microorganisms in a tropical lagoon
Transcrição
microorganisms in a tropical lagoon
Relationships between fecal indicators and pathogenic microorganisms in a tropical lagoon in Rio de Janeiro, Brazil A]e~dta M. Gonzalez· Marda s. Lutterbach Hodolro Paranhos • Ab~trllet Rodrigo de Freilas Lagoon is an urban eco~~~m UJldergoing a~lcratcd degradation, therefore selected ~ a model for micruhiological qU<llily studies of tropkallagoun~. The aim of thi~ study wm; to evaluate tbe abumJaoGc': and the spatial distribution 01 leeal pollution indiC<:lttlrs and pathogenic microorgani~ms. in the lagoon. lnf;' relationships between microbial gmups and abiotic measurements were also determined to l,;valuate tb~ inlluence of environmental conditioD!> on b~· teria] di~t:rihution aDd to identil)' the capability of coliform!i Enterococcus to predict the occurrence of Vibrio. Staphylococcus aureus, and Salmondla, Surface water liamplcs were collected monthly, from December 1999 to October 2000. Analyses were perfunned by traditional culture teclmique~. A uniform spatial distrihutjon was ob~..yvcd for all bacterial groups. The fecal pollutlon incJi~tors occurred in low abundances while P{l~ tentially pathogenic microorganisms were consistently found. Therefore, our study !iupported the u..~c of counts of coliforms and Enterococnu to indkate only recenl fecal contamination. A. M. Gun"alef (~ . R. Paranhl)~ Oepa~Lamento de BiolDg;1\ Marinha, IIl~tituto de BiolDgill, Ulliversidade Foder~ldo Rio de Janeiro. Predjo do CC'S. 611>\,:0A, !>ala A 1-071, Udadc L;ni ver~i!aria, Ilha do FumHio. Rio de Janeiro. Rio de Jan~Lru. nrazil. eEl' 21944-lYlO c-mllil: ~1(:~;[email protected],;tlTlI Coastal ecos>~tems are frequently used ;l.i'> recreational and touristic area~ and for other economic purposes (Costanza et aL 1997). Unfortunately, pollutjon in the~c :)~tcms is widespread, and are<1~impacted by human Cl~Li•••ity may be severely degraded. The~e ar~as normally lJlow high con~cntrations of pathogtms that may cause di:x:ascs and oth\;t problems for human health. Environ· mental cont~1111natioo associated with bacterial proHferation has b~n descrjbed for many aquaLk cc.::osystems in the wodd (Kolm et aL 1997; Trous!iellier ct al. 2004; Elm<lnama ct aL 2005). Sanitary water conditions arc normally e"aluat~d ,.nu M. S. Lutterbach Lallorllt6rio d~Biow •.r~o e Hiodegradll~iiu, Uio"jr.ao de Corro~aQ e lJegrada~ao, lnslituto NII~iol1a1de TecnoJogia. Avcnju~ VeT'leJ:uela. ~ala 614. Sao.de, Rio de J"neim, Rio de hneiro, Brw,il, eEl' 20081· 310 Keywords Rodrigo de Fr~ita...•Lagoon. BrazilPollution indicators. SlaphytQwc;c~~aureus· Vibrio. Salmonella by fecal <':01ifOlID counts using traditional culture t<;e;hlliques {APHA 199~). Coliform group h/l~ of· ten been usw as an indicator of W/ltl;r suitability, partly because tbese mkroorg<1nisIIlS originatc t:)(dusively from fccc~ (Hagler et at 1986). Coliforms show goud conelation with other pollution inJi'.:'ltors (Pagnocca el aL 19'91) and can iudie,He; recent environmental contamination. AlltlllWgh they are used cxtemively, there is a l;(]ntToversy regarding coliform counts (Satiha ,mu Helmer 1990). l'I1~~e microorganisms .survi\'e poorly in marin~ (lnu chlorinated wat~r and are strongly affected by solar raJi"lion (Solie and K~tulovic 1992). Col!form~ (;aDnot be used tl-l monitor non fcC;:lI oonlaminatioo (Araujo el (II. 1(1){)) or lC> indicate the presence or pathogens. Th I;: n;:fore, <ll~ernativc microhiological indicators have beenlJ.';cd for w,ll~rqua1ity monitoring, such as neterotrophic bacteria (Kolm et a1. 1997), Hnferococcus (Evison lWl8), Staphylocoa:I4.'· aureus (Araujo d at. 1990), Pseudom()nas. ae.rugino.~a (Guim<ir~es et al. 194-.13), Vibrio (Watkins and. <.:abelli 1985), SaJm(}n(~lt(J (BCludart ct aI. 2()()O), Closr,Wtum p(~rfringens spores (White ~l al. 1993), and YC::l~ts and [ungj (Hagler f.Jt at 1986). Ct)pr~l.anol, a sterol found in hwnan feces, ha.\ also been &hown to he a good chemical indicator of fecal pollution (hube et a1. 20(4). A multiparametric arrroal:h using count\ of both coliforms and pathogenic microorg.misms has hcl:n I)uggested for USe in sanitary evaluation programs {Hagler et at. 19~fi}. J low~ver, in aquatic I;w~y~leIll5 in Bra7.iJ, few .studies using thb approac1l have hecn C<'lrriell out (Hagler e;t aL. 1986; Araujo el al. ]Y91: Vieira et al. 20Ul; Gonzalez et aL 2006). In such tropical ~nvironments. induding me Rodrigo d~ Freitas LagOOtl (I{FL) in Rio de Jam:iro, there is no informalion about pathogcm at all. nle studied region is cbaracterizl,;u b)' differences on pluviumetric index along the year (EMBRAPA and IDAMA 1992). The highe!iot and lowest precipitiltion levels arc ob~t'rved, respeeti"'d)', in the rainy summe;r (December to M.mh) and dry winter (July to Septetnl'lr.:r) s.ea~ons. On average, th~ annual ralnfall in this area is estimal.Cd tlsl.075 mm of water (EMBRAPA and IHAMA 1992). RFL i~an important urban coa~tal ecosY6tem USl;U for tourism, leL\urc, and water 6porK it ha~ 7.2 km of pt.::rimeter, 4.3 III or ltWfctge dep(h, 2.5 x I (f' m" of total area, 6.5 x ]00 mJ 01 water volume (Torres ·199D). RFL l'CCeiWl; the inlluence of three polluted rivers whost; Lolal and fecal coliforms values rangl;~between 2.3 x lo-l <lnd >1.6 x 106 most probable number (MPN) 100 mL -J {Lu~s and Cunha 2(07). The Macaco, Cab~H. '.lIld Rainha rivers Ji!>Charges in the northwe~l region of the lagoon by the T.1bu;i Channel (Brito and Lemos 1982) with a wlitcr flux of 0.03. ,mu 0.03, and 0.08 m3 S-I, rcspccLivcly. The lagoon i~ undergoing acrelerakJ ul,:gra dation. mainJy I,:au~ed by human [nl~rrerence (Luttel'hach r.:l 'II. 2001). Garhagc, oil, aod domestit; ~t'wage, with no previous treatment. are di~charged into it dHily. The high content 01 nulriellts and organi'.: matter, together with the 610".