Description BPL plant

Transcrição

Description BPL plant
Description of the
Biomass and Plastics Conversion and Liquefaction
Plant (BPL-plant)
Draft
Prof. Dr. W. Rammensee, 25. Oktober 2014
1. SUMMARY







The system allows the direct catalytic transformation of organic material (e.g. plastics, old tires, organic MSW), into oil, mainly diesel oil and gas.
The technology is characterized by its high efficiency (up to 80%), low investment
and working costs.
The plant is ecologically beneficial, it is a “closed system” without emissions. It is the
first certified system that can fulfill the EU-obligations for waste recycling.
The technology was continuously improved over many years, so that industrial maturity is verified.
The plant is designed for an input 7.000 to 10.000 tons p.a. (water free) and delivers
– depending of the input material - 35 - 60% diesel, 10% kerosene, 10 – 20 % Gas
The total investment for the plant is in the range of 4.500.000 €, ex. V.A.T. and includes license fees, guaranty, delivery and installation. The ROI is achieved in less
than 3 years.
Plants with higher capacity are technically feasible, as the plant has a modular and
robust structure with good scalability.
2. INTRODUCTION
The European Union (EU) has set specific targets for the year 2020: 20% increase in energy efficiency compared to present levels, 20% reduction of greenhouse gas (GHG) emissions from the
1990 levels, and at least 20% share of renewable energy sources in the EU total final consumption. Among these objectives, a specific target has been given to biofuels, which should cover at
least 10% of the market of transportation fuels by the year 2020. Therefore, biomass will play a
1
very important role in the future energy mix of the EU, considering that it is already the most important among renewable sources, covering approximately 5% of the total primary energy supply
of the EU-27.
Despite the growing importance of biofuels, most of the biomass fuels are currently used for the
production of power and heat, and this will still be an important application sector in the future.
Thermal conversion of wood and woody materials has been studied for some time and many
commercial technologies are already available. However, a large potential lies in most of the biowaste materials, which are byproducts of other processes or simply wastes, e.g. organic municipal wastes, and especially plastic waste, that need to be disposed and are available at low or even
negative costs.
Therefore, production of synthetic vehicle fuels from biomass and plastic is a hot topic and during the past years enormous efforts in US, Germany, EU can be seen. There are several alternative conversion processes to consider when evaluating properties such as cost of production and
energy efficiency to both product and final use in a road vehicle. The main thermochemical conversion processes for diesel fuels from bio-wastes are:
- Gasification, with temperatures in the range 900-1300 °C.
Product gas (Syngas) must be converted to fuels by e.g. Fischer-Tropsch-Synthesis
- Pyrolysis, Flash and Fast Pyrolysis at temperatures between 500 and 1000 °C, partly at
high pressures and with special catalysts. Pyrolysis produces -crude-oils, bioslurry, char,
syngas which must be costly converted to fuels.
- Liquefaction, at temperatures below 400 °C, partly at high pressures and with addition of
catalysts. Most processes are investigated in the presence of organic solvents or water,
which is very complex, low efficient and costly.
Main selection criteria for the most suitable process are
- economically competitive compared with the price of ordinary diesel fuel
- ecologically sustainable with low or no environmental impact on groundwater and air
- low running costs, long lasting operating terms
- return of investment within a reasonable period
- all the components of the plant should be proofed and tested for years.
Investigation and examination of the conversion process leads to the conclusion, that the low
temperature catalytic depolymerisation of biomass is the most suitable process for the economic
and sustainable production of diesel fuel.
3. SHORT DESCRIPTION OF THE FAVOURED PROCESS
The process consists of the following steps:
1. Mixing, crushing, dehydrating (squeezing) the biomass
2. High-pressure compression and grinding of the biomass in an oxygen-free atmosphere
2
3. Mixing with a cheap and reusable catalyst, mainly a special prepared aluminum-oxide, Al2O3
4. Introduction of the material in the kiln by an off-center screw.
5. Chemical-catalytical conversion (depolymerisation) in the kiln at temperatures of
about 320 to 380 °C in an oxygen-free atmosphere to Diesel oil
6. Distillation of the produced oils in a distillation column and separation from water,
char and some dust of the catalyst powder.
7. Use of produced gas and up to 10 % of oil in a CHP-facility for the production of heat
and electricity for the supply of the whole plant
8. Storage of the oil in a tank for sale
9. Option: cogeneration of electricity and heat.
4. ADVANTAGES OF OUR TECHNOLOGY
In contrast to other technologies, our process offers the following significant advantages:
-
-
Compared to other liquefaction technologies, our process is a “dry” process and needs
no expensive organic solvents, which may also contaminate the product oil.
The low temperature (ca. 350 °C) and the low atmospheric pressure process consume
less energy and reduce costs.
The direct conversion and liquefaction process is a one-step process; it is very clearcut and therefore requires a lower investment and running-costs, compared with other
technologies.
