf kein Chrom in der
fe
RC-µlSm + Crofer 22 APU in Wasserdampf 1000 h
Schicht zu sehen.
In beiden Fällen wächst auf dem Interkonnektor-Material unterhalb der
Beschichtung eine Cr2O3-Schicht auf, in Sauerstoff unterwachsen von MnCr2O4.
RC-µLSM: in Sauerstoff bildet sich auf der Oberfläche eine nicht
zusammenhängende Anhäufung von SrCrO4. Das bedeutet, RC-µLSM kann die
Abdampfung von Cr in Sauerstoff weniger unterbinden als RC-MCF.
o
cr
x2000
o
cr
In Wasserdampf ist Cr in der gesamten Schicht zu finden. La konzentriert sich
an der Oberfläche und direkt über der Chromoxidschicht und bildet dort eine
zusammenhängende Schicht. An Stellen mit hoher Mn-Konzentration ist kein
La zu erkennen.
In beiden Fällen wächst auf dem Interkonnektor-Material unterhalb der
mn
la
sr
mn
la
sr
Beschichtung eine Cr2O3-Schicht, auf Crofer 22 APU überwachsen mit
MnCr2O4 in beiden Atmosphären.
poster
93
Material flow network
(Umberto)
Flow sheet
(CHEMCAD)
T1
Interaction via
transition script
94
poster
Innovative Apparate- und Anlagenkonzepte zur Steigerung
der Effizienz von Produktionsprozessen – InnovA2
Stephan Scholl
Technische Universität Braunschweig | Institut für Chemische und Thermische Verfahrenstechnik
www.innova2.de | [email protected] | Langer Kamp 7, D-38106 Braunschweig | Telefon +49 (0) 531 391 - 2780
Stofflicher Transfer
Motivation
 Reale Stoffsysteme
 Innovative Apparate- und Anlagenkonzepte ermöglichen die
Erschließung von Energieeffizienzpotenzialen
 Fehlende Referenzen als Innovationshemmnis:
„Ohne Referenz keine Anwendung,
ohne Anwendung keine Referenz.“
Laboranlagen
Großanlagen
 Laborapparate
 Modellsysteme
 Großapparate
 Reale Stoffsysteme
 Ökologische Bewertung von Maßnahmen
zur Steigerung der Energieeffizienz
Geometrischer Transfer
⇒ Innovationspipeline für neue Wärmeübertragerbauformen
 Technikumsapparate
A2 Thermoblech-Naturumlaufverdampfer
Wasser-Glycerin Gemisch
xH2O = 0,71 molH2O/molges
pBA = 200 mbar
TU München
Uni Paderborn
Uni Kassel
HSU Hamburg
Eintrittsgeschwindigkeit [m/s]
0,07
Laboranlagen
an Universitäten
0,05
0,04
0,03
536
447
358
268
0,02
179
0,01
0
89
20
40
60
80
100
120
140
A3 Kondensation an mikrostrukturierten Rohren
A5 Multistream-Kondensatoren
35
4
3
2
iso-Propanol
Werkstoff: VA-Stahl
p = 1,013 bar
1
16000
18000
20000
Reihe 1
Reihe 2
Reihe 3
22000
Stofflicher und geometrischer Transfer
Ergebnisse
Technikumsversuche,
Linde AG
24000
26000


30
Reibungsdruckverlust ∆pR,Kor
Steigerungsfaktor εNußelt
5
Wärmestromdichte q in W/m
[deg-engineering.de]
0
Scheinbarer Flüssigkeitsstand [%]
TU Braunschweig
Verbindende
Elemente


20
15
10
5
0
0
2
 Stoffsysteme
- Reinstoffe
- Gemische
hs* = 117 %
hs* = 77 %
hs* = 33 %
0,2
14205
hs* = 100 %
hs* = 50 %
0,15
8523
0,1
5682
0,05
2841
0
0
0
5
10
15
Treibende Temperaturdifferenz [K]
20
25
10
15
20
25
Reibungsdruckverlust ∆p R,exp [kPa]
30
35
 Identifizierung und
Quantifizierung von
Verbesserungspotentialen
 Berücksichtigung von
ökonom. und ökolog.
Aspekten
Stand heute
Laboranlagen weiterhin produktiv
Technikumsversuche erfolgreich abgeschlossen
Ansätze zur Potentialabschätzung etabliert
Einbindung der Ergebnisse in Engineering
Workflow geklärt
 Kostenneutrale Verlängerung um 6 bzw. 9 Mon.




11364
Chlorbenzol
H/dH = 85,7
AWÜ/ASt = 343
ReEin [-]
0,25
Platteneintrittsgeschwindigkeit [m/s]
 Charakteristische
geometrische
Parameter: dhydr, Aeff
Technikumsanlagen bei
Industrie-Partnern
5
Potentialabschätzung
[wieland.de]
 Datenverdichtung
Kombination hom. Modell und het. Wang & Sunden
Het. Modell nach Tribbe & Müller-Steinhagen
Het. Modell nach Wang & Sunden
Homogenes Modell
25
Linde AG
 Versuchsdurchführung und
Auswertung
A1 Verdampfung an mikrostrukturierten Rohren
626
∆T = 7 K
∆T = 8 K
∆T = 10 K
∆T = 12.5 K
∆T = 15 K
∆T = 17.5 K
∆T = 20 K
0,06
A4 ThermoblechKondensatoren
715
Reein [-]
0,08
Strömungsrichtung
Ausgewählte Ergebnisse
BTS GmbH
Projektpartner
auf Beschluss des
Deutschen Bundestages
poster
95
HY-SILP:
• Development of a novel, economical and considerate technology for hydroformylation
• Prevent formation of high boilers due to the
specific solubility of the reactants / products in
ionic liquid
• Energy and CO2 saving compared with state
of the art technology
Development of a novel, economical and considerate technology for HYdroformylation
with Supported Ionic Liquid Phase (SILP) catalyst
Prof. Dr. P. Claus (TU Darmstadt), Dr. K. Dyballa (Evonik Industries AG), Prof. Dr. R. Franke (Evonik Industries AG), M. Friedrich (TU Darmstadt), Dr. H. Hahn (Evonik Industries AG), Dr. M.
Haumann (FAU Erlangen), S. Kokolakis (TU Darmstadt), M. Lucas (TU Darmstadt), A. Schönweiz (FAU Erlangen) , S. Walter (FAU Erlangen), Prof. Dr. P. Wasserscheid (FAU Erlangen)
Ligands
Ionic liquids
Hydroformylation
• Design of new ligands for SILP technology
• Solvent for immobilisation of homogenous ligands on a heterogeneous
support
• Most important homogenous catalyzed
reaction apart from oxidations
• Support by computational chemistry (e.g.
COSMO-RS)[1]
• Long term stability ligands supported on
Silica in hydroformylation of technical C4
feed
• Consumption of 10 mio. tons oxo
products in 2008 worldwide[4]
• Special solvation characteristics of ionic
liquids shall result in a more selective
conversion of complex feeds
Graphic is adopted by [2]
Concept Supported
Ionic Liquid Phase
(SILP) catalyst
SILP catalyst
powder
• SILP – building a bridge between heterogeneous & homogenous catalysis
• Defined catalyst structures
• High activities and selectivities
• Modification by ligand design
• Easy catalyst retention
Graphic is adopted by [3]
SILP particle
Pore
structure
Technical equipment
Results I
• Test equipment for long term stability
tests with online analytics
• Longterm stability of SILP catalyst
system w/o ionic liquid[5,6]
• Equipment for catalyst screening of 8
catalysts in the same run
• Slightly lower n/iso-selectivity compared to
liquid phase
• Numbering up of preparation equipment
for oxidation sensitive SILP catalysts
IL film
Results II
• High boiling side product fills pores of
the support material
• Model for pore filling[5,6] in accordance
with start-up behavior of conversion tests
Conversion over time in
ethylene hydroformylation
using Rh-SX and Rh-BzP
complexes on macroporous
SiO2 support; parameter:
mcat=2.3g, mRh=0.2wt-%,
L/Rh=5, T=80°C, p=20bar,
pethylene=1.0bar,
pH2=pCO=9.5bar, residence
time=30s.
Conversion (related to all butenes) over time in continuous gas phase hydroformylation of
industrial C4 feedstock using Rh-BzP/SiO2 catalyst material. Parameter: mcat=12.0g,
mRh=0.2wt-%, L/Rh=10, T=100-120°C, p=10bar, pbutenes=1.6bar (1.3bar), pbutanes=0.6bar
(0.5bar),pH2=pCO=3.9bar (4.1bar) before (and after) variation of syngas/butene ratio from 6 to 8
after 170 h on stream, residence time=48s (43s).
[1] Franke et al., Fluid Phase Equilibria 2013, 340, 11-14.
[2] CRT Erlangen
[3] Winterton et al., Cryst. Eng. Comm. 2006, 8, 742-745.
[4] Recent review: R. Franke, D. Selent, A. Börner, Chem. Rev. 2012, 121, 5675-5732
[5] DE 102013207104
[6] A. Schönweiz et al., ChemCatChem 2013, 5, 2955-2963.
Homogenous solved
catalyst complex
96
poster
„Multi-Phase“
Arbeitspakete
1. Entwicklung geeigneter Messtechnik für den Einsatz unter
industriellen Bedingungen
2. Aufbau von Versuchsanlagen zur Bestimmung kritischer
Messdaten
3. Validierung und Ableitung von Modellen zur Auslegung anhand
der Messdaten
Erhöhung der Energieeffizienz und Reduzierung von Treibhausgas-Emissionen durch
Multiskalenmodellierung von Mehrphasenreaktoren
Dr. M. Becker, P. Rollbusch, M. Ludwig, Dr. G. Skillas, Prof. Dr. R. Franke (Evonik Industries AG), Prof. Dr. D. Bothe, Dr. H. Marschall, D. Deising (CSI Darmstadt), Dr. M. Dues, F. Michaux (ILA GmbH), Prof. Dr. U. Hampel, Dr. A. Bieberle, Dr.
M. Schubert (HZDR), Prof. Dr. M. Grünewald, N. Abel, L. Schlusemann (Ruhr-Universität Bochum), Dr. P. Jäger, M. Finck (EuroTechnica GmbH), Dr. G. Liebsch (PreSens GmbH), Dr. S. Lüttjohann (Bruker Optik GmbH), Prof. Dr. A. Liese, Dr.
D. Selin (ITB, TU Hamburg-Harburg), Prof. Dr. M. Schlüter, M. Bothe, Dr. M. Hoffmann (IMS, TU Hamburg-Harburg), Prof. Dr. M. Wörner, S. Erogan (KIT)
1. Entwicklung Messtechnik
2. Versuchsanlagen
3. Modellbildung
Simulation von Einzelblasen und
Blasenschwärmen mit Hilfe von
Direkter Numerischer Simulation
(DNS)
Vom HZDR entwickelter
Gittersensor
Euler-Euler-Simulation einer
Technikumsblasensäule DN160,
Geschwindigkeitsprofil der
Flüssigphase
Vom HZDR entwickelter Gittersensor
zur Messung radialer Gasgehaltsprofile
mean axial liquid velocirty
Blasensäule aus Plexiglas®,
3,5m hoch, H/D=12.5
VE-Wassser/N2
Begaser: Lochplatte
radial distance
Messungen zum Gasgehalt mit Gittersensor
an Literaturdaten validiert
radial distance
DNS & CFD-Simulationen
EPIV Messgerät zur
Erfassung der
Blasengrößenverteilung
installiert am DN330
Pilotreaktor
im Technikum der Evonik
Industries AG
Verteilung des Gasgehalts über Querschnitt
und Höhe zeigt Einfluss der Begasung
Einfluss von Gasgehalt auf Umsatz und
Selektivität (Cumol-Oxidation)
Blasengrößenverteilungen mit Laserendoskop
in Wasser und Cumol vermessen
DN160 Blasensäule im Technikum
der Evonik Industires AG
DN300 Blasensäule im Technikum
der Evonik Industires AG
Schema des vom HZDR
entwickelten Gamma-CT
g-Tomograph erfolgreich an Druckreaktor zur
Messung von Gasgehalten eingesetzt
Montag, 30. Juni
Kompartment-Modellierung
Blasensäulen auf unterschiedlichen Skalen;
Druck beeinflusst Gasgehalt maßgeblich
Ausblick
• Auswertung der Messdaten der
verschiedenen Versuchsreaktoren
• Ableitung von verbesserten
Modellgleichungen für die Nutzung in
1D/2D- sowie CFD-Modellen
• Übertragung auf technischen Prozess
und Ableitung von Optimierungspotenzialen
• LCA und Bewertung des CO2Einsparpotenzials
poster
97
Unsere Technik. Ihr Erfolg.