\' rate of water renewal, all(lw~ bacteria to proliferate (Lutternlll:h el a1. 2001). The spalial distribution of the lotal and cuhivat.ed heterotrophic bal.:lt:.ria and their re la tionsltip with tll ~ RFL trophic stalll~ were recently reported (Gonzalez et al. 2(06), The aim of this stouy 'rViJ~ to determine tnl; occurrence, aoundanw, ,md distribution or tol<ll anu fecal colHorm~, EmerococclJ..~, S. tlureus. Vibrio, and Salmonella in RFL in order to contribute to a helter understanding of lhis eC06ystem. Moreover, the relation,~hip between these microbial groups wa.<;also observed to evaJual(; huw effective fecal indicators arc 10 prtldict the presence of other pathogenic miCIoorgan[~m~_ The analyses were perrorme.d by traditional culture methods L1~jng t:nricbment broth ami agar medium. Thi~ 1>ludy was performed in a Brazilian coar-;tal lagooll and l'cporl~d what fecal indiclitm~ nr~ or not adequate fQr predictIng th(; prt:stlnce of pathogens, A sillgk waler samr1c from ~urface (0.5 m) was coUected monlhly (December 1994;l to October 2000) from ea(;h of the five diJfcrent area& of RilL (Fig. 1: Lutterbacl1 c.t ••I. 2001). The Rehc}U~s Tunnel statkm (Stl) is locatcd farth~sl from the lagoon entrance and rceci ••.~~ uDl.Ieated ••..• ~ ••.• , ••••• J:' ••••. ,e. J:.~ _- Rcooucas Tunnel (5tl), Pirnque hlllnd (St2). C~nlrlll Ch~[m<:l{Sr3). C~i~ra Jslntld {S.4). and (''-aI001b\1 Curw (.~15) Jardlm de Alah C!ln~1 , c1ande::;.line dome'>tie sew<Jge. Thi5 area has albo poor water renewal, and storm drains are present. The Pir(;lqu~ hilaml slaLion (SI2) li~:sin the norlh· we::;.lpart '.>fthe lagoon and receives the discharges of thre e rivers. Tbe Central Channel station (Sn) is located in the main Ia.goon channel, an area of ~Uer wah:rdn;l1lation. The <.:ai.,:ara l~la1JJ poinl (St4) ties near the entrance of tbe Jardim de Alab Canal, whieh cOtlncds the RFL to the Atlantic O~an. making water r~new[ll prns.sible (Torres 1990). The Calombo Curve site (St5) js situated in the soulhc~sl an:a. clo~e to lb~ JarJim de Alah Canal, where unauthorized wa6tes are discharged. Samplc!> for physical and chemical measurements were Qblailll:u wilh a 3-L V,m Dum boUle. Sample6 for microbiological aDalyses were directly coHeeled with 500 mL sterile polypropylene bottles. All 6amples were preserved the analyses wcn~ pert'<.lntll;J. Abiotic measurements on ice until were analyzed by stan- dard oceanographic methods (Strickland and Parsons 1972). Watcr tcmpcTatl1r~ wn~ m~w;u.red in tbl: Held wilb <l graduate thermometer, Salinity and dissolved oxygen {DO) were determined, by chJorinity and Winkler-azide methods, respectively. CblorophyU a determinations were performed aflc.:r vacuum lIItTlllion «25 c.m or Hg). The fillers (0.45 I-lffi Whatman GFfC) were extracted overnight in 9{J% acetone at 4 C and the readings done wilb a H ITACH I lJ·1tJ()O {Hitachi High Technologies America Inc., USA} Q spectrophotometel'. Suspcndl.:d parliculate matter (SPM) W<:l~ Jl:Lerrnined by gravimetry on Mill.pore AIlI5 glass-fiber filtcr~. Inorganic nutTieols were evaluated as it follow::;;,!mmoniacal nitrogen hy indophenol, nitrile by diazotalion, nitrate by reduction in Cd-Cu column followed hy uia:lAllCllion, and orthophosphate hy Te;acti,m with a~corbie acid. Water transparl:ncy was determioed with a Seo.:hi disk. Total ~n[j fecal coliforms were analyzed bj' the IvlPN methoo, foUowing thc recomm<;nuations of API fA (APHAI99~). B<Jcterial growth was f.k:t{,:nnlol:d on Brila F1uorocuH Broth (Merck 1.12587) at 36 ± )QC for 24 h. The nll;mbnmc filtration techniqUl; (:sterile cellulose MillipOI'e 0.45 I-lm, 47 mm diameter) was used for detection of pathogens. Membrane~ [nr f:merQCOCCUS detcrmintttion::; wure lmmferred to Petri dishe.~ wntaining t;;elective agar (Merck: I.052tl2) and incubated at 36 ± Joe Colony-forming uT1il~(cru) CflUltb Weft; pfo\rrllJmfo\llafter 48 h. Filters for S. aurr.w analyses were placed on Vogcl-JnhnsnTl medium with potassiLlm tellllTitc.;(ME::rck.1.05405) added. Bl~~k wlonie:s with yellow haloes wen~ enumerated after 48 h of incuhatiOJl (it 36 ± Pc. Vibrio SI)P. counts wcre m"dl: un thiosulfatr; citratt bile tiuCJotie agar (Merck 1.1026:\) after growth at 36 ± PC for 4R h. 'l'h~ (11:;r;urreDCCof Salmonella wa~ omerved on RappaportVas:>iHadl~enrichment broth (Merck 1.07700; 4& h at 35 ± r'C). The positive resu!t~ were coorjrm~d jn Salmonella-..~higeJl~ medium (Mr;rck 1.07667; ~6 ± 1°(; l"ur4~ h). All J<1la were log-transformed and tested hy nonparamctric slathti(,:s {7.<:l' 1~~9). A Pearson matrix ww; llSfo\dto determine the correlation~ between microbiological aDd environmental mC4isurements. Corre Lation~ wc.;n;(,:l)nsidcrcu sta til;tically significant when ~ ::;ignificance level of 95% (p < 0,05) wa~ found. The relationsbjp between aU variable/; was assessed by prindl)al compOlll;nt analysi~ (L~gcndn: <lnd Ugl:ndre 1998). N() (,;viJent /)patial differences were found on physicai and chem.ical valu~s obtained In Rl'"L (Table 1). Waler temperature was nearly l:on~wnt in aU sampling statl0n& ranging [rom H~~C (St4) to 3] 0(; (Sl2, St3, and St5; Fig. 2a). The low salinity levels (5.22 S St4 to 9.85 S Sl:;~Fig. 2b) rdkctt:u the cil'culation paUl;m~of the fo\cu~yslern,wbich 11> (;haraclerized by great freshwater influence and poor oceanic input~ ('l'nrre:> l(,ll)O).A:>the 1,lgOUn is an enclo:>ed ec.osystt:rn, ills.br<lckj~h water can he; <l .:omeq uence of the Macaco, Ca be.;a, and Rainha. rivers [n!1ucncc over the reduceu tidal circul at ion from ~bc ~hallow J ardim de Alah Canal (Kl'l ill uf leogth, 9.8 m of widtb, and [),7D m of depth), The continental lnHU(:Ilcr; I'.';iS .dso confirmed by SPM (16 mg L -1 St2 to 6t) mg L -l St1; Fig. 2c) values. Although no remarkable diffcr~DceShad been ol"M>cl'vcdanllmg tht; fivl; 1jtaliullS, th~ higbt;~t SPM (;On~ntralioDti were found iD the irtut:rmosl areas oftbe lagoon, directly affected by st mID gaUerjes and un trc atc d d3nd~,tin e u.