The energy efficiency of the plant and the quality of the product oil is – in dependence of the input material - very high.
The system is totally closed and produces no emissions. It is environmental sustainable.
Our technology, in contrast to most other technologies worldwide, has reached successful industrial scale.
5. PERSONNEL
A staff of 5 to 7 employees may be necessary:
-
Managing Director of the plant
Secretary for administration and acquisition
3 to 5 employees in working shifts (24 hours operation) for supply of the plant with
input material and maintenance
3
6. ECONOMIC DATA
EARNINGS STATEMENT FOR A BCL-PLANT OF 7000 T/A INPUT
Year 1
2.138.400,00
Year 2
2.391.604,38
Year 3
2.463.352,51
Year 4
2.537.253,09
./. Production costs
943.150,00
952.581,50
962.107,32
971.728,39
Operational result
1.195.250,00
1.439.022,88
1.501.245,20
1.565.524,70
./. administration costs
70.299,00
71.001,99
71.712,01
72.429,13
1.631.925,01
73.153,42
./. Transport costs
10.000,00
10.100,00
10.201,00
10.303,01
10.406,04
./. Other costs
45.271,98
45.724,70
46.181,95
46.643,77
47.110,20
1.069.679,02
1.312.196,19
1.373.150,24
1.436.148,79
./. lease
42.000,00
71.001,99
71.712,01
72.429,13
1.501.255,34
73.153,42
./. insurances
45.000,00
45.450,00
45.904,50
46.363,55
46.827,18
982.679,02
1.195.744,20
1.255.533,73
1.317.356,12
75.821,79
65.387,68
54.797,07
44.047,60
EBTDA
906.857,23
1.130.356,52
1.200.736,66
1.273.308,52
./. Deduction
360.000,00
360.000,00
360.000,00
360.000,00
1.348.137,86
360.000,00
0,00
0,00
0,00
0,00
0,00
546.857,23
770.356,52
840.736,66
913.308,52
988.137,86
Earnings
Net yield
EBITDA
./. interest on borrowed
Year 5
2.613.370,68
981.445,67
1.381.274,74
33.136,88
capital
./. Royalies for patents
EBT
The earning statement is a mid-case statement with the conditions, that the degree of capacity
utilization is 65% and the achieved price for the oil is 60 % of the market price.
Attention: The above data are no longer applicable and must be adjusted according to changed market conditions, cost changes of components, interest rates and
personnel costs.
7. THE TESTING FACILITY IN MUNICH
The experimental plant was built in 2010/11 nearby the airport in Munich. It served as test plant
to try out the technology on a industrial scale and for optimization of the process. The plant was
dismounted in the year 2013
Input material: Plastic waste, municipal waste of the “yellow sack”- recycling material
Output: Diesel oil, directly used for trucks and cars
Capacity: 10 to 20 tons per day, depending on input material
Efficiency: 300 to 600 Liter Diesel per metric ton dry waste – not optimized
4
Components of the Munich-Plant
Drawings of the Munich-plant
Machinery make-up
5
Pictures of the Munich- Test plant
Waste input and furnace
Oil and gas discharge
6
8. THE PLANT IN ALBACETE, SPAIN
This commercial plant was built in 2013/14 in Albacete, Spain.
Input material: Old tires, approx. 800 kg/h
Capacity: approx. 20 tons per day (about 7000 tons/a
Output: 50-55 % Diesel, 20 to 22 % Gas (used for CHP), 3-8 % Char, 6-10 % steel wire braiding
from tires, 8-10 % aromatics
Efficiency: > 80 %
CHP: 450 kW
Total investment: subject to Business Plan ………………… €, exclusive of VAT
The plant is - in comparision with the Munich-plant - greatly improved and optimized
Flowdiagram
7
Photo of the plant with reactor (left) and oil condenser (right)
Furnace, uninsulated with oil separator and distillation during installation
8
Picture of the on-screen display
The Operation of the plant is totally remote-controlled
Plant layout
Size: A-B, B-C and 1-2, 2-3 each = 7,5m, high: approx.. 9m
9
Appendix
10
Quotation for the BPL 10000-Plant
Complete Biomass conversion and liquefaction plant BPL 10000, supplied, installed and ready-to-operate for the catalytic low temperature conversion of organic wastes, such as Plastic waste, scrap tires, organic municipal solid waste (Yellow sac) and paper for the production of transport fuel and gas as stated in the description.
The offer price includes:
- Plans and data sheets of all components
- Frame construction for reactor kiln, furnace with agitator, heating equipment
and heat isolation
- Oil cooler and condenser with pipe installation and pumps
- CHP in dual mode (gas and diesel), with gas filter, 450 kW
- All other components, e.g. pumps, valves, tubes, extruder screw, containers
and dosing feeder for catalyst
- Royalties
- licence and patent fees
- Mechanical installations
- Electrical installations
- Remote computer control
- Start-up oft he plant
- Instruction and training of the operating personnel
- Guarantee
Note: the actual price depends on the input material and their processing methods, the size of the plant, optional components and so on.