Pumpen Armaturen Service
n
n
Entwicklung eines miniaturisierten, ölfreien CO2-Kompressors
mit integriertem, CO2-gekühltem Elektromotorantrieb für CO2-Großwärmepumpen
BMBF geförderte Projekte
Projektinformationen
Budget:
BMBF Förderung:
ca. 4,8 Mio. €
ca. 2,8 Mio. €
Projektdauer:
Projektstart:
3,5 Jahre
01. Mai 2011
Funktionsweise Wärmepumpe
Bei ausschließlicher Förderung durch das BMBF ist auf allen visuellen Formen von Publizitäts- und Informationsmaßnahmen das unten
stehende BMBF-Logo zu verwenden. Zusätzlich sollte das Logo des Projektträgers und Förderschwerpunkts mit angegeben sein. Wo
vorhanden, kann außerdem das eigene Projektlogo verwendet werden:
Eine Wärmepumpe ist eine Maschine, die unter Aufwendung
von technischerProjektlogo
Arbeit (Wzu) thermische Energie von einer Quel-
Logo des
Förderschwerpunkts
le aufnimmt (Qzu) und diese auf einem höheren Temperaturniveau einem Verbraucher zur Verfügung stellt (Qab).
Qab
3
Projektpartner
Forschung: Startup-Projekte
Traugott Ulrich
Gerd Janson
2
Wärmetauscher_1
Drossel
Verdichter
Wzu
Wärmetauscher_2
Institut für angewandte Thermound Fluiddynamik
Werner Grundmann
Gerd Thiel
ITSM Institut für Thermische
Strömungsmaschinen und
Maschinenlaboratorium
Jürgen F. Mayer
Fabian Dietmann
SAM
SAM Lehrstuhl für Strömungsmechanik
und Strömungsmaschinen
Martin Böhle
Sebastian Schulz
4
1
Qzu
Funktionsprinzip einer Wärmepumpe
Zur Entwicklung einer effizienten Wärmepumpe wird dabei ein
wirkungsgradoptimierter Verdichter benötigt.
Herausforderungen
Die miniaturisierte Bauweise der Maschine bringt neue aerodynamische, fertigungstechnische und konzeptionelle
Schwierigkeiten mit sich.
Hohe Drehzahl-Drehmoment-Niveaus verlangen die
Auslegung eines neuartigen Elektroantriebs.
Bedingt durch die ölfreie Funktionsweise müssen bestehende
Lagerkonzepte weiterentwickelt werden.
Projektplan
Das hohe Druckniveau (> 90 bar) und die Miniaturisierung
vergrößern den Einfluss von Leckageströmen.
Kleine Volumenströme, große Druckverhältnisse und die
Verwendung von CO2 als Betriebsmedium in einem
transkritischen Prozess erschweren die aerodynamische
Konzipierung.
Miniaturisiertes Laufradkonzept im Größenvergleich
98
poster
Mixed-Matrix-Membranen für die Gasseparation
Chemische Prozesse und stoffliche Nutzung von CO2
Motivation
Mixed-Matrix-Membranen (MMM)
Entwicklung eines neuartigen Membranmaterials zur effizienteren
Abtrennung höherer Kohlenwasserstoffe aus Permanentgasen
•
Einsparung von Energie & Kosten durch Einsatz selektiverer MixedMatrix-Membranen (MMM)
•
Mögliche Anwendungsbereiche:
- Erdgaskonditionierung
- Lösungsmittelrückgewinnung
- Prozessgasaufbereitung (z.B. Fischer-Tropsch-Synthese)
•
Trennschicht als Polymermatrix mit integrierten anorganischen Partikeln
Poly(octylmethylsiloxan)
Poly(dimethylsiloxan)
Limitierte Selektivität
Gute Verarbeitbarkeit
•
•


• Aktivkohle (Blücher GmbH)
 Sehr hohe Selektivität
 Schlechte Verarbeitbarkeit
Betrachtetes Beispielsystem: Trennung von n-Butan und Methan
Polymer / AKSuspension
Fertige MMM
nach Vernetzung
Produktion von MixedMatrix-Kompositmembranen am HZG:
• Größte bisher
dokumentierte
Fläche einer
MMM (120 m²)
Beschichtungsrichtung
Automatisiertes
Filmziehgerät
Aufbau zur Herstellung
der Membranen im
Labormaßstab an der
TU Berlin:
Stützschicht
Polymer/
Aktivkohlesuspension
Selektivität n‐C5H12/N2 [‐]
Beschichtungsanlage
Experimentelle Ergebnisse
Selektivität n‐C4H10/CH4 [‐]
Herstellung im Labor- & Pilotmaßstab
MMM mit POMS
35
pF = 10‐40 bar  = 20 °C
yF,n‐C4H10 = 0,03‐0,05
pP = 1 bar 30
25
POMS
Milestone MMM
MMM Batch 1
MMM Batch 2
20
15
0.20
100
pF = 30 bar  = 20 °C
yF,n‐C5H12 = 0,015
pP = 1 bar 50
0
10
MMM
POMS
20
Zeit [d]
1.6
1.4
1.2
 = 20 °C
1
0.0
0.1
0.2
0.3
•
•
•
POMS Experiment
15
40
AM
.
Q
.
P
10
0.4
Retentat
yF,n-C4H10 = 0,01
Kondensat
 = 20 °C
yF,n‐C4H10 = 0,03‐0,05
pP = 1 bar 0
20
40
60
Feeddruck [bar]
MMM
Einzelgas
n-C4H10
MMM
Gasgemisch
n-C4H10/CH4
POMS
Gasgemisch
n-C4H10/CH4
1%
6,4 %
3,7%
• Gute Übereinstimmung
zwischen Modell und
Experiment
Erfolgreiche Herstellung von Mixed-Matrix-Membranen im
Labor- & Pilotmaßstab
Identifikation von Einflussfaktoren auf das Trennverhalten
Reduzierung der benötigten Energie um 37% durch höhere
Selektivität im Vergleich zu reinen Polymermembranen
Herstellung eines Membranmoduls
PROJEKTKOORDINATION:
0.25
0.30
0.35
0.40
mittlere Fugazität n‐C4H10 [bar]
POMS Free Volume Modell
Zusammenfassung
•
15
POMS Modell
20
mittlere Fugazität n‐C4H10 [bar]
Mittl. rel.
Abweichung
MMM Modell
25
30
Feed
VF = 1000 Nm³/h
pF = 30 bar
F = 20 °C
yF,n-C4H10 = 0,05
MMM Experiment
Emergieverbrauch [kW]
Selektivität n‐C4H10/CH4 [‐]
Permeanz n‐C4H10
[Nm³/(m² h bar)]
1.8
PDMS
PDMS/AK
PDMS/Zeolith
17
Einsparpotential
.
30
19
• Selektivität der MMM besser für
Polymermatrix aus POMS statt mit
PDMS
• Entwicklung einer Mixed-MatrixMembran mit höherer Selektivität und
ähnlicher Permeanz für n-C4H10
• Nachweis der Langzeitstabilität im
Gemisch n-C5H12/N2
150
Permeation Gasgemisch
2
21
0.20
200
0
35
2.2
pF = 10‐30 bar  = 20 °C
yF,n‐C4H10 = 0,02‐0,04
pP = 1 bar 23
0.40
0.60
0.80
1.00
mittlere Fugazität n‐C4H10 [bar]
Mechanistische Modellierung
Permeation Einzelgas
MMM mit PDMS
25
Langzeitstabilität
250
Filmapplikator
2.4
Idealisierte MMM Struktur (links),
REM Aufnahme einer MMM (rechts)
Selektivität n‐C4H10/CH4 [‐]
•
Torsten Brinkmann • E-Mail: [email protected]
Helmholtz-Zentrum Geesthacht • Max-Planck-Straße 1 • 21502 Geesthacht
Phone +49 (0)4152 87- 2400 • Fax +49 (0)4152 87-4-2400 • www.hzg.de
150
100
50
0
•
PDMS
POMS
MMM
POMS / AK
•
Prozesssimulation mit Aspen
Custom Modeler ® für PDMS,
POMS und POMS / 20 wt% AK
Einsatz einer Mixed-MatrixMembran reduziert die benötigte
Energie um 37% bezogen auf
PDMS
Ausblick
•
Pilotierung und Tests im industriellen Bypass
•
Optimierung des Stofftransportmodells und
Einbindung in Modulsimulationstools am HZG
•
Prozessdesign und Wirtschaftlichkeitsprüfung
Gefördert durch:
GEFÖRDERT
GEFÖRDERT VOM:
VOM:
poster
99
Mit voller Transparenz ans Limit
Energieeffizienz-Management und -Benchmarking
für die Prozessindustrie
Dr. Christian Drumm
Bayer Technology Services GmbH, BTS-TD-PDO-PA, [email protected]
Ziele
Die Steigerung der Energieeffizienz ist ein wichtiger
Wettbewerbsfaktor in der chemischen Industrie. Zeitgleich steht die
Senkung von Treibhausgasemissionen zunehmend im Fokus
nachhaltiger Klimaschutzpolitik. Neben der Identifikation von
Maßnahmen zur Effizienzsteigerung ist heute eine der
entscheidenden Herausforderungen, den Energieverbrauch sowie
die Treibhausgasemissionen in möglichst kurzer Zeit und nachhaltig
zu minimieren.
Methode
STRUCTese unterstützt nachhaltig bei der Steigerung
der Energieeffizienz und bei der Reduktion von CO2
Emissionen
Das Energiemanagement-System STRUCTese®, das bei Bayer zur kontinuierlichen und
nachhaltigen Maximierung von Energieeffizienz in der chemischen Großindustrie entwickelt wurde,
bildet die Grundlage im Projekt. STRUCTese® stellt Methoden und Werkzeuge zur Verfügung, die
Maßnahmen zur Steigerung der Energieeffizienz identifizieren, steuern und nachverfolgen sowie
die kontinuierliche Senkung des Energieverbrauchs ermöglichen. Die Methode ist nach DIN ISO
50001 zertifiziert und geht weit über die Anforderungen hinaus, die an ein
Energiemanagementsystem gestellt werden.
Projekt
Im Rahmen des Projektes wird die Methode zu einem standardisierten, unternehmens- und
prozessübergreifenden Managementund Benchmarking-System für
Energieeffizienz
weiterentwickelt, das die effizientesten Technologien berücksichtigt, die Wissenschaft und Industrie
heute kennen. Dabei wird die Methode an Prozessen der industriellen Partnern aus der
chemischen Industrie und den Life Sciences validiert.
Ergebnisse
Im Projekt wird die Methode für Life Science und
Batch Prozesse weiterentwickelt
Utility
Systems
Heat
integration
Benzene
Insulation /
Illumination
730 kW
comp. time ~40s
Chloroform
1. Jahr
2. Jahr
3. Jahr
Die Methode ermöglicht die transparente Darstellung und Verfolgung der
Energieeffizienz über Betriebe, Standorte und ganze Unternehmen. Der kontinuierliche
Fokus auf Energieeffizienz macht Energieeinsparungen von über 20% möglich.
Partner
Dem Betriebspersonal werden moderne Monitoring
Werkzeuge zur Visualisierung der Energieeffizienz zur
Verfügung gestellt
Toluene
Oper.
Improvem. /
Automation
475 kW
Acetone
1 bar
Benzene
5.1 bar
1.8 bar
Feed
Number of Measures*
1 bar
Chloroform
Toluene
comp. time ~40s
2.8 bar
Acetone
10 bar
Feed
200
180
160
140
120
100
80
60
40
20
0
Equipment /
Unit
Operation
Die Methode eignet sich hervorragend für große
kontinuierliche Prozesse
Der momentane Energieverbrauch wird mehreren
theoretischen Energieoptima der untersuchten Anlage
gegenübergestellt. Die Abweichung zum Optimum wird
mit Hilfe von statistischer Datenanalyse realer
Verbrauchsdaten in Verlustkategorien aufgeschlüsselt.
Spez. Energieverbrauch kWhPE/ t Produkt
STRUCTese fördert neue Technologien wie die
Sauerstoffverzehrkathode in der Chloralkali-Elektrolyse
100
poster
IL-WIND
FK: 01RC1009B
www.crt.cbi.uni-erlangen.de
Entwicklung IL-basierter Schmierstoffe für Windkraftanlagen
Projektleitung: Prof. Dr. P. Wasserscheid
Projektkoordinatorin: A. Westerholt, M.Sc.
Entwicklungsziel
Herstellung eines Schmiermittels basierend auf einer Ionischen Flüssigkeit (IL), welche folgende Eigenschaften aufweist:
•
IL
IL
IL
Hoher Viskositätsindex (VI)
•
IL
IL
IL
Gute Schmierleistung
•
IL
•
IL
IL
•
Nicht korrosiv und umweltfreundlich
•
IL
Niedriger Dampfdruck und hohe thermische Stabilität
Mischbarkeit mit bestehenden Standardölen
IL
IL
Reduktion von Reibung und Verschleiß durch Schutzschichtbildung
Nicht brennbar oder flüchtig
IL
IL
Geringe Temperaturabhängigkeit der Viskosität durch CO2-Zugabe
Hohe chemische Stabilität
Löslich in Basisöl (PAO, PAG,…)
Halogenidfreie Struktur und Synthese
Kompatibel mit Standardadditiven (ZnDTP)
IL
IL
IL
CO2-Reduktion
IL
IL
IL
Ammonium
IL
→ Kein vorzeitiger Anlagenausfall
Sulfat
IL
Phosphat
IL
zur
der
→ Weniger Verschleiß durch konst. Schmierfilmdicke
Ergebnisse
 Gute Schmierleistung
 Vermeidet verfrühten Lagerausfall
IL
IL
Steuerung
PAO-basierter IL-Wind Schmierstoff
IL
IL
 Produktion im Großmaßstab möglich
IL
 Halogenfrei
IL
IL
IL
IL
CO2
T [°C]
•
IL
IL
IL
von
IL
IL
Phosphinat
IL
Verwendung
Temperaturabhängigkeit der Viskosität.