(]m fo\~. tic sewage (Lutterbaeh et a1. 20(1), 00 concentrations varied in a broad range (1.74 to 11.65 mL L-I) with tbl; m<1;\imum value/) ol.:Cuning in the areas more directly affected by Jardim de AJah Canal (Pig. 2d). The low vtllul;~ found in St)me sampling oQc;<l&ionsrelle.:ted the gJ'C4itul.lmping ot organic matter that consumes lh-: oxygen of the water during aerobic hacte1i<11 metaboljsm. Otherwise. the highe-,t kw!s of DO oh~l;rv~tl in RFL may be attributed to the imeo!ie phytopJankton activity promoted hy high nutrient~ and light availability. 'lllrbJuily is anotnCT fal;lor th<lt significantly affects tIle phytopJankton production (Cloern 19~7). In RI-'L, watel' tran~parcncy nmg(,;J bctw~en 0.37 and H! m, with the highest and lowest va luc~ being. respectively, found In Sl"i and Sl1 (daLa nut ~hOWD). The high phytt.lplankton activity was indicated by chlorophyll a values (1.65 ~g L -I St3 and St4 to 438.87 ~g L -I St3; Pig. 2c.;), which <:l1"('; lypical of eutrophicatcd cnviToomcn~ wilh limited water dn;;ulatioo, Tbe high degree of organic poll ntion jn RFL was confirmed hy ammoniacal ni· trogen (1. 15 IJ-M Sl~ to 55.!:H ~ St1; Fig. 3<1), TlI~e 1 Aycras~ (X). standml.i dnialinll (SO), Ilumocr of '\ample. (IV), Inillimum (min). and rn~1\imuCll (Tntlx) val~s of teOlpt=Tllwre, ~:lliniry, s\L~p~ndcd paT~i<,;ulare matter. di~soJYCd o"ygt;n, chloTiJphyJJ Il, ammoniacal nilrogcn. nitrite, nitra~, orthoph(l.'jphate. trtllll and fe~1l1 ooJifOTm~. t;wemi·(lccu.t, s. ml~.t. Vibrio sp., Ilnd S(JlmQ11f'i/a sp. nbtaincd jn Rodrigo de Freitas ug(lun ~t1, X ± SD (N) Mir •...m.1X St2, X ± SD ( N) Mifl-max Sn,X±SD(N) Min-ma:l: SL4. X :i sn (foI'} $15. X ± Sf> (N) Min-max X ±SD Sal (S) SPM (mg L-1} DO (mL L -I) Chla{I'.~L-l) 26.24 ± 148 (ll) 19nH-3().OO 7 _\{l ± 1.5!'l (11) 39.78 ± 1l0H (Q) 21.00--66.00 6.:34 ± 2.2~ (II) 12~.99 ± 129.88 (t 1) 3.30--353.0& 5.34-9.54 7.12 ± L4I'> (11) 2605 ± 3.64 (ll) lH.(JO-:l1.00 (IV) Mi'l-ma:t St2, X ± SIJ (N} Min-rnax 6.58 ± 2.82 (l I) 2.4Q-l1.54 1W.W ± 132.37 (11) ]6.'i--438.87 u,()9 ± 3.63 (11 ) 18,00- 30.{;() 705 ± 1 .45 (11 ) 5.22-9.58 31.7S ± 10.8D (9) 17.(J(l-49.00 6.27 ± 21\6 (11) 1.74-11.54 Rn.70 26-01 ± 3.n (11) ·19.6Q...31.00 nH ± 1.46 (II) 527-9.1& 36.00 ± 14.44 (LJ) HHIO ...58.00 7.13 ± 2.75 (11) 3.53-11.2{i ~. 75 ± 75.60 (11) 4.95-!97.9<I ~HJlJ\nt (~M) NOZ (\J.M) :>10.1 (14~) pol TC (MPN 100 mI.-I) 16.00 ±17.50 1.16-5581 1.17 ± 1.2!'l (11) Q.16--4.24 2.86 ± 2.5~ (II) 0.29-S,M 1.<W± 0.96 (11) 4.26 x 103± 7.74 x 10:' (IO 04l-2.90 U6 ± 1.31 (1l) O.0C}..4J6 2.47 ± 2.11 (111 0.52-6.:):) 9.00 x 101-2.40 x llr 1.79 x WJ± ~.:,)1l( 103 (HI 1.29 ± l:JQ (11) 2.50 ± B.1 (11) 0.06-4.5Q 0.60-·ILS2 0.31-4.84 1.42 ± 0.92 (11 j O..15-J.3{) U[J ± 153 (ll) OJ (l-5.05 139 ± 1.5], (II) 2.00 ± 2.11 (11) , 0.14-6.73 1.75 ± 137 (n) 0.18-425 2.5~ J: 1.06 (11) 0.48-9.11 1.66 ± 1.20 (H) 4.00 )( 10J-2.40 X l(}1 '1.41 'x llP.±: 14, )( 103 (10) O.24-3.~K .100 x ]01-4.60 Staphyim:l,Kcus (lU.r"u~· (CFU 100 mL -J) Vibrio (CFtJ 100 mL -I) S~l1m(mr!lla (%) 7.77 x WI:t: 1,08 x 1fp2 (11) 54.~.'i ± 36.77 (11) UOO-l00.o;) 1.71 x l(l2± 4.7'1 x 10}' (II) 1~2 x I04± 4.04 x 1(J~ (10) 1.00 x ]{j1-1.:lO l( UP 2.49 x lrtl± 4.2.'5 x l(f (10) OJJ(l-·I.60 O.OO-l.I 0 lL6.1 ± (ll) lUl2 (11) 12U-J9.J8 * Min-max Sl'i. X ±SD Mjrt-max UJ-37.04 JOO) ± 11.10 (11) IOX~ ± 12 ..1fi (11) 141-41.05 O.I~S.03 .• 1) Enluor:of.CUS (CFLIOO I II mL-1) 1.22)( 10J± 3.44)( 10] (10) 3.m x 10J -1.W)( HJ4 8.93 x W'± UiH x 102 (Il) O.UO....6.40 l( Il}'! SL2. X ± SO (N) 150 x 1~± Min-max. SkI, X ± Sf) (N) 3.00 x IOl-7.50 x 1O~' 1.1 Q x H}l ± 3.45 x 1(J] (10) 9.12 x W± 15.'i x 102 (II) lJ.0/}....5.30 x IO~ 5.42 x 1O! ± 7.fJ7 )( IOl (1'1) Min-ma~ St4. ± SD (fly') 1.00 x HJl_1.10 x X ± SD (.71,') Min-1llaX x 2.45 .>C 1~t2 (10) m' Min-mal( 5.64 x I(¥± 1.42 x W1 (10) ~.OO x lOI-4.60 x 10] So, x 4.80 x 1(JI ± 3Jm x '101 (10) ± SD (N) Min-Il'lll~ Tem" l~mpcrOltu~, 85.64 ± 79.90 (1'1) 3.~(l-219,43 (9) IJ.l!4 13.08 (I I} 1.15.... 4()J4 SlI, 252-11.65 39.22 ± lJ.4t 1 8.00-6l.00 Fe (MPN It):} rnlJ II 2Jin-IO.28 6.0'i :;I-2.44 (II ) 5.2Y-9.85 St1, X ± SD (N) Mirl-max St4, X ± SO ( fI,') (N) .~'22 ± l/iA'i (Q) 16.00--0 l.on 5.29-~52 7.10± 1.56 (11) 26J6±-3.59 (11) 19.1o--31.UU Min-maJl Stl, TertiI' (0e) 3.00 x 10'-1.50 SaJ ~linily. ~itrll tc. l'()~ OIthoph(l~phate. x 1{f SPM suspocnded TC wtal colifurm, O.QO-2.30 x 1~ 1.22 x ](j2± 8.92 x l!~ (1J) 0.00-3.00 x 1O~ 4.23 x In!± 935 2,00 x lO....6.40)( ~rticulat~ x lOI {11} Ilt2 matt~r, Fe f~al coliform no 0.00-3.10 x 1()l >( 10' 2.81 "J02± 5Kl x 1()2 (11) O.()I}....2.00 x 1(~1 2.56 x lU2±5.Q6 x lO~ (11) n.00--2.00 x 10-1 2JN l( W± :1.82 x H~ (11) fl.OO-2.00 xl O~ LoO <I'M} :t: 1.33 ( II ) 1( ± 71S7 (11) U'i5-20'U9 :3.0() x 101-1.I0 x 104 3.51 x loJ±73S x lU3 (IC 3.00 x 101-2.40 )( lit 3.14 )( 103 J: 7.38 x W] (1(, lOS >< H~ 59.09 ± 47.79 (11) O.OO-WO.()(J 1.51 x l(f± 3.12 xl ()4 (10) 1.00 x H)1_1.00 x S6.82 ± 33.71 (n) 0.00- ](Xl.!'.(I UK)( 65.91 ± .17.54 (ll) 0.00-100.00 lo-~ 1~± 1.'12 x 10" (lO) 5.m x 10C.6.nO x 1()4 9.&') x 1O'± 170 x 10~ (Hl) 0.00 ....5.10 x IW diS{'\()'•.~d m::ygen. Chi a Cl1klIOphyll a, NHJ1NH1 59.()Ij ± :lCf.15 (1I) 25 .(Kl-I 00.00 !lmmol1Lat:~1 nitrosen. NO;; nitrile, NO'] ~= H~ 2 T jTT't.'