Optional (only for information):
Preparation of used tires:
Includes chopper, magnetic separators, belt slip road with sieve; mill with
dosing device, sieve, second magnetic separator, with complete installation
Preparation of “Yellow sac” MSW:
Includes dosing device with bag opener, sorting belt with 6 containers and
exhaust system, cutting mill with magnetic separator, conveyor belt 15 m,
construction of the plant, wheel loader, with complete installation
11
Terms of delivery
The general terms of delivery as stated in the quotation.
Basis of the contract are the currently valid “Terms and Conditions for the
delivery of Machinery” of the Association of German Machine and Plant
Engineering (VDMA).
12
Einzelkomponenten der Anlage sowie optionale Zusatzkomponenten:
1.
Stehendes Rohr mit Rührwerk, Ein-/Austragsschnecke und Zellradschleuse,
schwimmend aufgehängt mit Unterbau und Isolierung (komplett)
2.
Extruder Doppelläufig mit Fräse und Luftaustrag auf Rahmen montiert
3.
Öldampfkühler mit Auffangtank inkl. 2 Röhrenkühler 9m hoch, Spüleinrichtung,
Aromatenaustrag, Verrohrung mit Pumpen
4.
Blockheizkraftwerk 450 kW el., Dualanlage für Diesel-/Gaszuführung, inkl.
Wärmerückgewinnung und Schallschutzgehäuse
5.
Wasserkühlaggregat zum Umschalten für die Aufheizung des Umformers
6.
Wassertank mit Kühlschlangen 8m3 auf 8m Höhe montiert
7.
8 Heizregister für Kanaleinbau je 50kW
8.
2 Umluftgebläse je 10 kW
9.
Rahmenkonstruktion über dem Reaktor mit Roste und Geländer sowie Treppe für
die Heizung des Reaktors
10. Katalysatoreintragsschnecke mit Mischbehälter und Steuerung
11. Katalysator-Zubringerband geschlossen, 10m lang, 0,4m breit
12. Katalysator-Dosierer mit 4 Schnecken und Austrag, mit Steuerung
13. Taumelsieb für Grobabscheidung
14. Taumelsieb für Feinabscheidung mit Klopfvorrichtung
15. Austragsschnecke 0,2 m Ø, 2 m Länge, isoliert mit Austrag
16. Kühlschnecke 0,2 m Ø, 5 m Länge mit Wassermantel
17. Übergabebehälter 2m3
18. 4 Schnecken 0,2 m Ø, 4 m Länge
19. Aufbau der Katalysatorenanlage inkl. Rahmen, Stützen etc.
20. Stiftmühle für die Katalysatoraufbereitung mit Sammelbehälter
21. Einhausung der Anlage
22. Container 4 m3
23. Entstaubungsanlage montiert
24. 3 Gassäcke für die Beatmung der Anlage mit Aufhängung
25. Gasfilteranlage mit Eintrag zum BHKW, Regelung etc.
26. Dosierer 60 m3, regelbar mit Querschnecke
27. Förderband 15 m Länge, 0,6 m Breite
28. Schnecke 5 m Länge, 0,25 m Durchm., Zubringer
29. Stahlunterbauten und Aufbau
30. Installation Kühl- und Wasserleitungen mit Ventilen, Pumpen etc.
13
31. 1 Pumpanlage vom Umformer zum Tank mit Zählwerk und Ventilen
32. 1 Spülpumpeneinrichtung zum Röhrentauscher-Waschen
33. Brandschutz nach Vorschrift
34. Elektro-Installationen mit Verteilungen komplett, montiert mit Kabeltrassen etc.
35. Computersteuerung mit Programmierung und Fernüberwachung
36. TÜV-Abnahme mit Gutachten
37. 25 to Katalysator in Big-Bag
38. Planung der Gesamtanlage inkl. Überwachung des Baus und der Montage
39. Einfahren der Anlage und Schulung des Bedienpersonals, 2 Monate
40. Einmalige Lizenz- und Patentgebühr (fällig bei Vertragsunterzeichnung)
Reifenaufbereitung (optional)
1.
2a
Reifenaufbereitung Zerhacker mit Zubringerband und mit Sieb, Magnetabscheider
und Rückführung
Mühlenanlage mit Dosierer, Sieb und Rückführung, Magnetabscheider,
Stückgrösse bis 1 cm3
alternativ
2b
Extruder 75 kW, Dosierer, Kratzband geschlossen (Unten+oben) mit
Stickstoffeintrag (-185°C), Abzugsband mit Magnetabscheider, Band auf Halde
Aufbereitung gelber Sack (optional)
1. Dosierer mit Sackaufreisser
2. Sortierband mit 6 Containern und Absauganlage (15x2m)
3. Schneidmühle mit Magnetabscheider u. Zubringerband
4. Förderband auf die Halde, 15m Länge, 0,6m Breite
5. Aufbau der Anlage
14