CO2
IL
IL
IL
VI →
VI
>>∞100
IL
IL
Sulfonat
VI <100
VI
< 100
IL
IL
Phosphonat
M. H. Evans, Materials Science and
Technology 2012, 28, 22-23.
IL

R = Rest
IL
Reduktion eines typischen Lagerschadens.
IL
IL
Imidazolium
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
IL
IL
Phosphonium
 Erhöhung der Lebenszeit der Lager durch
IL
IL
ν [mm2/s]
Mögliche Anionen und Kationen
IL
IL
IL
IL
• CO2-Steuerung der Temperaturabhängigkeit der Viskosität ist
schon bei moderaten CO2-Drücken anwendbar
Life Cycle Assessment
Referenz: Lagerwechsel (Schäden) an den Referenzanlagen 40 % alle 2 Jahre
1. Fall: Wartungszyklus von 3 d/4a → 32%
Projektpartner:
Durchgeführt von Frau Dr. Kralisch (Friedrich-Schiller-Universität Jena)
2. Fall: Wartungsfrei → 90 %
poster
101
Ein neues Verfahren zur Gewinnung von Lignin, Cellulose und Hemicellulose aus biogenem Material mit Hilfe neuartiger ionischer Flüssigkeiten
R. Janzon1, B. Saake1, K. Becker2 , H.G. Brendle3, S. Saur4 und W. Kantlehner4
1 Universität Hamburg, Leuschnerstraße 91b, D‐21031 Hamburg
2
Bayer Technology Services GmbH, BTS‐TD‐DP‐DPS, Gebäude B310, D‐51368 Leverkusen & Söhne GmbH & Co. KG, Holzmühle 1, D‐73494 Rosenberg Hochschule Aalen, Institut für Angewandte Forschung, Beethovenstr. 1, D‐73430 Aalen Kontakt: willi.kantlehner@htw‐aalen.de
3 J. Rettenmaier
Fazit
Einleitung
Ein neues energie‐ und rohstoffeffizientes Aufschlussverfahren
ist in der Entwicklung, welches es ermöglicht Faserstoffe (FS),
Lignin und Hemicellulosen zu gewinnen. Die Aufschlusslösung
besteht aus einer ionischen Flüssigkeit (IL; Alkoxymethylen‐
Iminiumsalz) und einem organischen Lösungsmittel.
Für
den
Labormaßstab
liegt
nach
eingehenden
Untersuchungen ein erprobtes Verfahrenskonzept vor. Darauf
basierend wurden die Aufschlussparameter Temperatur
(100‐160°C), Zeit (45‐240 min) sowie die Konzentration der
IL (1‐15% bzgl. Aufschlusslösung) für den Aufschluss von
industriellen Fichten‐Hackschnitzeln (HS) bei einem
Flottenverhältnis von 1:5,5 (HS:Aufschlusslösung) optimiert.
Die mittels des IL‐Aufschlusses aus dem Rohstoff gewonnenen
Faserstoff‐, Lignin‐ und Hemicellulosenproben zeigt Abb. 1.
• Mittels des IL‐Aufschlusses ist eine gute Fraktionierung der Cellulose‐ und
Ligninanteile des Holzes möglich. Dies zeigen die FS‐Ausbeute von 55%
sowie die Lignin‐Ausbeute von 26% in Kombination mit den hohen
Reinheitsgraden von 90% Glucose bzw. 86% Lignin der jeweiligen Fraktion
(Abb. 2).
• Bei einer Polydispersität von 4,1 weisen die IL‐Lignine mit Werten unter
6.000 g/mol eine relativ geringe molare Masse auf (Abb. 3).
• Nach 21 Tagen sind bei der Vergärung der Hemicellulosen‐Fraktion 277 mL
Methan/goTS entstanden und der oTS‐Gehalt wurde von 5% auf unter 1%
abgesenkt (Abb. 4).
• Verwertungspotentiale: Aufgrund der engen Faserlängenverteilung zeigen
die FS gute Filtrationseigenschaften. Für die Lignine ist angesichts der
hohen Reinheit und der niedrigen MW‐Werte der Einsatz bei PF‐Harzen und
Polyurethanen denkbar. Auf Grundlage der Biogastests ist die anaerobe
Vergärung der Hemicellulosen‐Fraktion bzw. der Fällabwässer möglich.
Ergebnisse
Lignin [%]
Hemicellulosen [%]
Glucose [%]
FS-Ausbeute [%]
Lignin-Ausbeute [%]
Rohstoff: Fichten‐HS
50
60
Hemicellulosen
Lignin
(gelöst in Prozessabwässern)
Abb. 1: Rohstoff (Fichte‐HS) sowie mittels des IL‐Aufschlusses gewonnene Faserstoff‐, Lignin‐
und Hemicellulosen‐Fraktion
MW -Verteilung der Lignine
0,8
40
40
30
20
0
Faserstoff
60
80
Ausbeute [%]
Zusammensetzung [%]
100
FaserstoffFraktion
LigninFraktion
20
Abb.2: Zusammensetzung (rechte Y‐Achse) und Ausbeute (linke Y‐Achse) der
mittels des IL‐Aufschlusses gewonnenen Faserstoff‐ und Ligninfraktion
MW = 5.700 g/mol
MW /MN = 4,1
0,6
W(log M)
4
0,4
0,2
0,0
10x100
100x100
1x103
10x103
100x103
1x106
molare Masse [g/mol)
Abb. 3: Molekulargewichtsverteilung der IL‐Lignine
Abb. 4: Methanpotential der beim IL‐Aufschluss anfallenden Hemicellulosenfraktion
Das BMBF‐Verbundprojekt „Ein neues Verfahren zur Gewinnung von Lignin, Cellulose und Hemicellulose aus biogenem Material mit Hilfe neuartiger ionischer
Flüssigkeiten“ wurde durch den Projektträger DLR gefördert. Das vorliegende Poster wurde auf der 4. Statuskonferenz der BMBF‐Fördermaßnahme "Technologien für
Nachhaltigkeit und Klimaschutz ‐ Chemische Prozesse und stoffliche Nutzung von CO2„ am 08.04.2014 in Königswinter vorgestellt.
102
poster
Institut für Technische Thermodynamik
und Kältetechnik
Engler-Bunte-Ring 21
76131 Karlsruhe
Absorptionswärmetransformation mit dem
Arbeitsstoffpaar Wasser – Ionische Flüssigkeit
N. Merkel 1, K. Schaber 1, B. Rumpf 2, J. Rüther 2, T.J.S. Schubert 3, S. Sauer 3, V. Wagner 4
EINLEITUNG
Motivation
Große, bisher ungenutzte Abwärmeströme im Bereich 80-120 °C
Transformation auf ein nutzbares Temperaturniveau
Integration in ein Dampfnetz möglich
Einsparung von Primärenergie und Absenkung der CO2-Emission
Vorteile des neuen Arbeiststoffpaares Wasser – ionische Flüssigkeit (IL)
Vollständige Mischbarkeit und niedrige Schmelztemperatur
Geringe Korrosivität gegenüber Edelstählen
Vernachlässigbarer Dampfdruck der IL – keine Rektifikation notwendig
STOFFDATEN
VLE-Messungen über FTIR-Spektroskopie
Einfluss von Anion/Kation
Temperaturstabilität
Relevanz der Viskosität
t = 80°C
Temperatur
der IL im AWT
TH: Wasserthermostat
GZ: Gleichgewichtszelle
CP: Kreislaufpumpe
D:
Demister
FTIR: Fourier Transform-Infrarot Spektrometer
Nach [1]
→ Anion entscheidend für
Dampfdruckabsenkung
TGA bei t = 160°C
NETZSCH TG 209; Tiegel: AL2O3; N2-überspült
EMIM OAc, DEMA OMs: [1]
DEMA OTf: [2]
→ Unkritisch im AWT
EMIM OAc, DEMA OMs: [1]
DEMA OTf: [2]
SIMULATION
Annahmen für die Simulation
Stationärer Prozess
Vergleich möglicher Lösungsmittel
Vernachlässigung von Wärme- und Druckverlusten
Dampfdruck des Absorbents vernachlässigbar
Isenthalpe Drosselung
tHeiz = 90°C
tKühl = 25°C
Leistungseintrag der Pumpen vernachlässigbar
Kondensator und Verdampfer nicht unterkühlt/überhitzt
Absorber bzw. Desorber im Gleichgewichtszustand
EXPERIMENTE
Apparatekonzepte der 4kW-Technikumsanlage
Desorption im gefluteten Shell & Plate Apparat
Vergleich Simulation – Experimente
EMIM OMs
tHeiz = 95°C
tKühl = 25°C
������
Neukonzipierung eines Platten-Absorbers
�����
��
�
� � ����
�����
��
�
����
������
��� � �
������
�� � �
�� � ����
���� � ����
Kapillarnetze zur Verbesserung der
Benetzung
Spacer aus Lochblech: Strömungsführung
und Dampfdurchlässigkeit
Zum Patent angemeldetes Flüssigkeitsaufgabesystem
FAZIT UND AUSBLICK
Ausblick
Dimensionierung der Apparatekonzepte für Anlagen > 10 MW
Wirtschaftliche und ökologische Gesamtbewertung
Fazit
Wasser – ionische Flüssigkeit ist ein mögliches Arbeitsstoffpaar für
Absorptionskreisläufe
PROJEKTPARTNER UND FINANZIERUNG
Kontakt:
Dipl.-Ing. N. Merkel
[email protected]
1)
2)
3)
KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft
4)
[1]: Römich et al., J. Chem. Eng. Data,
2012,7 (8), pp 2258–2264
[2]: Merkel et al., J.Chem. Eng. Data,
2014, 59 (3), pp 560–570
poster
103
SIT: Nutzung niederkalorischer industrieller
Abwärme mit Sorptionswärmepumpensystemen mittels ionischer Flüssigkeiten
und thermochemischer Speicher
Schneider[a], Blug[a], Wasserscheid[b], König[b], Linder[c], Wörner[c]
[a] Evonik Industries AG
[b] Universität Erlangen Nürnberg
[c] Deutsches Zentrum für Luft- und Raumfahrt e.V.
Motivation
• Mehr als 56 % der in Deutschland verbrauchten
Primärenergie werden für thermische Anwendungen
eingesetzt
• In der chemischen Industrie ist ein großes ungenutztes
Abwärmepotential bei Temperaturen unterhalb von 150 °C
verfügbar
• Durch die Nutzung von Abwärmeströme kann der Einsatz
von Primärenergieträgern substituiert werden
 Für die effiziente Nutzung niederkalorischer
Abwärmeströme werden neue Technologien benötigt
Information/
Kommunikation Beleuchtung
2%
3%
31%
Mechanische
Energie 37%
Raumwärme
4%
2%
21%
Klima/Prozesskälte
Warmwasser
Prozesswärme
Primärenergieverbrauch nach Anwendungsgebieten in
Deutschland (Quelle: BMWi, 2010)
Projektziel
” Entwicklung eines neuartigen Verfahrenskonzeptes zur Verwertung
niederkalorischer Abwärme für die energetische Nutzung in verschiedenen
Anwendungen”
• Entwicklung neuer Arbeitspaare basierend auf ionischen Flüssigkeiten (IL) mit
deutlichen Vorteilen gegenüber dem Stand der Technik in Bezug auf Korrosion
und Kristallisation
• Entwicklung thermochemischer Speicher mit hoher Speicherdichte und hoher
Leistung
• Durchführung von Ökobilanzen zur Bewertung des neuen Verfahrenskonzeptes
Prozesschema zur Nutzung industrieller Abwärme mit Hilfe des neuen
Verfahrenskonzepts
Projektergebnisse
Gesamtsystem
Absorptionswärmepumpe
Wärmespeicher
Auslass
P-7
TIR
I-1
V-5
Wasserdampf
Messung
V-2
P-6
Taus
P-3
Paus
Reaktor
T
W-01
T
P-5
P-2
Thermostatbad
T
P-4
V-1
T
Tein
TIR
112
TIRCS
113
MFC
FIR
114
Pein
F
Druckhalter
Luft
312
111
FIR
I-5
Schema des umgebauten Broad-Messstandes im Technikum
der Evonik Industries AG in Hanau
2,5
2,2
2,0
1,8
1,6
1,4
1,2
1,0
0,8
0,6
0,4
0,2
0,0
2,0
1,5
1,0
0,5
0,0
LiBr *
IL 1
Prozessschema der bei der seriellen Verschaltungsvariante von
Absorptionswärmepumpe und Wärmespeicher
2.700
Wärmeleistung [kW]
COP [-]
IL 2
Vergleich der Nutzwärmeleistung und des COP von LiBr/Wasser
und neuartiger IL/Wasser-Medien in der Broad-Wärmepumpe
Thermostatbad
Prozessfließbild des chemischen Wärmespeichers in
offener Betriebsweise
150
2.900
120
1.700
56
50
805
24
Gas
Steinkohle
Braunkohle
SIT
CO2e-Emissionen bei der Bereitstellung von 900 kW Leistung
(8000 h/a) unterschiedlicher Energieträger im Vergleich in t/a
Sensible
Latent
Sorption
Chemisch
SIT
1st generation
Wärmespeicherdichten unterschiedlicher Speichersysteme
in kWh per m³
 Durch das Zusammenspiel von Wärmepumpe und Wärmespeicher kann bei der Bereitstellung von thermischer Energie ein erhebliches
CO2e-Reduktionspotential realisiert werden
Kontakt:
Dr. Matthias Blug
[email protected]
+492365499640
Projektpartner:
Das Projekt SIT
FKZ: 01RC1002A
wurde gefördert
durch das BMBF
104
poster
Acrylate Formation from CO2 and Ethylene Mediated by NickelComplexes – Mechanistic Studies
Philipp N. Plessow,a,b Andrey Y. Khalimon,b S. Chantal E. Stieber,b Núria Huguet,b Ivana Jevtovikj,b Miriam Bru,b Ronald
Lindner,b Michael Lejkowski,b Ansgar Schäfer,a Michael Limbach,b,c* Peter Hofmannb,d*
aBASF SE, GVM/M, Ludwigshafen, Germany; bCaRLa, Heidelberg, Germany;
SE, GCS/C, Ludwigshafen, Germany; dRuprecht-Karls-Universität Heidelberg, Organisch-Chemisches Institut, Heidelberg, Germany
cBASF
Introduction
Sodium Acrylate
Catalytic cycle
In an effort to utilize CO2 as a carbon feedstock, considerable work has
gone towards realizing the synthesis of acrylates from the coupling of
CO2 with ethylene. Promising work by Hoberg and coworkers in 1987
demonstrated the formation of nickelalactones from CO2 and ethylene,1
but only in 2010 was this reaction rendered catalytic by our group.2
Currently, there is considerable interest in determining the mechanism
of the cycle and further optimizing the catalysis.