~erit~ b di~tt,h ul,(Jj) of temperature (II). saJinit)' (b), suspended parli(;u llItc mlltter (t), d i~ul Vl:;U ox}'getl (d), and chlofOJ'lhyll u (e) obUined at'itl (-+-),SI2 10 C.··), St3 (-.6.-), St4 (·x"). and St5 (-0-) d 12 Fig. 3 Timc-5Cric~ diitTibu tion uf <lmmuniQcaJ nitrogen (II). nil rite (b), "'tfille (~), and ~OTtuph~lljrhate (II) ohlai'led at St I (-+-), St2 C· •.. ·), Sr3 l-~-), St4 {... x"'J, and a b t;() 6 ... 4~ 4 :;::l. ~ 2 2~ Sl'i (-0-) 0 ~~ ~ ~ ~ ~!s.. ~~ ~5 ! ::. .., ~ :!:•• <: ~ '" .. c ..• ..• 'l~ <l! :l5 c ~ ~ "" ~ ""~ ""~ ~ !i' ], 10. ~ ~ ~ ~ "' ~ •.. ~ < :; ~ Q fti~ r1. C ~ d {l 10 ~ ". 4 ~:I. ~ ;0. 2 2 U ~ ~1~~i~~ -< ~ ••• i!~ Q ~ ~ ::; .:; 0 ~ ee ~ ~ il c 4 ;.;. •• ••l5 ••~ ~~ c:r. •.. ~ -< ~•• ••1; •• ~ ~~~ ..," ...• .< J! :; nitrite (0.06 f.lM 5t3 to 5.05 f.lM St4; Fig. 3b), ni· ~rate (0.14 ,..M St4 to 9.11 ~M St5: Fig, 3c), and orthophosphatc (0.18 f.lM Sl4 10 4.84 f.lM S12; Fig, ~d) level~. As a general pattern, jnurganic nutrients wc~ predominantly higher in areas submitted 10 raw sewage inpuLs. A dear sca~onal ratl~m was observed in the RFL watcn) for the abiotk parameters, with lhe eXCl.-'}Jlion of DO, SPM, and ortopbosphate. Thc highest temperat ures and lowest ~aIinitics Were recorded in the summer season, wht:n preciplt<llion ratio is higher (EMBRAPA and IDAMA 191)2).High~~t values of chlorophyll a wcre also found in the rainy ~ummcr. These re~ suits can be explained hy incrca~~ in primal)' produ<.:livity during summer seaSOn in rcsponse to the more sunlight avail,lbihty nOJDlally oooerveu at this time of the. year. Otherwise, the highc!>l valu(;~ of ammoniacal nitrogen, nilrite, anu nitratc w~re ob~rved in th~ wintcr months_ 'rhe highl.:-st o~trient values observed uuring ~he dry season can bi; a cons~4ueDce of the low~[ water dilution iu RFL due to <I decrca!>e in pr~ipitation Jevels and runoff, A uniform ~patial di~tributit)n was ob~crved for bacterial data that were similar to water quality patterns. The highest avcrllge abundances were predominantly t'ound in areas located fatthcr from lhe entrllnce of the lagt10n (Table 1). Total llnd fecal coliform~ (Fig. 4a. b) vuried from 3,0 x 101 MPN 100 mL-1 (St2, SL3, and St'i) to 4.fl x 1O~ MPN 100 mL -I (stS) and 3,0 x ]()I MPK 100 mL -I {all stations) 10 1.1 x an ]~ MPN 100 mL -J (Sll and ~t:l), resp~lively. Ilig. 4 Ti m~-5Cries di'lributtClTl of total cotiform (a), rroil colirl"lrm (b), tnle:r(>Cocc.~\ ~p.(~), S, (d), Vibrio ~p.(e), and So/ttlQn~Ua {f) obtained ~t Stl (-+-l. Sl2 (" •... ), St3 (-li-), St4 { )(.,.), al'u.I aUWH St5 to. sr, ~ i l.\lE~ ~ 1MAo04 Ii! !UMilJ ~ f~ f::;; IlIT•.•il2 1~I!.o:l l.{JI!+O.1 0-) l.Ot>+~3 "'..l \.5£+03 ~ 1,IIF•.•I1~ ~ ~ E '":;! lJ'Ill~ 1.()t.:+Q.3 =i ~ 5.01l-w2 s. TJllJI~ 2 Pearson correlation> obtained batweell lnul and f~-';H.Iculiforms, t;rtl"n,,:ou:tI.~ ~p., ar~~e'us. Vibria 5pp., S{l!mom?J[u ~I)'>tnm,sparcncy, lempetaturl;:. Slliinit~" di~~)lved Qxygen, alnmorlii!l<,:~1 llitro~cn, nitrite, nitrate, ortl\i)p"\.l~phBt<:. chlorophyll a, arid ,us!~ndl;:d partil;;u!.lltcmaner in lhe Rodrig(, ~IeFrdtas LagOOl1 TC FC EN TC FC EN LOI) 0.77'" l.OO 0.02 SA 0.26 0.11 0,14 1.00 -0.07 SA VB SM 1.00 S1I.l Transp Ten1r S~! DO NOJ -o.n 0.25 -0.53* -0.41'" NHl 0.18 N02 -0.01 -0.30 -O.1.~* 0,04 -0.06 U.1!'l -014 -0.01 Ollll* -1),1e> 0.09 -0.03 -0.19* -OJ4,. 0.13 -0.(,(,. -0.36* 0.45" -031 0,3&" 0,05 O,.3Y~ -0.14 0,58" -0.%. 0.34" 0.'11 -0.38* -f).5D,. -0.18, OJ7 U.01 L.(lO 0,12 018 0.14 -OJ5* -0.02 --0.26 -OJ) .• vn 0.:36* '1.00 LOt) Tran:;p Tt'mp -0.27 -0.30 1.00 S81 no NI1,J -0.17 -0.:14,. 0.10 0.50'" -0.'14", 1.00 -OJj•. -u,o~ -C),4Z", O.46~ -0.19 1.00 0.30 -0.1l2", U~~ N02 N01 PO~ C'hla SPM J'e tl1[1\l <,:.)lirorm. Fe fecal colifnfltl. ~Jinlt}'. uo dis'L)lv~~1 oxygen. NH) 'p < 0,0.5 O_~· 0.27 U,40* -0.17 -0.40* -O.ln -o,n IU2 0.22 -0.12 0.16 -0,48* O.4J~ -O.la O.42~ 1.00 -0.3611' 1"04 -0.02 -0.20 0.3f'" -0.07 -0.5R.* Chla -0,2(1 0,25 -0.81* SPM O.Otl -0.0; -0,[)4 0.1& 0.21 0,22 -0.29 O.:.'l7* D.37'" -C}.4(h D.24 a.54'" -0.49", O.7P -0.l3 -0.751'" -0.17 (),86~ -0.0') -0.29 LOO -Cl.29 1.00 -{),23 -0.32'" -0.18,. 0.07 O.33~ 0,00 0,27 -0.20 0.10 1,00 F-.~rEmerococr.:lJ..~ ~p.,.\11 Strrplryh'w(;cus {/~lIS, VB VilJrio ~pp,.SJf SaJmm.elltJ ~!~.,Tr(/IlSp lnmsparcncy, Temp lr;mJj(:ntturt', nitrogm. NO~ nitrile, ,1't,'().l nilratc, PO~ ortllophL1~phak. Chia chloroph)'11 '1. SI'M ~1J~Jj(:TlJ<:dparticulate maHer alllllWl'lia~~r O.4{)* l.OO 511{ nfi!erococcu.s counts rangea rrom a mmlffillffi zero in Sl1, ~12, St3, and St4 to a maximum 6.4 x 102 CFU 100 mL -l in Stl (Fig. 44;). 01 of PathogeDlc microorganisms were oom;~ientJy observed in RFL waten. S. aweus was isolated from 60% to M% of samples, in a range of zero (all statiom) 10 2.0 x 10~ CFU 100 mL-J (SI 3, S14. and St5; Fig, 4d). High indices of Vibrio were obtained (88% to 1O()%). The higbest and lowest counts occurred> N!>peetively, at oSt1 (1.3 x 1O~ eFl) 100 mL I) and St2 and St5 (zero: Fig. 4e). Salmonella were also isolated in high pel'centages-70% to 100% ()r~~mpl~s.This bacterial group varied from zero (St1. St2, S8, and $(4) LO 100% (all stations) in the water ~mrle& collected {Fig, 4f}. The highest abundancc~ or Lotal I:lllifoJDl, fecal colilOlm, amI Vibrio were found in the rainy sumll1(;l' s.cawn cOl1Jirming Lhe contribution of OOIllinl;t11c1l ~unolI to increase the microorganisms' n umbers in tne RFL ecosystem, 0 espi Ie (l r this, 110 1iea.<;onal trend!\ were observed lor Enterococcus, .\. aurelL), and Salmonella. A P(;i:tIson matrix correlation was used to determine rhe relatjonsh ips octw~cn analyzed pa' ramctcn and to verify tbe influence of abiotic oonditions on RFL bacterial survivaL For eX.ampic, the inllu(;ln~ of !