High Pressure
C2H4
tBu
P
P
tBu
P
outer sphere
t Bu
2
H2
P
Ni
P O
t Bu
2
P
Ni
H1 H2
P
t Bu
2
H1
O
O
t Bu
2
G‡ = 82
O
Ni
tBu
P
Ni
P
t Bu
2
CO2
G‡ = 110
H1
H2
CO2
2
tBu
O
ONa
P
TON = 10.2
tBu
t
BuOH
P
ONa
Low Pressure CO2
t Bu
2
H1
P
Ni
P O
t Bu
2
CO2
G‡ = 124
G: = 0
NHCP Ligands:
H2
1. Computationally determined to have lower barrier for lactone formation
2. May allow for higher TON
O
G = 15
L
CO2
L
Ox idati ve Coupli ng
L
Ni
L
=
L
∆ G:
Pt Bu2
P
P
Ni
O
O
t Bu
2
P
P
Ni
t Bu
2
G=1
t Bu
2
G‡ = 73
O
O
P
+MeI
P
G‡ = 131
Ni
t Bu
2
O
OMe
∆G‡ = 73
t Bu
2
t Bu
2
Ni
Ni
CO2Na
Pt Bu2
15 kJ/mol
5 (-7) kJ/mol
∆G‡ (inner sphere): 124 kJ/mol
110 (118) kJ/mol
P
Ni
P
t Bu
2
-
∆G = 22
CO2H
∆G = -4
+
-
CO2Na
t Bu
2
-
CO2Me
∆G = 21
P
P
P
P
OMe
Ni
∆G# ~ 104
∆G = 21
OMe
t Bu
2
t Bu
2
Ni-lactone cleavage and exchange with C2H 4
Ni
ClSiMe2t Bu
NR3
The ligand exchange reaction of
either methyl or silyl acrylate with
ethylene is endergonic (∆G = 21
kJ/mol) and cannot be observed
experimentally.
t Bu
2
P
P O
t Bu
2
O
O
t Bu
2
P
P
Ni
O
P
Ni
P
t Bu
2
O
OSiMe2t Bu
OSiMe2t Bu
t Bu
2
Conclusion and Outlook
CO2Me
+
O
t Bu
2
1. MeOTf
2. NR3
1. Pathways to acrylate formation have been established computationally.
2. Possible intermediates and deactivated metal species have been isolated.
3. Experimental and computational investigations of silyl acrylates and esters revealed endergonic
ligand exchange with ethylene.
4. The cycle for formation of sodium acrylate has been closed.
5. Demonstrates feasibility of catalysis.
G = -95
G = -4
N t Bu
OMe
O
t Bu
2
P
t Bu
2
CO2H
+
Ni
G = -22
P
P
P
t Bu
2
P
P
t Bu
2
+base
-Hbase+
-I-
+NaOMe
-HOMe
Isolated intermediates and catalyst deactivation:
Acrylic Esters: Alkyl and Silyl Esters
I
t Bu
2
G = -19
G: = 0
G‡ = 138
G‡ = 75
O
kin. (therm.) isomer
Three routes to acrylates[4]:
1. Direct formation of acrylic acid
• Unfavorable thermodynamically and kinetically[3]
• No catalysis
2. Reaction with sodium alkoxides
• Strong base, weak Lewis acid
• Catalytic reaction; still technical issues[2]
3. Reaction with methyl iodide and subsequently with amine bases
• Weak base, strong Lewis acid
• Still stoichiometric; several problems[5,6,7]
t Bu
2
Ni
O
N
Pt Bu2
Theory: Formation of Acrylates
G‡ = 109
O
NaOtBu
OtBu
2
Ni
P O
tBu
2
L
t Bu
2
2
Ni
P O
tBu
2
ONa
2
inner sphere
t Bu
2
G = 66
G = 15
P
O
2
High Pressure
CO2
Ni
tBu
Theory: Coupling of CO2 and Ethylene
Two possible mechanisms[4]:
1. Inner sphere: C-C bond formation at Ni
• Known in the literature[2,3]
2. Outer sphere: Formation of zwitterionic intermediate
•Solvent- and ligand-dependent
• Prediction of barriers requires clarification of the mechanism
•Different isomers expected for substituted olefins
•Problem is studied experimentally
2
Isolated potential intermediates:
Ni
t Bu
2
Computational Details
All geometries were optimized at the BP86/def2-SV(P) level of theory. Gas-phase
free energies were obtained based on single-point energies at the RPA@PBE/def2QZVPP level of theory. Free energies in solution (THF) were obtained by adding
solvation free energies calculated with COSMO-RS, and the parameterization for
BP86/def-TZVP (reference state: T = 298.15 K; χ = 0.1). All calculations were
carried out with TURBOMOLE.
References
[1] Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y. H. Angew. Chem. Int. Ed. Engl. 1987, 26, 771.
[2] Lejkowski, M. L.; Lindner, R.; Kageyama, T.; Bódizs, G. É.; Plessow, P. N.; Müller, I. B.; Schäfer, A.; Rominger, F.;
Hofmann, P.; Futter, F.; Schunk, S. A.; Limbach, M. Chem. Eur. J. 2012, 18, 14017.
[3] Graham, D. C.; Mitchell, C.; Bruce, M. I.; Metha, G. F.; Bowie, J. H.; Buntine, M. A. Organometallics 2007, 26, 6784.
[4] Plessow, P. N.; Schäfer, A.; Limbach, M.; Hofmann, P. Submitted.
[5] Bruckmeier, C.; Lehenmeier, M. W.; Reichardt, R.; Vagin, S.; Rieger, B.; Organometallics 2010, 29, 2199.
[6] Lee, S. Y. T.; Cokoja, M.; Drees, M.; Li, Y.; Mink, J.; Herrmann, W. A.; Kuehn, F. K. ChemSusChem 2011, 4, 1275.
[7] Plessow, P. N.; Weigel, L.; Lindner, R.; Schäfer, A.; Rominger, F.; Limbach, M.; Hofmann, P. Organometallics 2013,
32, 3327.
Acknowledgements
The presenting authors work at CaRLa of Heidelberg University, which is co-financed by the University of Heidelberg,
the State of Baden-Württemberg and BASF SE. Support from these institutions and financial support from the BMBF
(Chemische Prozesse und stoffliche Nutzung von CO2 : Technologien für Nachhaltigkeit und Klimaschutz, grant
01RC1015A) is gratefully acknowledged.
poster
105
Catalytic Formation of Sodium Acrylate
from Carbon Dioxide and Ethylene
Núria Huguet,1 Ivana Jevtovikj,1 Chantal Stieber,1 Andrey Khalimon,1 Alvaro Gordillo,1 Miriam Bru,1 Ronald Lindner,1 Piyal Ariyananda,1
Takeharu Kageyama, 1 Philipp N. Plessow,2 Michael Limbach1,2*
2BASF
1CaRLa (Catalysis Research Laboratory), Im Neuenheimer Feld 584, 69120 Heidelberg,
SE, Synthesis & Homogeneous Catalysis, GCS/C – M313, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
Introduction
Sodium acrylate is an important basic chemical that serves as a
monomer for the synthesis of polyacrylates. Those are frequently
utilized as superabsorber polymers in many consumer products.
The current process utilized for the synthesis of acrylic acid is
based on the two-step oxidation of propylene.
The direct synthesis of acrylates from CO2 and alkenes is
considered to be a dream reaction. In spite of huge effort [1,2], this
dream has not come true until recently. [3]
Synthesis of Nickelalactones
Transformation of Nickelalactones into Sodium Acrylate
Almost 40 years ago Hoberg observed that carbon dioxide and ethylene could undergo
oxidative coupling reaction to give nickelactones. [1]
L
L +
+
Ni(COD)2
CO2 +
15 bar
C2H4
30 bar
− 78 oC to 40 oC
L
90h, THF
L: DBU, Py
?
Ni
O
O
OH
O
We have systematically studied the influence of bidentate ligands on the Ni-catalyzed oxidative
coupling of ethylene with CO2.
C2H4 2 bar
Ni(COD)2
R2P
+
n
R2
P
Ni
P O
nR
2
CO2 6 bar
PR2
THF
1a - 6a
Entry
ligand
R
n
Yield 1a-6a
(%)
1b-6b
(%)
1c-6c
(%)
0
1
dppm
Ph
0
0
0
2
dppe
Ph
1
0
0
65
3
dppp
Ph
2
0
0
24
4
dt bpm
tBu
0
60
40
0
5
dt bpe
tBu
1
35
62
0
6
dt bpp
tBu
2
0
97
0
Ph
P Ph
tBu
P tBu
P Ph
Ph
dppp
P tBu
tBu
dtbpp
+
O
n
R2
P
Ni
P
R2
+
n
1b - 6b
R2 R2
P P
Ni
P P
R2 R2
1c - 6c
 Bulky
residues
on
the
phosphorous (e.g. tBu) promote
the oxidative coupling and
 prevent coordinative saturation
of the metal as non reactive
tetrakis phosphino complexes
(1c-6c).
 Decomposition
Nickelalactone
pressure.
of
dtbpm
without
CO2
Ph
P Ph
tBu
P tBu
Ph
P Ph
tBu
P tBu
P Ph
Ph
P tBu
tBu
P Ph
Ph
P tBu
tBu
dppe
dtbpe
dppm
dtbpm
?
The transformation of a nickelalactone into the corresponding
sodium acrylate complex has been considered as the most
challanging step in the catalytic cycle. It has never been reported
so far.
base (4 equiv.),
temperature, PhCl
t Bu
2
P
Ni
P O
t Bu
2
O
Yield
P
P
C2H4 (30 bar)
O
t Bu
2
45 oC, PhCl
ONa
Ni
Yield
t Bu
2
5a
O
t Bu
2
ONa
P
+
P
Ni
t Bu
2
5d
Entry
Base
Time
Additives
Temperature
Yield (%)
1
NaOtBu
0.25
−
r.t
90
2
NaHMDS
0.25
−
r.t.
87
3
NaOMe
24
−
r.t.
50(70)
4
NaOH
24
−
70 oC
0 (70)
5
Na2CO3
72
−
70 oC
0
6
NBu4OMe
72
−
50 oC
0
7
NBu4OMe
72
NaBARF
50 oC
50
8
DBU
72
−
70 oC
0
9
DBU
72
NaBARF
70 oC
0
10
P1
72
−
50 oC
0
11
P1
72
NaBARF
50 oC
50
 Strong Brönstedt bases mediate the required
reaction in a quick and almost quantitative
fashion.
 The efficiency of the reaction decreases
together with the basicity of the base applied.
 Additional experiments have demonstrated
importance of the Lewis acidic cation for the
reaction.
 The sodium acrylate formed can be easily
liberated from the corresponding nickel
complex by ethylene.
 The nickel ethylene complex re-starts the
catalytic cycle.
Catalytic Process
 Strong bases irreversibly form half-esters with carbon dioxide. [4]
ROM
CO2
RO
O
.
 In order to avoid this side reaction, the one-pot process was divided into
OM
two stages, varying the pressure of carbon dioxide.
 Using this procedure a TON of 10.2 ! was obtained, proving the catalytic character of the reaction. [3]
Dtbpe Nickel Based complexes
The dtbpe ligand is the best candidate to proceed with the rational study of the coupling of
ethylene and CO2 due to Nickelactone stability. Indeed, we have been able to characterize
some reaction intermediates by X-Ray diffraction.
Ni(dtbpe)(ethylene)
Ni(dtbpe)(nickelalactone)
References
[1] Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y.H. Angew. Chem. Int. Ed. 1987, 26, 771-773.
[2] Fischer, R.; Langer, J.; Malassa, A.; Walther, D.; Görls, H.; Vaughan, G. Chem. Commun. 2006, 23, 2510-2512.
[3] Lejkowski M.; Lindner, R.; Kageyama, T.; Bódizs, G.E.; Plessow, P.N.; Schäfer, A.; Müller, I.B.; Rominger, F.; Hofmann, P.; Futter, C.; Schunk, S.A.; Limbach, M. Chem. Eur. J., 2012, 18, 14017-14025.
[4] Behrend, W.; Gattow, G.; Dräger, M. Z. Anorg. Allg. Chem. 1973, 397, 237-246.
Acknowledgement
NH, IJ, CS, AK, MB, AG, PA, TK, and RL work at CaRLa of Heidelberg University, being co-financed by University of Heidelberg, the state of Baden-Württemberg and BASF SE. Support from these institutions and financial
support from the BMBF (Chemische Prozesse und stoffliche Nutzung von CO2 : Technologien für Nachhaltigkeit und Klimaschutz, grant 01RC1015A) is gratefully acknowledged.
106
poster
Valeraldehyde from Butane and
CO2 – VALERY
J. Julisa, D. Krusea, H. Hahna, R. Frankea, A. Duttab, I. Fleischerb, R. Jackstellb, M. Bellerb, S. Fritschic, W. Korthc, A. Jessc
[a] Evonik Industries AG; [b] Leibniz-Institut for Catalysis Rostock; [c] University of Bayreuth
Motivation
CO2-Emissions1)
Raw Materials: Price/Availability2)
 Drastic increase of CO2-Emissions in
the last decade
 CO2 as an abundant C1 building block
3,000
 High price fluctuation of
petrochemicals
2,500
2,000
 Except for butane, increasing prices of
C4
 Utilization of CO2
 Energy efficient processes (e.g.
photocatalytic reactions) to avoid CO2Emissions
€ /mt
 34 Gt/a CO2-Emissions in 2011
worldwide
 Alternative and less expensive
feedstock
Butadiene
Isobutene
1,500
1,000
Butane
500
Year
0
1/1/06 1/1/08 1/1/10 1/1/12 1/1/14
1) Energy data - National and international development, Federal ministry of Economics and Technology, May 2013
2) IHS Chemical / CMAI
Valery
1
Valeraldehyde: Important Intermediate for the Synthesis of Plasticizers
 Based on less expensive raw materials butane and CO2
 Energy efficient photocatalytic dehydrogenation of butane to butene
 Based on butane and syngas (CO/H2) as raw materials
 High energy input for the dehydrogenation to butene
2
3
Photocatalytic Dehydrogenation
Hydroformylation with CO2/H2
Catalytic active system: Ru3(CO)12/LiCl/Ligand L6
Catalytic active system3:
200
Yield [%]
50
40
150
40.0
30
20
16.5
19.7
-21%
165
130
100
14.6
10
0
C12H26
Life Cycle Assessment5)
Based on process simulation with ASPEN Plus6) of new process and benchmark:
 The new process has a reduced impact on all environmental criteria
5) According to ISO 14040
6) Based on sunlight driven synthesis of butene from butane
Jennifer Julis, Evonik Industries AG, Marl
+49 2365 49-9763
[email protected]
Source: CREAVIS – Science to Business (April 2014)
Partners:
80
60
82
87
Literature4)
New system
0
T [°C]
3) Reaction conditions: 85 °C, 350-500 nm, 7 h, 30 mmol substrate, 0.004 mmol catalyst
4
98
20
0
C8H18
90
40
50
9.4
100
total yield
[%]
Oxo yield
4) Tominaga et al. Chem. Lett. 1994
[%]
Detailed analysis of CO2.saving:
 with sunlight ecological feasible
poster
107
- TECHNISCHE CHEMIE
PhotoKat
„Entwicklung aktiver und selektiver heterogener
Photokatalysatoren für die Reduktion von CO2 zu C1Basischemikalien“
Jennifer Strunk
Ruhr-Universität Bochum, 44801 Bochum
Ziele des Projekts
von den Oxidmaterialien TiO2 und ZnO entwickelt werden.
Strukturelle und elektronische Eigenschaften des
Katalysators und seiner Oberfläche sollen identifiziert
werden, die hohen CO2-Umsatz und hohe Selektivität zu
Methanol oder Methan bewirken. Dies wird ermöglichen,
gezielt aktive Katalysatoren zu entwickeln und die
Reaktionspfade zu diesen Produkten selektiv zu steuern.
H
O
SiO2
H
O
Ti
O
or…
O
TiO2
O
Si
SiO2
60
Sn(1.0)/TiO2
Sn(1.5)/TiO2
Ti/SBA-15
Au/Ti/SBA-15
self-trapped excitons
CH4-Ausbeute [ppm]
surface states
20
10
5h
1h
0h
7h
5h
1h
XPS
5 5
Relative
Intensität
x 10
Rel. intensity
x 10
Tendenz zur TiOx-Schalenbildung
Ti1.0 > Ti2.0 > Ti0.3 > Ti2.7
3000
2000
1000
Ti0.3/SBA
Ti1.0/SBA
Ti2.0/SBA
Ti2.7/SBA
30
60
90
150
120
CO2
c)
1.5
a)
Yield
CH4 [nmol/h]
CH
[nmol/h]
4-Ausbeute
CO 2 [%]
3.0
b)
-2-2
1.0
1.5
4+
Sn 5p
Anti-bonding
(Sn 5s – O 2p)* + Sn 5p
1.0
0.5
Wenig Ti-O-Si
Au/Ti/Zn/SBA-15
0
180
20
40
60
80
100
16
CO2-Reduktion
14
12
10
nur Ti
8
6
O
O
Zn
4
O
2+
O
2
0.0
200 250 300 350 400 450 500 550 600 650 700 750 800
0
Znacac/T03
T03
ZnCub/T03
Temperatur
temperature[K]
[K]
Titanat/SBA-15 adsorbiert kein CO2[1].
Adsorption von CO2 wird begünstigt
[1]
durch Zusatz von ZnO .
Nur größere ZnO-Cluster erhöhen die
[4]
Methanausbeute auf Titanat/SBA-15 .
Die Anwesenheit isolierter ZnO[4]
Spezies senkt die Ausbeute .
ZnO-Spezies
SiO2
Schematische Darstellung des Graftings von ZnO: Isolierte
Spezies oder sehr kleine Cluster werden aus Zn(acac)2 erhalten,
größere Agglomerate werden über ein Zinkkuban eingebracht.
O 2pz
Bonding
(Sn 5s – O 2p)
10
8
6
4
2
0
-2
Orbitalwechselwirkungen in SnO; vermutlich ähnliche
2+
Situation in Sn auf TiO2. Führt zur Bildung von Energieniveaus oberhalb des Valenzbandmaximums von TiO2.
Bindungsenergie / eV
18
d)
0.5
0.5
Isolierte Sn -Spezies erhöhen
Aktivität in der H2-Entwicklung, aber
agglomerierte Spezies sind ungünstig.
Synergetischer Effect zwischen
4+
[5]
isoliertem Sn und Rh .
Methylenblauzersetzung
2+
Time[min]
[min]
Zeit
TPD
3.5
1.0
Auf allen Proben wurden 0.01wt% Rh photoabgeschieden.
Sn 5s
12
Au/Ti/SBA-15
Viel Ti-O-Si
1.5
Titanat ist mobil in der Photoabscheidung und bildet
[3]
eine titanreiche Schale um die Goldnanopartikel .
In der Wasserstoffentwicklung aus Methanol:Wasser
[3]
ermöglicht die Titanatschale den Elektronentransfer .
Für den Transfer der Löcher werden Ti-O-Si-Bindungen
[3]
benötigt (Terephthalsäurehydroxylierung) .
4.5
2.0
0.5
0.0
Sn(1.5)/TiO2
unbehandelt
Untreated
reduziert@250
Reduced@250
reduziert@350
Reduced@350
Au/Zn/Ti/SBA-15
2.0
0.0
5.5 x 10-3
e)
5.0
2.5
H2-Entwicklung (H2O:CH3OH)
Sn
nm
Sn / nm
2.5
Einfluss von ZnO auf CO2-Adsorption und Reaktion
4.0
Si
Si
1.0
Relative CPS
Photoabscheidung von Gold erhöht
[2]
die Methanausbeute .
Anwesenheit von Gold vermindert
Ablagerungen stabiler Kohlenstoff[2]
spezies (Formaldehyd) .
Zeit [min]
SiO2
Si
Sn über wohldefinierte Reduktion: Lochfangzentren
7h
Zeit
0
Au
HOMO
2+
0h
0
TiO2
O
O
1.5
550
4+
30
2.0
0.0
400
450
500
Wellenlänge
nm
Wavelength // nm
Grafting von Sn verbessert die
Ladungstrennung und vermindert
Rekombination (PL), beeinflusst
aber nicht die Lichtabsorption von
[5]
TiO2 (UV-Vis DRS, nicht gezeigt) .
4000
H2-Konzentration [ppm]
350
evacuation
Evakuierung
Verwendung des metallgedichteten
Photoreaktors und Reinigungsprozedur in H2O/He (nicht gezeigt)
erlauben eindeutige Zuordnung der
aus CO2 gebildeten Produkte[2].
Metallisches Gold
negativ
Sn(0.5)/TiO2
50
Titanreiche Schale
Ti
O
e-
D/D+
positiv
PL
Sn(0.3)/TiO2
Photokatalytische CO2-Reduktion: Einfluss von Gold
Metallgedichteter Gasphasenphotoreaktor;
(1) CF Flansche, (2) Vakuumfenster, (3)
VCR-Anschlüsse, (4) doppelwandiger
Mantel, (5) Gitter als Unterlage für
Probengefäß, (6) Anschlüsse für
Kühlkreislauf.
h+
h+
Sn(0.1)/TiO2
Si
Si
i
[1]
Schematische Darstellung der Synthese des isolierten Titanats über Grafting von Ti(O Pr)4 auf SiO2 . Schematische Darstellung
der isolierten Titanatspezies
40
e-
A/A-
eVB
Sn4+ in der H2-Entwicklung aus H2O:CH3OH
O
O
Ti
O
LUMO
e-
e-
eh+
Sn induziert besetzte Zustände
oberhalb des Valenzbandmaximums
von TiO2, die als Lochfangzentren
[6]
fungieren .
Anwesenheit dieser Energieniveaus
erhöht deutlich die Aktivität in der
[6]
Methylenblauzersetzung (UV+Vis) .
Proben sind stabil unter Umgebungsbedingungen (bzw. in Luft und
[6]
Wasser .
1,0
11day
Tagafter
nachreduction
Reduktion
0,8
two
weeks nach
after reduction
2
Wochen
Reduktion
0,6
(C0-C)/C0
H H
O O
H
O
or
OiPr
LB
Sn/TiO2
O
Intensity // a.u.
Intensität
a.u.
OiPr
OH
iPrO
OiPr
Ti
Ti
Ti
Kalzinierung:
O O O
O OiPr
O
Ti(OiPr)4
300 °C; N2
Toluol, Ar
500 °C; O2/N2
SiO2
SiO2
PrO
ehυ
hυ
-1
Titanat/SBA-15
hυ
E
hυ
-1
H22-Entwicklung
H
evolution rate // mmol
mmol hh
Das Forschungsprojekt hat das Ziel, CO2 photokatalytisch
zu C1-Basisprodukten der chemischen Industrie zu
rezyklieren. Es sollen gut verfügbare und möglichst robuste
Katalysatorsysteme auf der Basis von halbleitenden
Oxidkompositen identifiziert werden, die für die Anwendung
im großtechnischen Maßstab geeignet sind. Zu diesem
Zweck sollen Struktur-Wirkungsbeziehungen ausgehend
i
Molekulare Photokatalysatoren
(am Beispiel von Titanat auf SiO 2)
Halbleitermaterialien
0,4
Anatas
AnataseTiO
TiO
2 2
0,2
Sn(1.5)/TiO
Sn(1.5)/TiO22
Anatas
Anatse TiO
TiO22 red@250
red@250
TiO2 red@250
Sn(1.5)/
Sn(1.5)TiO
2
0,0
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
Bestrahlungszeit
Irradiation time / /hh
Schlussfolgerungen
Isolierte Titanatspezies auf SBA-15 sind aktiv in der photokatalytischen
Reduktion von CO2 zu Methan, obwohl keine Adsorption von CO2 am
Titanat gefunden wurde (ohne Bestrahlung).