>eawater 00. enteric bacteria Willi confirmed by tbe negative correlations observed between total coliform and ~alinlL}' (r = -0.53, P < 0.05) and fecal wliform and salinity (,..= -0.36. p < 0.05: Table 2). The effect of sunligh I un RFL coliforms Wa5 also observed and supported by the negative but l1onslgniJic.:<lllt oorrelations rOll"l.! bclwec;n total coliform and water Iramsparenl:y and fectll coliform and water transparency. In this study, transparency "alllcHang~tl from 0.37 10 2,8 nl while water samples were ooUecred at 0.5 m depth. The negative wTTelalioDfi ohscrved between /::,'ntcrococcus and temperature (r = -0,66, P < 0.05) indicated the probable influence of temperall.lrc On Hn((!TVCOCCWi survival. In addhion, cnlerie mi ••. ·worganisrns are faculta· tiw <1naerobes and the negative effect!; of oxygen on their cells was confirmed by the ••. -orrclatiuns found between total culiform (r = -0041, p-< u,u5), fecal coliform (non~igniflcant), £merococ· m~ (,..= -0.54, P < 0.05), and DO. The discharge of potentially pathogenic microorganisms in l{FL hy dome~tic sewage inputs wa.~ wpported by the positive and nonsignjf· icanr correlations observed belween S. aureus aDd indic"Il)T~ like lutul oolLtOIID, fecal coliform, Salmonella sp., and ammoniacal nitrogen. The high and constant occurrence of SCllmoneila ~p. in the lagoon suggesl" the c)(ten~ive fecal con· tamination in this ~o~ystem. corroborated by Ihe pusili ve correlations noted with EilIeroMCCu.\' (1 = 0,6, P < 0.05), nitrite (nonsignilicanl), 'lOd orthophosphate {r = 0,364. P < 0.05). Moreover, positive but nonsignificant correlations between S, aureus, Vibrio spp., and Salmonella ~p. were found with suspended p,jrLicul~~ matter. The principal component analysis was applied to the matrix (If <.:UTn:lation coeIfident between 15 \'(lrillble" and 11 observations to cOlTelate all monthly collected data. The projection OJl the f8£torial plan:\ 1-2 ~Kplained 48.89% uf the total dat~l varinbility (Fig. 5) and factors 1 and 2 corresponded, respectively, 27.91 % and W.~'X. 1.5· lAI i;lr O,j z '" ""~ .. --,•• Q8 •• III 0.0 .3 ~ • I' .f? ~ ~lS NO, coo .. <P~ "0 Cnl. a .l.() .]3 .4),ii ·IS o.~ WI flartQrl: :1.91 'lli Fj~!i Princ.ip<tlcomponent anatY'lls of 15 Y.lriable~ (para. mele~~ ilTl~ly"~w)lInd 11 s!lmplc~ (observations) obtaincd in RFL The gt'<lph ~hov •.~ lheir projoclion on factorial plan~ 1-2. wit~ 4K~9% t;xplanation of data ~·ariability. remp temrer.ature, S~i saHuily, DO dis:;oI"t;lI 01lygcn, Chi a chlorophyll a, ~'J'M suspendlold particulate m€l~t.er. NII~ lImrnonjacaJ nitrogen, N02 nitrile. NOJ IlilJ'aLl!, ro~~IJT- lhophusphatc. TC total coliform. PC fecal coliform, B!t~· f()(:CH:m~·, S. u-ureus. Vibrio, !Ind Salnwmrra. Rainy mmrner (0) .and dty winle:r (.) Tllbl~ 3 Cines r .;()trelati Lln coefficients netWE:Cll vafL' abl~ and factnrial axi8 ffClm principal oomp0[lcnt analysis (n = J I) Factors VarLability or explanation Temperature S~li"il)' SII~pc;"YI;:d parti.:ulSle malter DiSllol~'cd oKygcn Cn]o,ophy Ila AmmQnill(;1I1 nilrogen 1'i tritl: l'iitrate Orluph.)~phlllc; T u till (;oliforTTl Fcclil coliform Efltf'rococcus sp. .'i1Uph yl()~YI<t:u.1 fltl.tetd Viluir'/8p. SuJmQJI(d~:sp. 1 2 27.9\% 20.98% O.11108J -O.8&4610~ O.729802~ -0.3746.10· -0.669766 -O.M-63g~· -O.74~Y03· (L7.1tiCJfJl ~ -O.2W4U6 (n'i7IfJ7~ O.6..'i579J~ 0.474597~ 0.4J331i5~ -O.J53369~ 0.133413 -0.4474n8* -05W096* 0.~1\99 -O.16ti171 O.&4t 14r;~ -O.1328M O.7J'J914~ O,6M.'i88~ 001 37874 a.Wall 0.672356" 0.471748" (JJ~KJHO'I -(}11!;l~29 (Ll1J.'7H7 Rcldtcll tu Fig . .'i ~p <: O.O~ of IhJ~ vanatIon. The homogeneous spatial distribution and lh\; M':aJ)utllddjfh;reTlcc~ of biolic and abiotic parameters in RFL were <.:onOrmcd. The data obtained during the summer season were distrihuled in the left region of the grapb. Samples coHected in winter occurred predominantly at the negative side of the axis 1. The linem correlation ooelIicir;nl~ bi;tw~~n variahlcs and the factorial plans are Ii/;ted in Table 3. Tcmp\;nmm:. ~alinit}', SPM, chlorophyll {I, ammoniacal nitrogen. nitrite, nitratt:., orthophosphate, and Enterococcus were significantly correlated wilh factM 1. Otherwise, the factor 2 correlated significantly with salinity, di~solvcd OX yg\;n , nitrogen ammoniacal, nitrite. nitrate. total coliform. fecal cllliIoTTIl, S. (lure-us, and Vibrio. .lUlL is a highly clltrophicated ecosystem dearlj-' affected br drculation POiItt:.Tn.<; and domestic sewage inputs (Gonzalez et aL 20(6). The hlgoon is connL':cted to the sea by the Jardim de Alah Canal, which is fn;4ucnLly lilkd by silt and alluvial deposits. These conditions restrict the ocean water influw and renew,ll of the lagoon's water, which remains stagnated (Torres 1990). The relativel)' long residence lime of the RFL waters, associated with th~ high uVllilability of nutri.enl~ and organic matter, favor th.e development of rni<.-Tuoil!l<.:ommuni ties and aft'eel the en vironmen tal sanitary <.:onditions (Lldtr,;rbach Cl at 2001 ). The relationship between nl"ltrien~ and bac~c· rial growth was demonstrated in mel>ocosm experiments (Lebaron ct 1'1. l(99), which may be compared to long-residence time environm~nh (Troussellier et al. 2004). Beside of thlli. nontrc<HcU wa~lewatcr tliM.:biilrgc5il1crcasc the numbers and types of allochthonoU/; mi'-Toorg<lni~m" in RFL. Although unable to grow in aquatic L::e(Jsy~tems,these sewage-related microorganisms CUll (;u[I,'ive in uutural walen:; depending ()n Ihe environmental conditions (Diolli::>ioeL <11. 