Photoabscheidung von Goldnanopartikeln erhöht die Ausbeute an
photokatalytisch gebildetem Methan.
Während der Photoabscheidung von Gold sind die Titanatspezies
mobil, und sie bilden eine Schale um die Goldnanopartikel.
Grafting von ZnO ermöglicht CO2-Adsorption, aber nur agglomerierte
ZnO-Spezies erhöhen die Methanausbeute.
4+
Das Grafting von Sn verbessert die Trennung der durch Anregung
erzeugten Ladungsträger, beeinflusst aber nicht die Lichtabsorption.
4+
Isolierte Sn -Spezies beschleunigen H2-Entwicklung aus CH3OH:H2O;
synergetischer Effekt mit photoabgeschiedenem Rh wird beobachtet.
Sn2+ Lochfangzentren auf der TiO2-Oberfläche erhöhen die Aktivität des
TiO2 in der Methylenblauzersetzung.
Literatur
[1] B. Mei, A. Becerikli, A. Pougin, D. Heeskens, I. Sinev, W. Grünert, M. Muhler, J. Strunk, J. Phys. Chem. C 2012, 116, 14318 (und Ref. darin).
[2] B. Mei, A. Pougin, J. Strunk, J. Catal. 2013, 306, 184.
[3] B. Mei, Ch. Wiktor, S. Turner, A. Pougin, G. van Tendeloo, R.A. Fischer, M. Muhler, J. Strunk, ACS Catal. 2013, 3, 3041.
[4] A. Pougin, B. Mei, M. Dilla, I. Sinev, J. Strunk, wird eingereicht bei J. Catal. 2014.
[5] S. Chu, A.E. Becerikli, B. Bartlewski, F.E. Oropeza, J. Strunk, wird eingereicht bei Int. J. Hydrdogen Energy 2014.
[6] F. E. Oropeza, B. Mei, I. Sinev, A.E. Becerikli, M. Muhler, J. Strunk, Applied Catalysis B: Environmental 2013, 140-141, 51 (und Ref. darin).
Finanzierung
Gefördert vom Bundesministerium für Bildung und
Forschung (BMBF) im Rahmen der Fördermaßnahme:
“Technologien für Nachhaltigkeit und Klimaschutz Chemische Prozesse und Stoffliche Nutzung von CO2”
(033RC1007A, Nachwuchsgruppe „PhotoKat“)
108
poster
Carbon Dioxide Based Acetone Fermentation
-COOBAFDr. Marzena Gerdom (Evonik Industries AG, Marl), Dr. Jörg-Joachim Nitz (Evonik Industries AG, Marl), Dr. Stephan Kohlstruk (Evonik Industries AG, Marl), Dr. Wilfried Blümke (Evonik
Industries AG, Hanau), Katja Zimmermann (Universität Rostock), Ronny Uhlig (Universität Rostock), Dr. Antje May (Universität Rostock), Dr. Ralf-Jörg Fischer (Universität Rostock),
Prof. Hubert Bahl (Universität Rostock), Sabrina Hoffmeister (Universität Ulm), Dr. Frank Bengelsdorf (Universität Ulm), Prof. Peter Dürre (Universität Ulm)
Introduction
Results I: Vector optimization
Acetone is an important raw material in the chemical industry as a solvent and for the syntheses of various
products, e.g. poly(methyl methacrylate) (PMMA), also known as acrylic glass. Today, acetone still is mainly
produced from fossil resources. However, future challenges require alternative strategies enabling the
generation of chemicals and biofuels from renewable resources, such as the usage of a greenhouse gas,
carbon dioxide (CO2), as a substrate.
Working with many different homoacetogenic microorganisms makes it necessary to create a vector system that
can be adapted to a broad range of them. Therefore, we developed a novel modular vector system for
homoacetogenic and/or thermophilic microorganisms. This offers the opportunity of easy and fast analysis of
the best combinations of origins of replication (GP), promoters upstream of the acetone operon (P) and the
acetone operons (AO) themselves. Therefore, we used unique restriction sites in front of each module type, to
allow a free exchange with other modules of this type.
1.
2.
3.
4.
5.
3 CO2 + 8 H2
Resistance gene
Ori
(Gram-positive)
Promotor
(Resistance gene)
Ori
Promotor
(Gram-negative)
(acetone-operon)
Acetone + 5 H2O
H2
CO2
1.
2.
3.
4.
Plasmid
CO2 is a less expensive feedstock, available in great quantities, and does not interfere with food production,
as glucose and other sugars do. Thus, the aim of the project “CO2-based fermentation of acetone” (funded
by the German Federal Ministry of Education and Research (BMBF)) is the development of a fermentation
process in which acetogenic bacteria produce acetone by using CO2 as starting material.
CO2 fixation and acetone formation
with genetically modified
acetogenic bacteria strains
GPA
GPB
GPC
GPD
GPE
1.
2.
3.
4.
PA
PB
PC
PD
Acetoneoperon
AOA
AOB
AOC
AOD
Fig. 2: Modular vector system for homoacetogenic and/or thermophilic microorganisms. Each arrow
represents one exchangeable module type. The Gram-positive origin of replication is indicated in red, the
promoter for the acetone operon is indicated in dark blue and the acetone operon is indicated in light blue.
Results II: Formation of acetone with recombinant acetogens
Constructed plasmids were transformed either into thermophilic or mesophilic acetogenic strains and
subsequently cultivated under autotrophic conditions with H2 and CO2 as substrate. Acetone production
was determined in strains harboring a plasmid encoding either the gram positive origin GPA, GPB or GDD, the
acetone operons AOA or AOC which were respectively, under the control of promoter PB or PD. Experiments
were carried out in flasks (culture/gas vol. 1 : 20) and also in 2 L stirred tank reactors with continuous gas flow
(Fig. 3). The mesophilic strains A produced significant more acetone compared to the thermophilic strain (Fig.
3a). Acetone productivity was much higher in 2 L tank reactors in comparison to flasks due to higher mass
transfer and continuous supply of feed gas, but also differences between mesophilic and thermophilic (results
not shown) were observed.
Use of existing waste
streams containing CO2
(CO and H2)
Acetogens and
the Wood-Ljungdahl pathway
Acetogenic bacteria (acetogens) are
anaerobes that use the Wood–Ljungdahl
pathway to (I) synthesize acetyl-CoA by the
reduction of CO2 or CO + H2 (II) conserve
energy and (III) assimilate CO2 for the
synthesis of cell carbon [1].
The Wood-Ljungdahl pathway (Fig. 1) is
found in a broad range of phylogenetic
classes. Until now, 22 genera are known for
harboring acetogens. [2, 3].
Thus, acetogens bear a great potential for the
autotrophic production of bulk chemicals and
the industrial interest has risen dramatically.
Although more than 100 acetogenic bacterial
species are isolated and described so far,
there is little knowledge about their
applicability as production strains. Therefore,
we screened different acetogenic strains,
enabling the application of a synthetic
industrial waste gas stream simulating a
potential future biotechnological application.
(a) Flask experiments
(b) Reactor experiments
2,0
2,5
7
1,20
6
1,00
2,0
1,6
Acetone concentration
3
0,8
0,80
Growth (OD 600)
4
Acetone concentration
Growth (OD 600)
5
1,2
1,5
0,60
1,0
0,40
2
0,4
0,5
0,20
1
0,0
0
100
200
300
400
500
600
700
800
Fermentation time (h)
growth thermophilic strain
acetone thermophilic strain
Fig. 1: Wood-Ljungdahl pathway
V. Müller, 2003, Appl. Environ. Microbiol.69:6345-6353
0
0,0
0
50
growth mesophilic strain
acetone
strainstrain
acetonemesophilic
thermophilic
100
150
200
250
300
0,00
Fermentation time (h)
OD
acetone
acetonemesophilic strain
Fig. 3: Growth and acetone production of recombinant thermophilic and mesophilic autotrophic
recombinant acetogens with H2 + CO2 as substrate. (a) cultivated in flask (b) cultivated in 2 L
stirred tank reactors
[1] S. W. Ragsdale, E. Pierce | 2008 | Biochim Biophys Acta. 1784:1873–1898
[2] H. L. Drake, A. S. Gössner, S. L. Daniel | 2008 | Ann N Y Acad Sci. 1125:100-28
[3] B. Schiel-Bengelsdorf, P. Dürre | 2012 | FEBS Lett. 586:2191-2198
Evonik Industries AG, P.-Baumann-Str. 1 | 45772 Marl, Germany
Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11| 89081 Ulm, Germany
Institute of Biological Sciences, Division of Microbiology, University of Rostock, Albert-Einstein-Str. 3| 18055 Rostock, Germany
poster
109
Novel Method towards Green Polycarbonates
M. Reckers,1 J. Diebler,1 I. Peckermann,2 C. Gürtler,2 T. Werner1*
1Leibniz-Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock
2Bayer Technology Services GmbH, Bayer Material Science AG, Chempark, 51368 Leverkusen
Leibniz-Institut für Katalyse e.V.
Introduction
Subject
The impact of CO2 emission on global warming and the various CO2 management
strategies are topic of current social, political as well as scientific discussions.[1]
With carbon capture and utilization (CCU) there is a reconsideration of the
frequently discussed carbon capture and storage (CCS) strategy, considering
CO2 rather as an economical and abundant raw material than as waste.[2]
Consequently, the conversion of the CO2 into value added products is widely
studied in current research.[3] One promising approach for the utilization of CO2 as
a chemical building block is the incorporation into novel polymeric materials. In
recent years significant progress has been made in the field of epoxide based
polymers.[4] In contrast the use of alternative comonomers such as formaldehyde
was more or less neglected and only a very few examples are known.[5] The
development of novel CO2 based materials remain a challenging and up-to-date
research objective. We focus on the organocatalyzed copolymerization of CO2
and formaldehyde employing paraformaldehyde as the premonomer.
Results
weight loss
CO2
C=O vibration
CH2O
OAc
Aim
• IR-signal around 1700 cm‒1
• TGA-MS shows incorporation of CO2 and CH2O
carbonyl region
Heating to 130 °C (20 K·min–1):
• Number average weight
loss <5%
• Relative mass loss <15%
• Oligomeric material
confirmed by GPC
• Oligomeric material
confirmed by MALDI-TOF
• Number average weight around 500 g·mol–1
The great advantages of this novel material are on the one hand the theoretically possible high CO2 incorporation of up to 60 wt%. On the other hand, formaldehyde
can be obtained from renewable resources. As a result the new polymer is 100% based on renewable ressources and the carbon footprint is expected to be
extraordinary low. Initial experiments led to novel oligomeric materials. Furthermore, the effects of the reaction parameters including reaction time, pressure and
temperature as well as the nature of the catalyst on the composition and molecular weight distribution were studied. So far the obtained copolymers were
characterized by GPC, TGA/MS and IR methods. The properties of the new materials are not fully explored yet, but are subject of current investigations.
References
[1] a) Positionspapier, Verwertung und Speicherung von CO2, Verband der Chemischen Industrie e.V. (VCI), Gesellschaft für Chemische Technik und Biotechnologie
e.V. (DECHEMA), 2009. b) G. A. Olah, G. K. S. Prakash, A. Goeppert, J. Am. Chem. Soc. 2011, 133, 12881–12898. [2] a) M. Peters, B. Köhler, W. Kuckshinrichs, W.
Leitner, P. Markewitz, T. E. Müller, ChemSusChem 2011, 4, 1216–1240. b) A. J. Hunt, E. H. K. Sin, R. Marriott, J. H. Clark, ChemSusChem 2010, 3, 306–322. [3] M.
Aresta, A. Dibenedetto, Dalton Trans. 2007, 2975–2992. [4] D. Darensbourg, S. J. Wilson, Green Chem. 2012, 14, 2665–2671. [5] R. K. Sharma, E. S. Olson, Abstr.
Pap. Am. Chem. Soc. 2000, 45, 676–680
Leibniz-Institut
für Katalyse e.V.
Leibniz-Institut für Katalyse e.V.
(LIKAT
(LIKAT Rostock)
Rostock)
Albert-Einstein-Str. 2929
A a
Albert-Einstein-Str.
18059 Rostock
18059
Rostock
www.catalysis.de
[email protected]
110
poster
Carboxylation of CH-acidic Molecules
by Zwitterionic Imidazolium-2-carboxylates
Willi Desens, Thomas Werner*
Introduction
In response to the increasing demand for strategies for reduction of the emission of carbon dioxide and its capture and utilization, recent years
have witnessed an increase in organic chemistry research focussing on the use of CO2 as a synthetic building block.[1] The challenge of the direct
conversion of carbon dioxide is its thermodynamic stability. Thus, high energy starting materials or activation by catalysts are necessary. One
approach to activate CO2 is through nucleophilic attack by lewis bases. Some examples in literature show the formation of carbon dioxide adducts
with phosphines,[2] amines[3] and N-heterocyclic carbenes.[4] We are interested in developing a catalytic method for the carboxylation of CH-acidic
substrates based on carbenes. Herein, we report our efforts in achieving this goal.
Leibniz-Institut für Katalyse e.V.
Synthesis of the Carboxylates
In general, imidazolium carbenes are easily generated by deprotonating the
acidic hydrogen of the imidazolium salts. We followed a known procedure in
which potassium hexamethyldisilazane in toluene is used. Further filtration
of the resulting mixture and passing through CO2 leads to the resulting
carboxylate in high yields (equation 1).[5] Another approach allows to
generate the dimethylimidazolium-2-carboxylate under solvent-free
conditions in moderate yields (equation 2).[6] Thereby, in a pressure tube
dimethylcarbonate reacts with methylimidazole and serves as a methylating
and carboxylating agent as well as a base. These carboxylates are mostly
stable under elevated temperatures but very sensitive to water.[7]
Carboxylation of Acetophenone
Imidazolium-2-carboxylates can be utilized as precursors for
ligands in metalorganic chemistry, whereas the captured carbon
dioxide is released. According to Tommasi et al. the sodium salt of
3-phenylpropionic acid was generated by dimethylimidazolium-2carboxylate starting from acetophenone.[8] As mentioned above we
are interested in setting up a catalytic cycle to apply imidazolium
Entry
R
NaX
Solvent
1
Bu
NaBF4
THF
-
2
Bu
NaBPh4
THF
-
carboxylates as catalysts for carboxylation of CH-acidic
compounds. Therefore, we carried out the reaction using dimethylimidazolium-2-carboxylate with acetophenone in tetrahydrofuran
according to the literature procedure. Unfortunately the desired
product was not observed, thus we examined different
imidazoliumcarboxylates. Nevertheless, the conversion was still
unsuccessful, so we deployed various sodium salts and solvents.
Yield [%]
3
Bu
NaI
THF
-
4
Bu
NaBF4
CH3CN
-
5
Bu
NaI
CH3CN
-
6
Me
NaBF4
THF
-
7
Me
NaBPh4
THF
-
8
Me
NaBF4
CH3CN
-
9
Me
NaBPh4
CH3CN
-
Derivatization of the Corresponding Acid
In case of completing a catalytic cycle the relative unstable product must be
derivatized to form a more stable compound. To gain access to the desired
product and develop an efficient route of derivatization, acetophenone is
converted according to Jessop et al. by DBU and carbon dioxide to the
corresponding 3-phenylpropionic acid.[9] The -keto acid reacts with
NaHCO3 to the more stable sodium salt, which was used as a reference for
the analytical data and further derivatization. Attempts to convert the
sodium salt to the methyl ester by employing iodomethane as a methylating
agent were unsuccessful. Therefore, Meerwein salt was chosen as a
stronger methylating reagent and the ester was obtained in moderate yield.
Summary
Imidazolium-2-carboxylates were readily synthesized either by deprotonating the imidazolium salt and subsequent conversion with carbon dioxide
or by direct conversion with dimethylcarbonate. Unfortunately, the synthesis of the 3-phenylpropionate starting from acetophenone was not yet
accomplished by stoichiometric amounts of the imidazolium-2-carboxylates. The conversion of acetophenone to the desired product was
performed by a two-step synthesis in moderate yields. The conversion of the sodium salt to the corresponding methylester could be achieved in
moderate yields by applying Meerwein salt.
References and Acknowlegment
[1] T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 23652387. [2] Y. Kayaki, M. Yamamoto, T. Ikariya, J. Org. Chem. 2007, 72, 647649. [3] (a) R.
Srivastava, D. Srinivas, P. Ratnasamy, Microporous Mesoporous Mater. 2006, 90, 314326; (b) A. Diaf, J. L. Garcia, E. J. Beckman, J. Appl. Polym. Sci. 1994, 53,
857875. [4] H. A. Duong, T. N. Tekavec, A. M. Arif, J. Louie, Chem. Commun. 2004, 112113. [5] H. Zhou, W.-Z. Zhang, C.-H. Liu, J.-P. Qu, X.-B. Lu, J. Org. Chem.
2008, 73, 80398044. [6] B. R. Van Ausdall, J. L. Glass, K. M. Wiggins, A. M. Aarif, J. Louie, J. Org. Chem. 2009, 74, 79357942. [7] J. D. Holbrey, W. M. Reichert, I.
Tkatchenko, E. Bouajila, O. Walter, I. Tommasi, R. D. Rogers, Chem. Commun. 2003, 2829. [8] I. Tommasi, F. Sorrentino, Tetrahedron Lett. 2005, 46, 21412145.
[9] B. J. Flowers, R. Gautreau-Service, P. G. Jessop, Adv. Synth. Catal. 2008, 350, 29472958.
Leibniz-Institut
für Katalyse e.V.
Leibniz-Institut für Katalyse e.V.
(LIKAT
(LIKAT Rostock)
Rostock)
Albert-Einstein-Str. 2929
A a
Albert-Einstein-Str.
18059 Rostock
18059
ROSTOCK
www.catalysis.de
[email protected]
poster
Department of Interface
Chemistry and Surface
Engineering
Prof. Dr. M. Stratmann
111
Stability of electrocatalysts for electrochemical
conversion of carbon dioxide
Serhiy Cherevko, Aleksandar R. Zeradjanin, Jan-Philipp Grote,
Angel A. Topalov, Anna K. Schuppert, Karl J. J. Mayrhofer
Electrocatalysis Group
Dr. K.J.J. Mayrhofer
Motivation
Wind and solar renewable electricity surplus can be applied for conversion of carbon dioxide
into hydrocarbons by means of electrolysis. Generated hydrocarbons can be used as fuel or as
valuable feedstock for the chemical industry. In the most general case, main
electrochemical reactions will be cathodic CO2 reduction and
anodic water oxidation. Overall cell efficiency, thus, will
depend on the activity of electrocatalysts applied for both
reactions. Moreover, economic viability will be evaluated by
the original catalyst price and the cell operation time. The
latter parameter can be predicted by detailed stability
investigation part of which is shown in the current work.
1 Figure
caption
Dissolution of model nobleFig.
metal
catalysts
 For all studied noble metals surface oxidation
and reduction results in dissolution;
PtX+
PtX+
PtX+
 Difference in the dissolution rate between less
stable Ru and Pd and more stable Au and Pt is
more than an order of magnitude;
PtX+
PtX+
PtX+
 Onset of oxidation and dissolution do not
always coincide. For some metals, e.g. Au,
oxidation and dissolution start simultaneously,
while for other metals, e.g. Pt, commencement of
dissolution is ca. 200 mV more positive than the
onset of oxidation;
PtX+
Scanning Flow Cell (SFC) ft. ICP-MS
The electrochemical cell is based on the principle of a channel electrode. The electrolyte is
continuously flowing over the working electrode sitting on a three-dimensional translational
stage. The online multi-element analysis at the electrolyte outlet is performed by an ICP-MS
connected directly to the SFC.
 There is a correlation between the onset of
oxygen evolution on a metal and stability of the
formed oxide;
 High throughput and combinatorial studies using predefined experimental sequences,
based on in-house LabVIEW software for full automation1;
a)
ICP-MS
NexION 300X
 Time resolved dissolution profiles
with low detection limit by ICP-MS
(less than 10 ppt);
 More stable oxides reduce at lower potentials.
Thus, position of the cathodic peak is different in
each individual case;
Reference electrode 50-500mN Counter electrode b)
Electrolyte
supply
Electrolyte
outlet
Ar
Ar
 Automated
synchronization
of Silicon sealing
electrochemical
and
downstream
Working electrode 2mm
analytics datasets;
Schematic representation: a) ICP-MS; b)
CAD-model illustrating the experimental setup of
 Local micro-electrochemistry on
the SFC2,3, including the electrodes, force sensor,
electrode areas below mm²;
and indicating gas and electrolyte flow;
High throughput screening
Max-Planck-Institut für
Eisenforschung GmbH
Düsseldorf/Germany
 Ir, Rh, and Pt predominantly dissolve during
oxide reduction, while Ru and Pd show very high
losses during the oxidation part of a cycle;
 Oxygen evolution is an additional process
responsible for surface depassivation and
dissolution;
 For some metals, such as Ru and Au,
dissolution rate significantly increases when
potential is moved into the oxygen evolution
region, while for other metals, such as Pt and Pd,
change in the dissolution rate is insignificant;
 Ir and Rh show best performance in terms of
activity and stability;
 Parallel
activity
determination
and
monitoring of degradation rate with respect to
material composition;4
 Pt and Pd can be used to stabilize less stable
Ir and, especially, Ru. Though, it most likely will
effect activity of the active material;
 Combinatorial screening over several
locations (along the composition gradient);
 Reproducibility tests
screening (along x-axis);
and
Stability analysis of industrially relevant catalysts
parameter
 Screening of various parameters i.e. high
temperature measurements;
 Special preparation of porous high surface
area samples for analysis with the SFC using
nanoplotter;
 When potential reaches approximately 1.45 V
vs. RHE (redox transition RuO2 /RuO4(c),H+)
anodic dissolution becomes severe;5
 Morphological pattern has an impact on
efficiency of gas evolution and stability;
Outlook and Conclusion
References
[1] Topalov, A. A.; Katsounaros, I.; Meier, J. C.; Klemm, S. O.; Mayrhofer, K. J. J.; Rev. Sci.
Instrum. 82 (2011), art. no. 114103, doi:10.1063/1.3660814
[2] Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.; Electrochem. Commun. 13
(2011), 1533–1535, doi:10.1016/j.elecom.2011.10.017
[3] Cherevko, S.; Topalov, A. A.; Katsounaros, I.; Mayrhofer, K. J. J.; Electrochem. Commun.
28 (2013), 44-46, doi: 10.1016/j.elecom.2012.11.040
[4] Schuppert, A. K.; Topalov, A. A.; Savan, A.; Ludwig, A.; Mayrhofer, K. J. J.
ChemElectroChem Communications 1 (2013), 358–361, doi:10.1002/celc.201300078
[5] Zeradjanin A.R.; Topalov A.A.; Van Oveermere Q.; Cherevko S.; Chen X.; Ventosa E.;
Schuhmann W.; Mayrhofer K.J.J.; RSC Adv. 4 (2014) 9579-9587, doi: 10.1039/c3ra45998e
The unique coupling of the mass spectrometry and electrochemistry has already proven to
be a powerful technique for the parallel investigation of stability and activity of single- and multicomponent systems. Fundamental issues of electrode material dissolution, both noble and nonnoble, can be addressed on a new level. The example of noble metals shows the sensitivity of
detecting dissolution of sub-monolayer amounts. Furthermore, the correlation between the
potential and dissolution profile for more complex systems like the gradient PtCu alloys provide a
closer look for instance into dealloying phenomena. Additionally, setup was shown to be useful
for the analysis of porous samples with industrial relevance.
Acknowledgement
We acknowledge the Bundesministerium für Bildung und Forschung (Kz:033RC1101A) for
financial support.
112
poster
Electrochemical CO2 Reduction: High-Throughput
Selectivity Investigations by Mass Spectrometry
Department of Interface
Chemistry and Surface
Engineering
Prof. Dr. M. Stratmann
Electrocatalysis Group
Jan-Philipp Grote, Aleksandar R. Žerađanin, Serhiy Cherevko, Karl J. J.
Mayrhofer
Dr. K.J.J. Mayrhofer
Max-Planck-Institut für
Eisenforschung GmbH
Düsseldorf/Germany
Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH,
Max-Planck-Strasse 1, 40237 Düsseldorf, Germany
Introduction
The strategy for the efficient conversion of CO2 into useful products (methanol, methane…) can have multilateral significance, but still represents a serious scientific and technical challenge. The
conversion of CO2 at the electrochemical interface has some distinct advantages: 1) operation at ambient conditions 2) flexible control of reaction rate by the electrode potential 3) rather straightforward
separation of the products. The priority task is to design catalytic materials (electrocatalysts) which will allow high rate of electrode reaction with acceptable selectivity and sufficient stability. After
coupling a scanning flow cell (SFC) to an inductively-coupled-plasma mass spectrometer (ICP-MS) for stability investigations, we now coupled a differential electrochemical mass spectrometer (DEMS)
to the SFC for studying selectivity. [1][2]
Electrochemical CO2 reduction
 High overpotential on anode and cathode
 Products cathode: Hydrocarbons, Alcohols, Formic acid (0.17 to 0.11V)1
 Stability of cathode materials is not reported until now
 Products anode: O2 (1.23V)
 Selectivity can be improved
 Power from renewable energy sources enables us to create a
sustainable CO2 cycle for industry.
 Alloys
are
promising
cathode
materials
to
overcome challenges.
 By utilizing unused wind energy, additional CO2 emission is
prevented and the question about efficiency fades into the
background.
Motivation
•
•
•
•
Operation
Conditions
Voltage/Current
Technique
Temperature
...
•
•
•
•
Electrode Material
•
•
•
•
Composition
Morphology
Roughness
...