20(0). In ~pite of its accelerated eutrophication pro~ss (Lullerbach et al. 2001; GUIlZale:l et aL 2(06), RFL coliform and Enrerococcm [lumber~ iippeared low. The <J;ita were nol in agreement witl. previouf> studies in tbis tlreLl, wbich reported l~vcl~ of total and fecal colifol'n15 varying from l.O x 10~ Lo ~.8 x 10~ MPN 100 mL-1 and U.l x 10 to ].6 x lO>MPN 100 mL . I , n:l>pf;:ctiv~ly (Scerctaria Municipal de Melo 'Ambiente 1998; Lullerna<.:h ~t at 200l). However, it oowd be Ii consequence of several biotic and abiotic interactions which acted distinctly and synergistically on the ~urvival ()f RFL microorganisms along the time. Studies of regulation (Solie and Krstulovic 1992) hl1YCJ<.:mon~lrl1ted the inl)ueoce of seawater and :sunlight on ~oJiform llurvi~'"L Mitrinr,; and brackish waters, such those of RFL. are toxic to mo~t cnl.t;ric;;hactcri.ll. eliminating rapidly aJlochtonous microorganibms introduced inlo lhe environment. Sunlight radiation affecls tb.e colilonn ~un ..iY'll promCJting cdlular die off (Fujioka et aI. 1981) OJ bacterial damLlges which allow:s the prodst predation (McCambridge and McMeekin 1981). Death and inhibition of enteric bacterill by high tempera.ture,<; have also beell reported (Pereira und Akantura 1Y93; I:lrunl et lli. 19c;l7). Thcre~ fore, tb.e local wilter temperatures mnging from 1ROC to J l 0 c.: may explain the low occurrence of Emerococcus in RFL ~()Systcm. Bcsides this, phytoplankton growth is stimulated by higb tcmpt'ratures (Ishizaka et a1. 1983). Tile intunse phytoplanktonic activity in the lagoon was indicated hy thl: high chlorophyll a concentrations, Algal metabolism con~e4uently increa~l:~ the DO leveh which arc e()n~idered InatJl:quate for 1;01iform and linterococcU3 ~orviva1. Although coliforms and Entemc(){;cus numbe r.!i had been low in RFL. potentially pathogl;mic microorgani~ms were conMstently found (cutoff ~){)jntof 1 eFU 10U mL -l). Simihlr results were oln;erved in others aquatic environments in the world (Dionisio ct aL 2000; Piancni et al 20M) ~ugge::;ting that anal~es of Ct)liformf> and f.'neer()cocCUS are nOl enou..gh to provide accur~jl.e information about water quality and to indicate the prc~nce of nont"Cl;C,llorigin con wmina tion. For cxample. S. aurcus ~ a natural inhabitant of tile human skill which is wasbed off the body surfa'X5 during rce.-'n'::lltionalbathing contarnin>uing the aquat!c \;OO,';ystems(Araujo et al. 1990). S, aUlet./~' can also enter th~ aquatic eCOSY8temsvia dome!ilic f>ewagc. The waste input in RFL W1l5indicated by the high counts of Salmonella and Vibrio, Although Vibrio spp. arc autochthonou~ microorga[lism!i, lheir growth j:; [Clvored hy high availahility of nutrient~ (see positive oorreJation with ammoniacal nitrogen in Table 2), wttich can lead to the dcvelopment of npportunistic pathogens (Pianetti et al. 2004). Ca:ies of vibrioses related to environmental pollution have been reported in marine (,X:U~)'l>tems (H~i el a1. 1998). Growth af Vibrio ~pp. is al~o r~vOIed by high water temperatures (Tahle 2), It is interesting to note that human pnthugenic ~peeies of Vibrio, such as Vibrio 'HA/ni}icus arc predominantly found in waters with range!> of temp(;(alures similar to RFL (West 1989: Wrigtll el a1. 1996). Although we have not foclL<o;cJour study ~() determine the different speci~ uf Vibrio, thi~ kind ofrcluliom.hip poinled .oul to the p~~jbJe presence o( human pathogenic Vibrio in RFL waters. Sewage inpl1l~ associated with rivers dischllrges llml poor wa1t:r circulation I1l!>ooontrihutl;\ to increase thl; turbidity of the lagoon favoring the mi· crohial uevelopmen\.. In this study. ~oncentralion!> of SPM were devated 16 to 66 mg L-1• Tbese panicles <illow the adsurption of microol'gani~m~ functioning <i~sites of intense heterotrophic me ta bolism due to the pre~C"1;e of several ~. ~,eted degradative exoenzym~ (Azam and Long 2001). The matrix correlation (Table 2) was lIllio used to evaluate the rdCttionship betwc.;cn the microorganif>IDs and lo verify whether mkrohiological indicatorb are sufficicTlt to predict th~ presence of pClthogen~. In RFL, Vibrio and Saltnonell.a were, respectively, bc~l.er predicted bJ total coliform~ and Enterococcus connts. Our data agree wilh tbase of Efbtratiou ct al. (1998), who. working in the polluted aTl;\<JS of tbe Saronikos GuLf in Greece, obserwtl that coJifoTm bacteria Were moderate and positively correillted to S, Ull.rew and that the presence or Saimonelki wa~ better predktcd by Entem,'()ccuS count.,. W<.::akcorrelaliot'ls between microbiological indicators and pathogens have also bccn (ljpurted for utber areas (Borrego et a1. 1987). Our T~UJtS demonstrated that bOlh coliform and Ente,ococcu~' cannot bc w;ed as sole indicators of the pa thogens ()C(urrence. This il>explalnahk by the modifications in microorganism relation!>hips with c~anges in environmental pollutiun levels.. Despite their low counts in the RFL, EnterQWCCUS were h~ltel 5uited to indicate fecal pollution than (;01· iforms. Th i:) pattern h as been reported for otber aq ua tic ecosystemSI ~ from waters frce or with low cQncentratinm of coJiforms (Bruni et aL 1997; Dionisio et ai, 2000). The issue whether colHorms are able to predict the presencc of pathogens i~ ~till discussed due to the frequently occurr\;nce of pathogenic.: microorganism" in areas where the fern indicators arc io luw numhen;, Based on this, we recommend the use of 00liforms and Enterococcu,I' to detect only rec:ent fecal contaminatioll. Determinations of path~)gt'nic microorganisms should always he used in sanitary ~\',lluation prograrm to compkment coliform ilnd Enfe"'OCQccus counts. This is the first study that U~9 both micrubiological indii;;utors and potentially pathogenic micmnrganis!D5 to e'Valuate a Brazi1i<Jn coastal l<lgtlOn. Hence, our rt'~u1ts provided some insight~ 011 the RFL l;\oosystern. Hnwever, we support the need [or a continu~lu!