 Big parameter space in electrochemistry
gives
several
possibilities
for
optimization, but is also time
consuming when standard analysis
techniques are utilized
 Several transient and steady state measurements
were performed on different points
 Non linear dependence of transferred load to
measured amount
SFC-DEMS
Electrolyte
pH
Ionic concentration
Impurities
...
1/16“ steel pipe
 A combinatorial approach with online analysis is useful,
if progress needs to be achieved in a short period of time
valve
 Our setup enables automatic electrolyte exchange,
temperature control, easy gas exchange and fast
screening of alloys combined with the direct product
analysis by mass spectrometry4,5
mass
spectrometer
pre-pump
 Good alignment to exponential fit curve
 Non quantitative method, but qualitative comparison
between different measurements is possible
 Gas chromatography with optimal parameters will give
quantitative results
Hydrogen evolution
CO2 reduction - onset potentials
 On the one hand competing process to CO2 reduction
 On the other hand needed to provide adsorbed hydrogen
for hydrocarbon production
 One key-process for efficient CO2 reduction2.
Reproducibility
 Differential electrochemical mass spectrometer (DEMS), with soft
ionization method is coupled to the SFC, to allow direct online
product analysis down to 10 ppb through a porous PTFE membrane
 With SFC a high throughput material screening can be performed
while the product detection is synchronized with the electrochemical
experiments.
 SFC DEMS system gives many possibilities for
characterizing CO2 reduction products
 Two important factors for finding good catalysts are
selectivity and onset potential
 Local microelectrochemistry for high spatial resolution3
 LabVIEW Software for full automation4
 Fast response time (1-3sec), sufficient
recovery time (120s)
 Sweep measurement on Cu cathode in CO2
saturated 0.1 M KHCO3 aqueous solution
 Low noise, even at higher bubble
evolution rates
 Easy and fast determination of onset
potentials
Acknowledgement
We acknowledge the Bundesministerium für Bildung und Forschung
(Kz:033RC1101A) for financial support.
References
[1] Hori, Y., K. Kikuchi, et al. (1985). Chemistry Letters 14(11): 1695-1698.
[2] Hori, Y. (2008). Modern Aspects of Electrochemistry. C. Vayenas, R. White and M.
Gamboa-Aldeco, Springer New York. 42: 89-189.
[3] Klemm, S. O.; Topalov, A. A.; Laska, C. A.; Mayrhofer, K. J. J.; Electrochem. Commun. 13
(2011), 1533–1535, doi:10.1016/j.elecom.2011.10.017
[4] Topalov, A. A.; Katsounaros, I.; Meier, J. C.; Klemm, S. O.; Mayrhofer, K. J. J.; Rev. Sci.
Instrum. 82 (2011), art. no. 114103, doi:10.1063/1.3660814
[5] Schuppert, A. K.; Topalov, A. A.; Katsounaros, I.; Klemm, S. O.; Mayrhofer, K. J. J., J.
Electrochem. Soc. (in press) (2012), doi: 10.1149/2.009211jes
Outlook and Conclusion
The successful coupling between Scanning Flow Cell and ICP-MS enabled us to investigate
the stability of some important electrode materials like ruthenium oxide. The microstructured
surfaces lower overpotentials and increase stability and are therefore an interesting candidate for
counter electrodes in CO2 reduction.
First measurements with the SFC coupled to the DEMS show characteristic behavior during
hydrogen evolution and CO2 reduction on copper electrodes. Further investigations will concern the
production of hydrocarbons and alcohols on various electrodes during electrolysis in an CO2
saturated electrolyte.
 The focus will be set on Cu electrodes alloyed for
example with Ni, Co, Ag or Au.
 Special alloy electrodes with a concentration
gradient will be used5
Alloys are prepared by Prof. Ludwig, RuhrUniversität Bochum, Institute of Materials,
Faculty of Mechanical Engineering
poster
113
4. Statuskonferenz der BMBF-Fördermaßnahme "Technologien für Nachhaltigkeit und Klimaschutz - Chemische Prozesse und stoffliche Nutzung von CO2"
08. April 2014, Steigenberger Grandhotel Petersberg, Königswinter
FfPaG: „Feste und fluide
Produkte aus Gas“
Projektdaten
Laufzeit:
Projektstart:
Fördermittel:
Förderkennzeichen:
3 Jahre
01.07.2013
9,2 Mio.€
033RC1301
Gefördert vom
Technologien für Nachhaltigkeit und Klimaschutz
– Chemische Prozesse und stoffliche Nutzung von CO2
Konzept FfPaG
BMBF Projekt
CO2
100 TNm3/h *
Zielsetzung
•
•
•
•
•
Energie
Pyrolyse
(CH4  2 H2 + C)
Formulierung
Erdgas
Konzept Gasaufbereitung + Konzept Pilotanlage
Reinheit, Zusammensetzung
Formulierung + Erprobung Kohlenstoffprodukt,
verfahrenstechnisches Gesamtkonzept
Struktur, Partikeldesign
Prozessentwicklung und Design
Apparatedesign, Feststoffreaktor
C-Produkte
Kohlenstoff
36 t/h *
Gesamtprojektleitung, Hochtemperatur Reaktortechnologie +
Katalysatorentwicklung
homogene und heterogene Reaktionskinetik, Kohlenstoffbildung,
Reaktorkonzept, Herstellung von Testchargen
aktive Komponenten, Katalysatorträger
 Basischemikalien
 Kraftstoffe
CO2 – Aktivierung durch
umgekehrte WassergasShiftreaktion
(CO2 + H2 ↔ CO + H2O)
Alternativverfahren zur H2-Herstellung bei geringem CO2-Footprint und
wettbewerbsfähigen Kosten
Alternative zu Erdöl (Chemie)
Umsetzung von CO2 mit H2 aus der Pyrolyse zu Synthesegas
Bereitstellung eines hochwertigen Kohlenstoffträgers für den Hochofenprozess /
Kokereiprozess
Erschließung einer zusätzlichen, nachhaltigen Rohstoffquelle für die Stahlindustrie
und Chemische Industrie
Kompetenzen im Konsortium
Chemische Industrie
Synthesegas
Wasserstoff
Stahlindustrie
 Kokskohle Blend
 Einblaskohle
300.000 t/a *
Hochofen
* Ideale Werte auf Basis Stöchiometrie
Herausforderungen
Pyrolyse
•
•
•
•
•
•
•
Hochtemperaturprozess
Energieeintrag
Wärmeintegration
Gasaufreinigung
Spezifikation Kohlenstoff
Feststoffhandling
Werkstoffe
CO2-Aktivierung
•
•
•
•
•
•
Aktivmassen
Stabilität
Prozessführung
Wärmeintegration
Werkstoffe
CO2-Quelle
Aufbereitung und Handling des Kohlenstoffproduktes,
Beheizungskonzept
Kohlenstoffspezifikation, wissenschaftlich-technische Begleitung
Reaktionstechnik und Modellierung
Reaktormodellierung, alternative Konzepte
CO2-Bilanz für die Wasserstoffherstellung
(Gleiche Produktionsmengen für Wasserstoff, Koks und Wärme)
Branchenübergreifende Zusammenarbeit
Stahlindustrie
Quelle: TKSE
(http://www.de.stratus.com/Uber_Uns/Anwenderberichte/ThyssenKruppSteelAG)
Anlagenbau
Chemieindustrie
Quelle: BASF (http://www.lvz-online.de/region/markkleeberg/basf-verdient-im-2quartal-etwas-mehr/r-markkleeberg-b-120327-0.html)
Gaseindustrie
• Ziel ca. 50 % CO2-Emissionsreduktion bezogen auf H2-Herstellung
• Stoffliche Verwertung des Kohlenstoffs in der Stahlerzeugung
Quelle: http://www.lindeus-engineering.com/en/services/construction/index.html
Quelle: Siemens http://www.industry.siemens.com/verticals/global/de/chemicalindustries/referenzen/Seiten/referenzen.aspx)
• Zusätzliche Nutzung von CO2 in der anschließenden Synthesegasherstellung
Kontakt: Dr. Andreas Bode, BASF New Business GmbH, [email protected]
Kokerei
114
poster
Integrierte Dimethylethersynthese aus Methan und CO2
BASF SE, hte GmbH, Linde AG, Technische Universität München,
Max Plank Institut für Kohlenforschung, Fraunhofer-Institut UMSICHT
Motivation
Ziel des Projektes ist die Entwicklung eines einstufigen, heterogen
katalysierten Verfahrens zur Synthese von Dimethylether (DME).
Das Verfahren soll stofflich und energetisch in die vorgelagerte
Synthesegasstufe integriert sein und die stoffliche Nutzung von
CO2 ermöglichen.
Integriertes Verfahrenskonzept
Katalysator-Screening
•Stand der Technik: zweistufige DME Synthese über die Zwischenstufe Methanol
•Problem: starke Umsatzlimitierung durch
75
MeOH
das thermodynamische Gleichgewicht
•Neues Verfahren: einstufige DME Synthe50
se erhöht den Gleichgewichtsumsatz durch
56 %
die unmittelbare Folgereaktion zu DME
25
•Benchmark: Vergleich beider Prozesse
auf einheitlicher Basis mit kommerziellen
p = 50 bar
und proprietären Prozesssimulatoren
0
200
250
300
•Ergebnis: signifikante Verbesserung von
Temperatur in °C
Kaltgaseffizienz und spezifischer CO2
Thermodynamischer Gleichgewichtsumsatz von Wasserstoff für DME- und Methanolsynthese als Funktion der
Emissionen pro Tonne DME gegenüber
Temperatur bei einem Druck von p = 50 bar. AusgangsStand der Technik
punkt sind jeweils stöchiometrische Gemische; für DME
• 16- und 48-fach Reaktor zur parallelen Vermessung von Katalysatoren
• Test mehrerer hundert Katalysatorformulierungen im Hochdurchsatzverfahren
• Optimierung der Katalysatorformulierung und
Untersuchung der Prozessbedingungen mittels
high throughput Technologie
• Untersuchung aussichtsreicher Kandidaten im
Hinblick auf Langzeit-Stabilität
• Zusätzlich Aufnahme kinetischer Daten
100
Umsatz in %
DME
91 %
ist ein Synthesegas von H2/CO = 1 und für Methanol von
H2/CO = 2 eingesetzt.
1-Liter Anlagen und Slurry Reaktor
Reaktionsmechanismus
• Herstellung eines Cu-γ-Al2O3 Katalysators
mittels selbstinduzierter regelmäßiger Anordnung während des Verdampfungsprozesses
• Hohe Aktivität für direkte DME Synthese
• Differentialkreislaufreaktor
vom Typ Berty
• Starke Durchmischung des
Reaktionsraums
• Verhalten nahe dem Modell
des idealen Rührkessels
• Gradientenfreie Vermessung der Reaktionskinetik
• Kinetik dient als Grundlage
für die Reaktorauslegung
Novel
Concept
1-Liter Anlage im Technikum (BASF)
New Catalytic concepts for direct DME synthesis
Dr. Petar Djinović, Dr. Heqing Jiang, Dr. Wolfgang Schmidt, Daniel Wendt
Jiang, H., et al. (2012) Microporous and Mesoporous Materials 164(0): 3-8.
Differentialkreislaufreaktor vom
Typ Berty (Linde)
Reaktor und
Katalysatorkorb (Linde)
Zusammenfassung
Die durchgeführten Prozesssimulationen zeigen im Vergleich
zum Stand der Technik eine signifikante Verbesserung der
Kaltgaseffizienz und der spezifischen CO2 Emissionen. Mehrere
hundert Katalysatoren für die direkte DME Synthese wurden im
Hochdurchsatzverfahren analysiert. Besonders aktive und stabile
Formulierungen werden zur Bestimmung kinetischer Daten
für die Reaktorauslegung verwendet. Das Langzeitverhalten
des Katalysators wird im Festbettreaktor als Formkörper und
im Slurry Verfahren als Dispersion unter industriell relevanten
Rahmenbedingungen untersucht.
• Untersuchung des Umsatzverhaltens in einem Dreiphasenreaktor (Slurry Verfahren)
• Verbesserte Wärmeabfuhr und Vermeidung
von Temperaturgradienten durch Dispergierung des Katalysators in einem Fluidisierungsmedium
• Analyse der Auswirkung von Stofftransportwiderstand und Hydrodynamik auf das Reaktionssystem
• Scale-Up auf großtechnischen Slurry Reaktor und Vergleich mit Festbettkonzepten
Slurry Reaktor (Fraunhofer UMSICHT)
DMEEXCO2
www.apt.mw.tum.de
1-Liter Anlage im Technikum (Linde)
• Zwei Festbettreaktoren mit 1-Liter
Katalysatorvolumen (Formkörper)
• Dimensionierung des Reaktionsrohrs in Anlehnung an die großtechnische Synthese in Rohrbündelreaktoren
• Prüfung auf Temperaturspitzen und
Anfahrverhalten
• Teilweise Rückführung von Produktströmen möglich
• Analyse der Langzeitaktivität des
Katalysators unter industriell relevanten Prozessbedingungen
• Bereits mehrere hundert Stunden
Standzeit erreicht, wird fortgesetzt
www.chemieundco2.de
c APT 2014
www.apt.mw.tum.de