>monitoting to determine the trend~ of water quality of this iml,ort,mL coastal arc~, The data pr~ented in thi:) ~tudy also COll tribute to a be~t.er undcr~t •.mding of the correlations nt;tween miLTt)biaJ indicators and pUleotially plllhogenic microorganisms in a tropil.:<ll ecosystem. Bruni, V., Maugeri, T. L.. & MOllli,elli, L (1997). Facc.:ll pOlltlliQn indicaLu~ in the Ttln'il. NU'r'll liay (R~5 Ackn,""ledl:~eDtll We thanl: Dr. Jcanetc MilTon Ramo~, Chan~-c:lLor of Salll<t Ursula \;l'Ii"'cn;ify for her ill<:~nliv{;during lhi~ work. We (m grateful In ~hc Piraqili! Cll.lb lor the 8Up~rt during tlll~ fleld activities. WI,;;thank Dr. Frwenco Kur~ >loti Dr. Ricardo Pollcry for t1lcir help during the ~llmpJing'3. Our~pccial tbartk~ lo TatiaJla (Ialvllo tor her help with the micrubiological anlllyscs, We Lnarlk Dr. Luciana Andrlid~ and Roseni Olrvalho lor [ne helj'llul wmmcnts anIJ English eotr~liuffi. We are grateful to the Mi("Tobiolo8~' allcj Chemical (A:eanograpll)' I.jlburatorle~ S<mta Ursula Cniversity For the micNbiQlogjcal allc,l <.:hcmical anlll~cs.. reipeclivt:ly, We tha!IK tu the allen ~·nlt.U5reviewer for slJggc~[i{ln~ Ihill improved u ur rnllnu.~crjp~. Thi~ '3tudJ WllS financially wpported h)' I he Mrlta (In-ulll Uni,,'er~ily A.ssodation SlTld PliTt of the MSc. (If lhc5i~ of A.M.G, APHA (1Q98), Standarc] melhods tor the examination of waler llnd wa~tewtller, In L. ~. Cle:;ocri. A l2, Green berg, & A. D. Eat4)fl (Eds,), APJ! A.I A WWN WEF (20th eo,). Wll.I5hingtnn. DC: American Public Health A~i ••liun, Araujo. M, A" Guimariie •. Y, F., Me1luon"a-Hllgfer, L C. S., & H~lcr. A. N. ([9QO). Swphyloc.ocf',1J9 tlUftw' ilnd fecal slreptocooci in rresh lInd marine sllrl~C() waler~l)f Rlo de J uneiro. Bra:i'.i r. R('vistn de M iaQbiorofiin. 2[(2). 141-147. Araujo, to. V., Van Weerelt, M. D, M.. t-'ranCll, G, M. 0., Soares. C (" A" Hagler, A. N" & Mend'1n~lj-HlIgler. L C. (1Wl). Cla.~ifk!ltio[l hal;~ UrlcolifOl'I11 COunl of oo~~tlll walen in metropoHtan Rio de Janeirt'l, Orlililo In O. T, Maggon, H. COTlvex. V. Tippi~, L. T. Tobin, & D. Clarke; (Eds.), I'ror~I'(Un~~ o!rllr. 7111 Jympo~iljm on c{}(J,(w[ und oCt?.:lr! mUJlaget1U!nl-4:{nIstal lpp, 3246-32~X). N cow York: A mcncan Socle zone Iy 91 d Ci vi l Enginl>:er;, Azacu, [0'., Lorll\, R, A, (200)). Se •• ~rlOW mJcrnc<).m5, Na/u.n, 29, 497 ·49H. Baudart, J., Grabuloo. J., n~Tu~l;Cau, J.-P., &. LcbafOll, P. (20m). SuJmoneUa spf'l. llnd fecal cfJiirorm load~ in coastal walen; from :l ll()im 'r'., nonpoint :;(Jurce or « poll utlQIl. JcJumai of f:nvi,(Jnmental QwaUly, 29( t), 241~25t1. M. A., Vi,cntc. A., C61'TUlx. It .• & Romero, P. (1987), Colirhilgc5 /I~ an indil;lltur of r"ecal pollution in ","'Mer. Ih rel<ltionship ,.,i~hLndieatnr <'1mlpathogeniC microorgalli~m., R'alef Re.,(!wch. 2 J (12), 1473-14.'lH. dod 0.1 016ItXJ41-1J54(87)90 13(}.8, BrLw. L M., & Lemos. E. E, (1982). EYohJ~o gt:oI6gi~ae flluna da L~gOll RodriSL) de Frcita~, Rin de Jane;m. A.nais dll Al.'tuiemia Bra,tiJr.i,u de Cienciu.s, 54{ 1}, ll(lrrl>:go. J. J .. Morifiigo, 143-164 S<:a. J\nll:1ITtica). Mllrirre Pollurion fJulletfn.. 34( II), 908-912. dlli; to. 1I) IfliSOO2S-J26X (97}OOO50-7, C:IO~TJ1, J. E. (1987). Turbidity as a COlllr~}1 on ph)'top lllnicton bj(lmIlS~ and prod uct [vil~ j n eM uanes. ('muinenmt Sheif Rescaf'Ch, 7( 11-12). 1367-1381 doi; Ill. 1016J027&-4143 (87)90042-2. Cc.n;tanza. H., ~. Argc. fl .• (, rool, Ro. Farber, S .. Gras!lO, M., Han nOn. fl., et at (I ~97), The value of Ihe worl d 's <;:~"Osystem ~e["Yiccs and l'Ii11lur!ll capilaL Natun, JN7, 2~3-260, doi~1O.103813Sn51110. DioJli~iO,L. I', C, Rheinhcimer, (;., & Burrego). J. (WOO), _\oIi~tobioJogical polluliorl of Ria Form~ CSoutn of [JorlLJgl:ll), MariTU! PQllution B ••IIr.lin, 40(2), 186-193. dol: 10:1Ql61S002S-32nX (99)00206-4. HSlrllliou, M.. Mauidou, A.. Riebard~on, S., & Pi\pl:\dakj~, .T. (t 99B). COrl'e 1.Hion of ooeteria I i rldicalor mgani~t\ls wil h SainIlJflr:i!a spp., .\!l~phY!oCOC'Cll,~ lJur('us and Candida {llbic{Jn.~ in lioC.:lWatet. r.elrerll in Applied MitmbiolQK,Y, 16, .142-346. doi:ln.I0461 j .1471- 765X.19Y8,flO..145.x. Elrnanamn. A, A., Fahtl, M. t, Afi!i, S .• Abdallah, S .. & Hallr, S. (2005). \'l'i~TllbioJo!\it:al bc::llch sand qlUllill' in {,alll Strip in comparison to seawater quality, i::Jl~il'(mmenl{l1 Rt1sr.ordl, 99. t-10. uoi:10.1Ol(~' j,l:nvrcs.2004. I2.014, Empr~a 3rasileira de l'e~uL~a Agrupceutlnll &. (Ilstituto Ura~llciro do ~~LO Ambiente (1992). Idellliflca~iio de JillllU190CS pedoI6gi<.:a~ c amh;enlilis causadoras de degradl\~ao de areas do Jardim RotAnic:o dL) Rio de Janeiro, Serie.~ F.sjud~! e Cmuribui('iier, 10. to1 pp. C,·i:<.Qll, L. M. (19S8}, Compara\ivc: studie~ on lhl>: liurviv.:ll of ind icator Otgllnism~ and r~er.ogcns in f.-e"tl and SC.:lW<l~r. Waler Stleru;e ana J"«.hrU.>/Qgy, 20, 309-315. Fujioka, R, S., Hashimolo, K H., Siwak, E. H., & Youn£l, K. H. F, (19&1). Effect of SUJ1[igh~ survival of il'ldi\;a· lor bacteria ill seawaler. Applied N/1d fm:tronm!!I'l!t!1 MiaobiJ)/ogy, 41(3), nqo-696. R., & LUl[CrbacJl, M. S. (200b). H cterotrophi<; bacteria abuncJllnCC'3 in R<lllrigu de Frei[llS LagoOrl (Rio de Janeinl, Brazil). n'(1.?iiicl!l Jt)umrd of Micwbiufogy, 37, 42&-4:)3. dot I 1l.15901 S 1 5 1?-!U822006OO<l4fKlQD5, {jt'ln~lIlcz.A- M., Panmhos, Guimllraes, V. F" Aral1jo, M. A. V .. Hagler, L C. M_, & Hagler. A, 1'0'. (I9l.l3). f'mulotnt)nllJ,' aerugi/'Ul.~ <lnd other l'lIil,.Tubial indicator.! of polluti('HI in fresh ~nd marine W!l!.l;rs of Rio de J!lnciro, Br<ail, Envimtll1U'J!(tJ! Ioxi':%gy ana WlJler QU{lltty, JoI,3H--322. d(\;; 10.1002ftox .2530080300. Hagl~r. A. :'01., Mendun~a.Hagler, L. C, Santos, E, A.. Far/lge, S•. SUva 17irho, J. l3., S\.:hrank, A. ~L lit (l'!!lfl). Mierobia[ Iw>llullon indicnlors in J.jra~jliljn tropiC<'\ 1 lint! ~LJhll'Opical marl rle ~LJr(lIec wate r~. The SciMCl: of the Jawt EnviT01lJI~tll, .W3, }51-l60, odD, WI 6J{lD46-9697(Il6)LJ0084-7, HVli, L.. Lan;en, J. I '. Dllbgaa rd, I.. & Daligaatd, A.. (1998). ()~I)rrcncc or Vibrio vulni[wu in Danish mariTl~ t:m'i- u room erll<; , APf!ti~d IUI(t Envimflmt'J1tat 64.7-13. Micmbiology, I~hizaka, J., "'"kahashi, ~., & khio\Ufll, S. (198.1). Evalu<ltion (If coastal upwdliJ1g eft'eCll; 011 phytop[ankton growth by simulated culture t:xpcrjlTI~nts.. MG1'I.n" Bi%lIY (Hl'rIiPl), 76(:\), 2TI-27!l. OQi:10.1007/ Ufo0039JmS. I~obc, K. 0., Tarao. M., Chiem, N. H., Minh, L. Y.. & Tllkada, H. (2004). Effect of ~n,,·iTQnmentaJ f<ll;ton on the rctat ionslJi p l>etween conCcntral iuns n r c~lprOl\t~nol and fecal indj~tor l)ll~"tcria in tropical (Mekong Deltll) alll.l temperale (Tokyu) fre~hwalers. Applied and En~ircmmtmr{ll Miuobiology, 70{2), &14-&21- doi:lO.1128IJ\f.M.7U.2.81~21.2U()4. KQlm. tJ. E., Gillrnbef!lrdino Filho, R. E .•& Kormlln. YL C. (19tJ7). Spal illl di~trlbU(IL)n and tcmpLHtl.1 variability oi hcteru1rophil; bacterill in the sedimcnl~ of Parllnag~ Revi'·1(1 de Micro- and Antonill<l Bap", Parana, Brar.it iJioJogia, 28. 2.1{l-23K L~barou, I' .. Servais, I' .. Ti{)\ll;~llieL M .. Courtie;;. C. Vives-Rego, J., MUFer, G., el at. ([999). ChaIlge~ in ~t.crial commul]ilv s(ru.eture ill \;Cawater meooco.~m\ differing ill thcil' ';utrient SlalUS. Aq"atic ..'WicrohitU Ec'>!o1:Y. /9. 255-Z61. doi:I0,3354/ame019255. L~gc:ndre. L., & Legendre, 1'. (199~). &:oIogie n'.m~riqu.~. Tome 2.' L/l .wrUduff. des dOPllJes h:oJogigues. Cullcetion d'Ecologi~, n. M<!3So011, f'ari~ ~( le:s PrC!\~s de I'Univen:;ilc du Quehec, 254 pp. Lucas. L. M., & Lli'llul. S. U. (2[)f)7). Rede de urcn~em urhllTUl em lIreOl tr0l)icttl; na morfo[ngi~ Mudan~s do canal e njvei~ de polui~~o da5 ~guas-Rio do~ Macacos-Riu de Janciro-RJ GEOUSP-·Espo\O!' Temf1o, 22, 39-64. Lutterbach, M. T. S., Va5qUl:z. j. C. Pinel, .I. A., Arlureatll, J. V., & ~a Silvll, A. C (2001). Moniluring 'lnd spatial disltibulion of hl;wrntrophic bactena anJ fecal wtifnrms in [he Rodrigo de Freita5 ugoon. Rio de Janeiro, B.·<l:Q[, Brazilian Ardli~l!j of Riolo[Jy Imd hclllt()l(l~. 44(1),7-13. dL1i;10.1:l9Ol S! 5 J &-89] :1:200111(101 ()(XJ(lZ. ~cCambtiJf;<:, .I., & McMeekin, T. A. (1981). Erkct of solar flldia(LL)n and j'ln::daci OUS m icroorg. njsm~ on 5urvivalof leCliI atld other bacteria. Applied ll'ld EnvirO/Jm!."1tai Mir.:robi{)loR..~', 4/(5). PllgnOCUl, ~. 1083-1087. C. M4:nOOlllitl-Hagkr, A. K. (J~J I). He~rotrnphic the ~hrimp I~ C, & Hagrer. bacteria aSl;oci.lled wilh schmitti, ~t'dlmenl and water of ~pctjha Bay, Rio de Janeiru. Htalil. R~visro rJ/!. MicmhioJo5ia, 22(:l}, 247-252. f'crejrtt, M. 0 .. & Alc.'InUlIa, lo. (l9tJl). (littllranilily of F-3·cI~ridlill mil llJld SrrttpwcorxlLt ja«uJis in hatch cullurc .nd "in silu~ in el;tuari'le wal~r. Water Rf!le.arch, 27, lJ51-1JOO. doi:10.10161O<143-1354(93) Y0223·S F'/!/Ulf.t/Y Pianelli, A, B~;;Ulll1t, F.. Sah<l1ini, L, & Clllantooi. I'. (2004). Microbial chataelcri~liL'S of marine sediments in httlhing area along Pesar~abjoce wast (Itllly): A.. preriminary sWdy. Jou.mal of Appfif!d MiaQoiolagy, 97. 6l)2-<i8lJ. tloi: 10.111 !lj,1365-2672.~J(}4.02352.K, Sa IiUll, L J" & I klmet, R. (] <)<;)0).H~tllth ri ~k~ ;]8S()cillted with pollution of co.astal hathin£, \I"atcr~. World llt!l1llh Smdie.t, 43. 1n-187. Se~rctaria Municipal ~k Meiu Am1)iente (t99&). Prog,ama df! mcmitr>rameTlto da.t ITo,sH.sremiU (:om~imlurbtmm do mUl1idflw do Rio d.' Jan.eiro. Rio d~ Janeiro; 'fhe Secretariat. Sol il;. M.. & j( ~t uJovic. K (19'92). Separa tc; and 000\binlld effccts of SOIIlT radilltion, It;;mperalurc, salinity llnd pH on the ~urvjva] of ft!Qll cl)lifurm~ in !teawliter. Marilte Pollulicm flulletin. 24(8), 41l ..... lJ6. dQI:l 0.1 0] OJOO25-J~6X(t)2)9()SU3-X Striddan~, J. D. H., & PaJ'lIons. T. R. (11J72). A prarico.l hWldftook "f se(]w~r OJltJlYjis. Ottawa Fisherit:s Ke- ~carcll Boord of Ca'lauli. Iorre$, 1. M. (1 t)t)(). Lagua Rodrigo de rreila:s. Nevisra :Wunir.ipal de ~ngellhariQ, X Ll (]-4), 31-53. Trouf>!;ellier, M., (;ot, I'., lluuV)'. M .• M'Boup, M.• Arfi, R .. ubihari. F .. ct ill. (2004). W~llerqlJa]it}' and health SlllttL.,uf the Scne!\al Rivet t:litu3ry . MarinI: Pollut;on B tll· letill, 48. 8'iJ.~62. doi: 10.1016,'i_marpolbuJ.20ltJ.l 0.028. Vieira;' R. H. S., KOOrigue!>. D. P., Men=s, C. A., [,vang4:1ist3, N. S. S., R~is. E. M. F" Uarrcto, L. M .. ct aJ. (200 I). Microbial ~ontanlinalinT\ of Rand fmrn major beadles ill Fortalc;:re, C~ni Stale. BraziL ffrazilian JOUNiQI of Microbiology, .11, 77-SO. doi :10.15')(}:'S 1517 -81lmOOH:KJ02000(}l . Watkin;;, W.O .• & C:.tbcJii. V. j. (198'i). Effect uf fec<ll pollutiun em Vibrio p(Jrahaem<J'yticu.~ I.!cnr.itil;~ in art cstuari ne en'liron men L Appliel/ and F.rwi/Y>nmemul ..•• 1icwfJiotogy. 49. ]307 -1 -11 J. WeM, P. A. (1%9). Th4: hur.lan p<lLhogeoil; 'Iibrjos--a public hc:alth update with etlvironmenta[ pt:r>pecti'ics. Epidl!/ttiolog}' und Iflf~'lion., 10), 1-:14. A. 1'. J.• LJUrlCllnson. R. A" Saad, D. L., & ROOcrt5ol], A. (1993). Distri\.lUtion of CllJsmdium pcr[,il'lgms ~pur~ 'I] sediments llroun~ the l06-mile dunlpsitc in the mid-Atlantic Bight. Marin •.· PoltU!ion Bulle/ill, 26. 49--51- oot:HUOl6J White, H. H" Draxlcr. (J025·326X(9~)W5~t. • Wri!\lll. A. C. Hill, JC T., Johnson, J. A., RoghHlRn. M-C, O.>lwcll, R. R, & Morris, (I. M., Jr. (1L)l){}j. Di~lributirtn of Vibrio vulni{ic·us in r.he C1l~apcak<;; Hay. AppJie.d tlluI Em:iromnl'nuz.[ MicY(lO£ollJ/;Y. 62(Z), 717-124. Zar, J. H. (1999). Biosratistil.:rIi llrudysif l2nd ed.). New krsey; Prenliee-l Illll.